
Modeling Service Level Agreements with Binary

Decision Diagrams

Constantinos Kotsokalis, Ramin Yahyapour, and Miguel Angel Rojas Gonzalez

Dortmund University of Technology, Germany
constantinos.kotsokalis@udo.edu, ramin.yahyapour@udo.edu,

miguel.rojas@udo.edu

Abstract. The vision of automated service composition for enabling
service economies is challenged by many theoretical and technical limi-
tations of current technologies. There is a need for complete, dependable
service hierarchies created on-the-fly for critical business environments.
Such automatically-constructed, complex and dynamic service hierar-
chies imply a similarly automated process for establishing the contracts
that specify the rules governing the consumption of services; and for
binding them into respective contract hierarchies. Deducing these re-
quired contracts is a computationally challenging task. This also applies
to the optimization of such contract sets to maximize utility. We propose
the application of (Shared) Reduced Ordered Binary Decision Diagrams,
a suitable graph-based data structure well-known in the area of Elec-
tronic Design Automation. These diagrams can be used as a canonical
representation of SLAs, thus allowing their efficient and unambiguous
management independent of their structure’s specifics. As such, this rep-
resentation can facilitate the process of negotiating SLAs, subcontracting
parts of them, optimizing their utility, and managing them during run-
time for monitoring and enforcement.1

1 Introduction

Recent trends in service computing are lead by the vision of an Internet of
Services, a marketplace without boundaries where service economies can flour-
ish through composition and re-use. Suitable mechanisms, and the automation
achieved through smart agents, will be the key enabler for this goal. It is antic-
ipated that, eventually, full potential can be achieved through the automation
of contracting for such services. More specifically, it is desired that service con-
sumption can be enabled with determinism, under well-specified contracts that
define all parameters and govern the use of a service by its customer.

Such a contract is encoded in a Service Level Agreement (SLA). A SLA is
essentially a set of facts, and a set of rules. Facts are globally (with respect
to the contract) applicable truths, such as parties involved, monetary unit, etc.
Rules include:
1 The research leading to these results is supported by the European Community’s

Seventh Framework Programme (FP7/2007-2013) and the SLA@SOI project under
grant agreement no.216556.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 190–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling Service Level Agreements with Binary Decision Diagrams 191

1. the conditions that must hold for a certain clause to be in effect;
2. the clause itself, typically describing the expected result that the customer

wishes to receive – and which is usually referred to as Service Level Objective
(SLO); and

3. a fall-back clause in the case that the aforementioned clause is not honored.

As an example, for the condition “time of day is after 08:00”, the clause could
be “response time is less than 5 seconds”, and the fall-back clause could be an
applicable penalty. This kind of format actually reflects real-life contracts and
their if-then-else structure, which might apply either as the default or as the
exception to such default respectively.

In this paper we propose that a graph-based data structure, well-known in the
domain of Computer Aided Design (CAD) for Very Large Scale Integrated (VLSI)
circuits, is suitable for modeling SLAs in a way which is both expressive enough,
and very efficient. Reduced Ordered Binary Decision Diagrams (ROBBDs) were
introduced by R. Bryant in 1986 [1] as an evolution of C.Y. Lee’s [2] and S.
Akers’ [3] work on BDDs. The hardware industry race has further contributed
to the optimization of the structure itself with a significant amount of relevant
research, and a large number of methods already exist for taking advantage of
ROBDDs’ inherent properties.

The essential reason that ROBDDs are useful for modeling SLAs, is that they
are canonical representations generated on the grounds of if-then-else rules.
As such, they can express SLAs unambiguously: equivalent SLAs which are
structurally different, are eventually represented by the same ROBDD. On the
contrary, using formats developed for on-the-wire representation such as WS-
Agreement [4] or WSLA [5] does not guarantee this property. We propose that
ROBDDs are used internally in systems which have to manage SLAs, as a repre-
sentation that facilitates their management. Suitable interpreters should then be
developed to convert from standardized, interchangeable formats such as WS-
Agreement and WSLA, to this more convenient data structure and vice-versa.

This paper continues with Section 2, which is discussing related work on SLA
representation, management of hierarchies, and previous efforts to relate them
to Logic. Following, Section 3 elaborates on (Shared) ROBDDs. Section 4 details
their relationship with SLAs and the specific proposal on how to use them for
our purposes. Section 5 illustrates initial experimental results. Finally, Section 6
concludes the paper with a summary of core results, and an outlook to future
work.

2 Related Work

BDDs are classified as a tool in the area of symbolic model checking. This is
the scientific discipline looking into the problem of verifying that a given system
satisfies specific requirements, given any kind of input. To our best knowledge,
this is the first work that uses BDDs to model and verify SLAs and SLA de-
pendencies. That said, BDDs have been used in service computing before, albeit
in very few occasions. In [6] the authors are using a special form of BDDs,

192 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

called Zero-Suppressed BDDs, to create compact digests of service advertise-
ments. Then, the digests are distributed to interested parties which use them for
their service composition needs. In [7], the authors are using BDDs for matching
service advertisements in publish-subscribe systems (making use of equivalence
checking).

As regards SLA modeling in general, the most well-known efforts are WS-
Agreement and WSLA. As also mentioned in the previous section, the focus of
these specifications is on-the-wire representations for enabling interoperability
between independent agents. This is an area we are not targeting with the work
presented in this paper; rather, our focus is a system-internal representation,
that will enable efficient mechanisms for decision making.

With regards to applying logic-based approaches to the topic of SLA manage-
ment, the work which comes closest to ours is the one described in [8]. There, the
authors look at the problem in more detail, defining constructs also for things
such service description, pricing, QoS, etc. On the other hand, we face everything
in an abstract way here, and assume external syntactical definitions and appro-
priate architectural patterns for applying these definitions. Additional differences
include our explicit focus on managing hierarchies of SLAs and associations be-
tween them as such. The necessary constructs for this kind of functionality also
exist in [8], however there is no mention of essential facilities such as equivalence
checks and translation between different vocabularies for different layers of a
complete IT stack.

3 Binary Decision Diagrams

This section serves as a general, high-level introduction to BDDs and their basic
properties. Motivated readers are encouraged to consult with the bibliography for
in-depth material. Most of the definitions provided in this section, are summaries
of the definitions that can be found in [9].

A BDD is a graph-based representation of one or more boolean functions.
This kind of diagram is based on Shannon’s decomposition theorem [10], which
states that, assuming a boolean function f : Xn → Xm, where Xn = {x1, ..., xn}
and Xm = {x1, ..., xm}, then for any boolean variable xi, i ≤ 1 ≤ n:

f = xi · fxi=1 + xi · fxi=0 (1)

What Equation 1 provides, is the if-then-else representation we are looking for:
If xi is true, then fxi=1 must be evaluated, or else fxi=0 must be evaluated. A
BDD then, is a directed acyclic graph G = (V, E), where V denotes the vertices
(nodes) and E the edges. Vertices can be either terminal (i.e. their out-degree is
equal to zero), or non-terminal. The former can carry a value of either 1 (true)
or 0 (false). The latter are labelled with a variable xi ∈ Xn; if u is the node, the
variable xi is referred to as var(u). Of the two children nodes, the one followed
if xi evaluates to true is referred to as then(u), and the other as else(u).

An illustrative example can be found in [9]. This example is shown in Fig-
ure 1(a), where we see a BDD representation of the boolean function f =

Modeling Service Level Agreements with Binary Decision Diagrams 193

x1 ·x2 + x1 ·x3. We typically use solid lines for the edge between u and then(u),
and dashed lines for the edge between u and else(u). Additionally, non-terminal
nodes are denoted as circles, while terminal nodes as squares.

Let π be an ordering of the boolean variables involved in the function to
represent. Then, the pair (π, G) is the Ordered BDD (OBDD) representation of
the function, as long as (additionally to simple BDD definitions) it is true that
on each path from the root to a terminal node the variables are encountered
at most once and in the same order. Looking into the previous example, Fig-
ure 1(b) is illustrating exactly this ordering of variables, and how it affects the
diagram. A diagram with more than one roots (i.e., representing more than one
boolean functions which depend on the same boolean variables) is a Shared BDD
(SBDD). It must be noted that a root node here does not necessarily imply that
the in-degree of this node is equal to zero. For a specific function within a BDD
or a SBDD, a path is a subset of G which connects the root with a terminal
node, without any duplicate occurrences of a node or an edge. We denote the
set of all paths for function f as Γf .

1

f

x2

x3 x3 x2 x2

x3

x1

0

(a)

1

f

x2

x3 x3 x3 x3

x2

x1

0

(b)

Fig. 1. Simple/Ordered BDD representations of f = x1 · x2 + x1 · x3

Last before looking at how this kind of diagrams facilitates our work for SLAs,
is a short introduction to their operations for reduction. BDDs can be reduced
in two ways:

1. Deletion: If for a non-terminal node u of G it is true that then(u) = else(u) =
u′, the node can be removed from the graph. All edges pointing to it, if any,
must now point to u′, and if u was a root node, then u′ must be upgraded
to a root node.

2. Merging: If for two non-terminal nodes u and u′ it is true that var(u) =
var(u′), then(u) = then(u′) and else(u) = else(u′), then it is possible to
remove u and have all edges pointing to it redirected to point to u′. Addi-
tionally, if u is a root node, then u′ must be made into a root node.

Remark. In the text that follows, we will use the term BDD universally, to refer
to Reduced Ordered BDDs. Also, we will not distinguish between single-rooted

194 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

and shared diagrams. Whenever single-rooted BDDs are explicitly excluded, we
will denote that by pre-pending “shared” or just the letter “S”.

4 SLAs as BDDs

4.1 A Motivating Scenario

Let us now consider a somewhat typical (albeit reduced, for this example) sce-
nario, where SLA management is necessary. We are assuming an Infrastructure
as a Service (IaaS) provider; a Software as a Service (SaaS) provider which is
also a customer to the IaaS provider; and an end-customer of the SaaS provider.
We are therefore working on the assumption that the SaaS provider has no
infrastructure of its own, therefore all operations are outsourced to the IaaS
provider who owns the infrastructure for the software to be executed. This kind
of business scenario involves two SLAs, as shown in Figure 2. The first (SLA-1)
is established between the end-customer and the SaaS provider, to govern their
interactions and apply guarantees. The second (SLA-2) is established between
the SaaS and the IaaS providers for the same purpose.

End-

Customer

SaaS

Provider

IaaS

Provider
SLA-1 SLA-2

Fig. 2. A scenario with a SaaS and an IaaS provider

The end-customer certainly is not interested in the physical or virtual re-
sources that the software will execute on, in order to receive performance which
is acceptable. Therefore, the customer would try to engage in a SLA with the
SaaS provider, which would involve –for instance– metrics for service availability,
and service invocations completion time (CT). The SaaS provider would typi-
cally have some understanding about the software based on modeling principles
or historical monitoring evidence, starting from which it can derive expected
resource requirements, possibly varying throughout a day’s, month’s or other
period. The infrastructure resource requirements, on the other hand, would be
the guarantees that the SaaS provider’s SLA with the IaaS provider would need
to include. Our example SLAs are described as follows:

SLA-1: For service “Service-1”, and given that business hours are between 09:00
and 17:00: During business hours, operation “Operation-1” must complete
within 5 seconds, and the service’s availability must be more than 99%.
Outside business hours, completion time for the same operation can be up
to 10 seconds, and the service’s availability must be more than 95%.

SLA-2: For service “VMpool”, and given that business hours are between 09:00
and 17:00: During business hours, 10 virtual machines must be allocated to
this contract. Outside business hours, 5 virtual machines must be allocated.

Modeling Service Level Agreements with Binary Decision Diagrams 195

Table 1. Example clauses

SLA Variable Proposition Proposition type

SLA-1 x1 ServiceName = ’Service1’ Fact
SLA-1 x2 BusinessHours = 09:00 - 17:00 Fact
SLA-1 x3 TimeOfDay in BusinessHours Condition
SLA-1 x4 ’Operation1’ CT < 5 sec Clause
SLA-1 x5 Service1 availability > 99% Clause
SLA-1 x3 TimeOfDay not in BusinessHours Condition
SLA-1 x6 ’Operation1’ CT < 10 sec Clause
SLA-1 x7 Service1 availability > 95% Clause

SLA-2 y1 ServiceName = ’VMpool’ Fact
SLA-2 y2 BusinessHours = 09:00 - 17:00 Fact
SLA-2 y3 TimeOfDay in BusinessHours Condition
SLA-2 y4 Number of VMs = 10 Clause
SLA-2 y3 TimeOfDay not in BusinessHours Condition
SLA-2 y5 Number of VMs = 5 Clause

Table 1 illustrates the set of facts and clauses that we will use for this example
scenario. It is straightforward to see that, given these facts and clauses in the
form of boolean variables which evaluate to true or false, the SLAs can also eval-
uate correctly if they are modeled according to Equations 2 and 3 respectively.
In the upcoming Section 4.2 we will formalize the problem of expressing SLAs as
boolean functions. Then in Section 4.3 we will show how these specific example
SLAs map to BDDs.

f = x1 · x2 · (x3 · x4 · x5 + x3 · x6 · x7) (2)
g = y1 · y2 · (y3 · y4 + y3 · y5) (3)

4.2 SLAs and SLA Hierarchies

In Section 1 we referred briefly to service hierarchies and the corresponding SLA
hierarchies. Each SLA governs the consumption of one or more services, by one
or more consumers. Involved parties have specific obligations to comply with
and/or specific gains to expect. In order to carry out its obligations, a service
provider involved in a SLA may have to subcontract, that is to establish one or
more additional SLAs with parties not directly involved in the initial one. This
kind of dependency between the original contract and the subcontracts may take
many different forms. It may be related to capacity, functionality limitations, fail-
over capabilities, or may represent some other aspect of the provider’s modus
operandi and business model. As such, it is very generic and makes it difficult
to identify exactly how the state of one contract affects the state of another.

We formulate a proposed SLA representation as follows: Let Φn be the universe
of facts applicable to contracts as indisputable truth, Φn = {φ1, ..., φn}. Also let

196 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

Y m be the universe of clauses which can be evaluated to either true or false,
Y m = {y1, ..., ym}. A Service Level Agreement is the boolean function f :

f : F k ∪ Z l → {0, 1} (4)

where F k ⊆ Φn, F k = {φ1, ..., φk} and Zl ⊆ Y m, Z l = {z1, ..., zl}.
We therefore have a representation of a SLA as a boolean function, taking

advantage of a SLA’s binary nature upon evaluation as possible / impossible
to satisfy (at negotiation time) or honored / violated (at runtime, i.e. while
the service is being consumed). The variable terms of a SLA are taking values
from Zl, while pre-agreed understanding and in general facts about the world is
encoded in facts accepting values from F k. This definition is broad enough to en-
compass various previous definitions, both conceptual (e.g. [11]) and syntactical
(e.g. WS-Agreement).

We are now ready to codify SLA dependencies in a generic way, that allows
enough flexibility to describe any such kind. Let:

– f : F k ∪ Z l → {0, 1}, the dependent SLA
– fi : F ki ∪ Z li → {0, 1}, i ∈ N, the depending SLAs
– F ki ⊆ Φn, F ki = {φ1i, ..., φki}
– Zli ⊆ Y m, Z li = {z1i, ..., zli}

We define the dependency of f upon {fi} (and therefore the resulting hierarchy)
as a function g:

g : Z l → ∪i(Z li)|F k ∪i (F ki) (5)

Simply said, a function of any number of variable terms from SLA f equals
a function of any number of variable terms from one or more SLAs fi, under
the circumstances defined by the relevant fact sets. Operating under this highly
abstract definition allows us the required flexibility to describe contracts with
dependencies of any kind, as long as each of them does eventually evaluate to
either true, or false.

4.3 BDD Mapping

We now have a formal representation of SLAs (Equation 4) and SLA depen-
dencies (Equation 5). The gain in using BDDs lies in reduction. Through this
process, a BDD becomes a canonical representation of the boolean function it
describes, as proven in [1]. Therefore, a SLA described as a boolean function in
the form of a BDD takes a unique, well-specified and minimal form, eliminating
redundancy and allowing to make the mapping which describes SLA dependen-
cies far more efficient than what it would be if we operated on complete graphs.
Additionally, the canonical form of the SLAs allows objective evaluation and
comparison for maximizing utility.

The exact method to construct a BDD from a SLA depends on the format
in which this SLA is originally expressed, and therefore it cannot be algorithmi-
cally defined in a universal way. In the case of WS-Agreement we would use the

Modeling Service Level Agreements with Binary Decision Diagrams 197

Context and Service Description Terms as facts; Qualifying Conditions
as conditions; Guarantee Terms as clauses; and Term Compositor Terms could
be classified as either conditions or clauses. In fact, WS-Agreement’s Term Com-
positor Terms are essentially boolean operators: All (AND), OneOrMore (OR),
ExactlyOne (XOR). Using this pre-defined knowledge for such a specific SLA
language, it is straightforward to implement a parser that can read the docu-
ments and construct a (Reduced Ordered) BDD on-the-fly as described in [12]
with the revised “APPLY” operation.

To illustrate the reduced form of BDDs representing SLAs, we will use the
example scenario from Section 4.1. As mentioned, Equations 2 and 3 represent
the two example SLAs as boolean functions of the variables from Table 1. Then,
assuming an ordering corresponding to the numbering of the variables, the two
resulting BDDs would be as in Figure 3.

x1

1 0

x2

x3

x4

x5

x6

x7

y1

1 0

y2

y3

y4

y5

(a) (b)

f

g

Fig. 3. The BDDs corresponding to functions from Equations 2 and 3

The main deficiency of BDDs is their reliance on the ordering of the variables.
The size of a BDD for the same function may vary from linear to exponential,
depending on how variables are ordered [1]. Generic algorithms for near-optimal
orderings of variables during or after BDD construction have been researched
extensively in the past (e.g. [13,14]). Our application to the domain of SLA
management and the involvement of facts as variables, whose else edge always
points directly to terminal node 0, provides already a possibility for optimizing
the BDD by pushing all facts to the top of the diagram. Although this kind of
ordering does not reduce the total number of nodes, it allows us to ensure that
indisputable facts are honored by all parts of the SLA, otherwise it will evaluate
to false at runtime (i.e. it is violated). Also, at negotiation time, this ordering

198 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

may speed up the negotiation process significantly, since the first thing to be
confirmed as acceptable (or not) is the agreement of the involved parties on the
essentials of the contract (for instance, monetary unit). It should be underlined,
at this point, that facts are propositions which apply to the complete contract,
and govern all terms included. Therefore, in certain cases, additional attention is
required for choosing what is a fact and what is not. Let us consider, for instance,
the case of a two-party contract with two sections describing the obligations of
each party, starting each section with an indication as to which party it applies.
The statement “section (a) describes the obligations of party (A)” is certainly
true for the complete contract. Nevertheless, if reference to the section includes
some contract-locality constraint, e.g. “this section describes the obligations of
party (A)”, then this causes ambiguity and cannot apply to the whole contract
any more – therefore should be modeled as a condition.

Having ordered facts at the beginning of the diagram, we assume some BDD
method to optimize the ordering of conditions and clauses. Additionally to
generic methods described in relevant literature, a kind of structural optimiza-
tion that takes advantage of the semantics of SLAs and may be applied here is
one that considers what is more crucial to the user. Certain SLA representations
contain sections on Business Values, that may reference specific terms as regards
their importance. Given proper formalization of such sections, a constructor of
BDDs from SLAs can take them into account and order clause variables from
maximum to minimum importance, thus allowing faster evaluation of business-
critical terms.

We can now discuss principles for the SLA application domain, and for out-
sourcing parts or all of the contract. Starting from the very semantics of SLAs
represented as BDDs, we have to distinguish between the meaning of a boolean
variable (and the whole diagram) during negotiation time, and during runtime.

4.4 Negotiation Time Operations

During negotiation time, the evaluation of a fact variable to true or false shows
whether the fact is recognized as such from the receiving party. For conditions
and clauses, it indicates whether there is any reachable state based on assign-
ments of respective variables, so that the condition / clause under examination
can eventually evaluate to true. Extending this to the complete diagram, at nego-
tiation time we are interested to see if there exist, in general, truth assignments
for the whole set F k ∪Zl which satisfy the diagram and lead to 1. At this point
lies an implicit decision. The party that receives the offer needs to have some
certainty that it can honor it after signing. It is a policy issue if this certainty
needs to be 100%, or near that, or even much lower (perhaps indicating a high-
risk strategy). Whatever the policy, the decision will have to be taken based on
some objective criteria. A certainty of 100% would mean that paths of the BDD
must be checked for tautology, that is, any truth assignment for a path will lead
to terminal node 1. If tautology applies for a single path, that should be enough
to accept the offer. If not, it is necessary to make an educated guess whether the
offer is acceptable, and whether some part needs to be subcontracted.

Modeling Service Level Agreements with Binary Decision Diagrams 199

A simple calculation that can be performed, is the following: Let Γ 1
f be the

set of all paths for f that connect the root to terminal node 1, and Γ 0
f the

respective set of paths leading to terminal node 0. We assume that by means
of historical monitoring information, forecasting, or simply common sense (e.g.
time of day) there is assigned to each node ui in h ∈ Γ 1

f a probability P ′(ui)
to evaluate to a result so that node ui+1 is (also) on the same path, and 1 − p
to evaluate otherwise. If the variables of the nodes in the path are dependent,
then we need to take this into account and calculate the conditional probability
of each variable, given the evaluation of all previous variables on this path:

P (ui+1) = P ′(ui+1|u1 ∩ u2 ∩ ... ∩ ui) (6)

In somewhat less formal notation, we have represented the variables (and the
events of them taking a value of true or false) by the names of their nodes. If
the variables are independent, then P (ui) = P ′(ui), ∀i. The probability ph that
the complete path evaluates to true, is

ph =
∏

u

P (u)|u ∈ h (7)

Then, the total probability that the SLA can be honored if established, is

C =
∑

h

(ph)|h ∈ Γ 1
f (8)

Assuming that the acquisition of this probability per node can be performed
in constant time, then the complexity of estimating this probability per path
is O(n). The consequent requirement to minimize the total number of paths at
construction time or variable ordering time, should also be taken into account.

A negotiating party will want C to exceed some threshold, in order to agree
to an offer that was received. If this is not the case, then the party (typically, a
service provider) will have to either reject the offer, or try to increase C by sub-
contracting one or more paths and thus increasing their contribution to the total
success probability. Representing SLAs as BDDs is most useful at this point: The
canonical and reduced form of a BDD produces a tractable list of options with
regard to what we can assign to subcontractors. For items in such a list, due to
the specific ordering of variables, we can devise unique and unambiguous signa-
tures. The latter may then be associated to different boolean functions, which
represent candidate subcontracts. Domain-specific intelligence can be applied
by area experts before operation starts, and define the dependencies of certain
variables on others for subcontracts. Then, a system based on these principles
can make use of this knowledge, and construct proper offers towards third par-
ties. As long as these offers are accepted, and the respective second-level SLAs
are established, it should be the case that the corresponding path has increased
certainty to complete successfully as regards honoring the first-level SLA. The
negotiating party has a choice, according to policies and strategies, to modify the
offer and return it with specific values for the variables of that path (practically

200 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

suggesting the SLA equivalent of the path), or to accept the complete SLA as
long as the increase in C is sufficient.

Coming back to the example scenario from Section 4.1, we can see two possible
ways where this kind of subcontracting is / may be needed. The first, is the explic-
itly mentioned subcontracting from the SaaS to the IaaS provider. Conceptually,
since the SaaS provider has no infrastructure, they cannot offer the service at all
unless they subcontract for infrastructure. Terms x4, x5, x6 and x7 would always
evaluate to false unless infrastructure resources are available for the software to
execute on. As such, the SaaS provider has to go through this translation process
in any case, to calculate infrastructure requirements and make a respective offer
to the IaaS provider. If an agreement with the IaaS provider already exists, the
contracting system in use should find this automatically after the translation oc-
curs, try to reuse it if possible, otherwise resolve to making a new offer. It must
be noted here that, since the outsourcing concerns paths, the SaaS provider may
just as well make two different offers to two different infrastructure providers (one
for each of the two paths in Γ 1

f), or can make a single offer to one infrastructure
provider for both paths (this is our assumption in the example scenario).

The second case, is if it so happens that the IaaS provider cannot satisfy the
incoming offer – for instance, does not have the resources to offer the requested
performance during business hours. This means that, according to its estimation,
y4 would evaluate to false most of the times, and therefore path y1−y2−y3−y4−1
would contribute minimally or not at all to the whole agreement’s C-value. In this
case, the IaaS provider can reject the offer, or —depending on projected utility—
try to outsource this path to another IaaS provider. Further translation of the
terms may occur or not in this case, depending on the structural and qualitative
agreement properties that are accepted by the second IaaS provider.

It should be mentioned that an offer may be for a single SLA, or for multiple
SLAs (typically for different services or groups of services) in the form of a
Shared BDD. Our working assumption of an offer for a single SLA does not
affect generality.

Another relevant point is that we are referring to SLA terms in a most ab-
stract way, and that is on purpose in order to define a generic model. However,
from an implementation point of view, we need to define proper term signatures
(term templates), and to select “good” values to replace in them. For example,
the expression “completion time < 5 seconds” evaluates to true or false and
therefore can be modeled as a single boolean variable. Yet, if we assume that
the expression “completion time < 4 seconds” is a term with a different sig-
nature, then naturally the complexity of mapping between different signatures
increases enough to make the problem unfeasible. Therefore, from an imple-
mentation point of view, we need a single signature like “completion time <
duration”, allowing to set duration to a preferred (“good”) value as mentioned
before. Here, “good” has to do with the notion that there is some utility coming
out of each SLA, and this utility we wish to maximize. Structural optimization
of the SLA’s BDD supports better decisions from a SLA computability point
of view, and possibly reduces time to reach an agreement. However, the utility

Modeling Service Level Agreements with Binary Decision Diagrams 201

itself is domain-specific again, and falls into the same realm with choosing a
“SLA probability to succeed” threshold over which an offer is acceptable.

Solutions to the open issues elaborated in the previous paragraph are outside
the scope of the work presented in this paper. Technology mapping [15,16] is a con-
cept which matches the problem of templating terms and their combinations, and
provides a starting point for further research. The topic of selecting values that
increase total utility falls under multi-objective optimization [17]. As a matter of
fact, the optimization logic may affect the negotiation process itself. An entity
negotiating over a set of variables may find that small modifications to the nego-
tiating party’s requirements may increase significantly the resulting utility. In this
case, it may just as well modify the proposed term slightly, and return a counter-
offer which does not match the other entity’s requirements, but may provide much
better results if accepted. Such negotiation-time risk-taking attitudes can be mod-
eled with game theory methods [18,19]. Technologies from all three areas will be
tested in the future as part of this work and a complete implementation.

4.5 Runtime Operations

For this part of our work, we are assuming a monitoring subsystem that can
capture service execution-related events from various sources and detect if some
SLA term is being violated. The process actually starts much earlier, during
negotiation. At that time already, we must verify that terms of an agreement
can actually be monitored [20]. Following this verification step, as part of the
negotiation process, a SLA may be formally established, perhaps relying on other
SLAs for its existence.

While the service is being consumed, incoming events are processed and terms
(in the form of boolean variables of the BDD) are examined to see if a violation
has occurred. The ordering of the variables allows the linear-time confirmation,
starting from the root and traversing the diagram towards terminal nodes. As
each variable evaluates to true or false, the respective child (then/else) is followed
until a terminal node is reached. If that node is 0, then there exists a violation,
and the reason of failing at that specific part of the SLA must be assessed.
Depending on whether this failure happened on a path which was outsourced, or
not, there may be a re-negotiation initiated, penalties claimed, or simply adjust
the method to estimate success probabilities for different paths. Additionally to
corrective actions, such an event must be logged to be reused in next negotiation
cycles.

The exact methodology to use in order to avoid unnecessary evaluations of
the complete diagram, depends on the monitoring system, the way to evaluate
each variable, and the acceptable time thresholds for reaction to violations. A
complete definition of such methodologies is out of scope for this work.

5 Experimental Verification

As a proof of concept, we built a very simple prototype that accepts a SLA al-
ready expressed as a boolean function in Reverse Polish Notation (RPN) form,

202 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

produces a BDD from it and assigns probabilities to the nodes in a semi-random
way. Then, it calculates the paths leading to 1, their probabilities to be followed
and the total probability that the SLA can be honored without any subcontract-
ing. We experimented with a single SLA offer, which was crafted not to contain
dependent variables, according to the following description:

The SLA concerns service “Service-1” (fact). Business hours are
set to 09:00-17:00 (fact). The whole system must run in isolation from
other customers of the service provider (fact). If the operation invoked is
“Operation-1” (condition), and time is within business hours (condition),
then: completion time should be less than 5 seconds (clause); availability
should be more than 99% (clause); and throughput should be more than
100 operations per minute (clause). For times outside business hours:
completion time should be less than 10 seconds, availability should be
more than 95%, and throughput should be more than 50 operations per
second. For operations other than “Operation-1”, invocations should be
authenticated (clause) and availability should be more than 98%.

With regard to the assignment of probabilities to the nodes and the paths to
follow, we assigned a probability equal to 1.0 to facts and to the proposition of
authenticated invocations (this being a functional requirement that the provider
should be aware of). We then assumed that invocations of “Operation-1” are
one out of three, i.e. a probability of roughly 0.33, and the same for the time of
day being within business hours – so we imply that invocations of the service
are equally distributed throughout the day. Finally, for the propositions of com-
pletion time, availability and throughput, we randomly assigned on each node
a probability between 0.8 and 1.0 that the provider can satisfy it or will fail (a
second random number indicates which of the two applies). In a real scenario,
the provider would calculate these probabilities based on monitoring, forecasting
or other information. Eventually, we run this simple scenario 10000 times, to see
under these semi-random conditions how the SLA success estimations behave.
Constructing the BDD for this specific SLA took place in a mere 2.2 seconds.
Running the 10000 probability tests took approximately 4 seconds on a 2.4 GHz
processor. The diagram contained 16 levels, excluding terminal nodes. Of the
21 paths leading to terminal node 1, the shortest was 6-nodes long (excluding
1), and the longest was 13-nodes long. Figure 4 illustrates the overall calculated
probability that the SLA will be successful if established.

From this preliminary evaluation, the feasibility and validity of the approach is
exhibited for all SLAs that consist of propositions evaluating to true or false. As
long as all invariable statements of a SLA (e.g. references to other SLAs) can be
expressed as facts, and all variable statements can be expressed as conditions and
clauses, this assumption is valid for any SLA. In this experiment, a simple but
not trivial expression was built fairly quickly, producing a vector of 21 paths to
evaluate and monitor. Allowing some certainty for individual terms (80%-100%
probability of success or failure) results in a clear gap between SLAs projected
to fail, and those projected to succeed. This is an indication that, using BDDs

Modeling Service Level Agreements with Binary Decision Diagrams 203

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 h

its

Overall success probability

Fig. 4. Experimental result

in this context and under such circumstances, we can calculate in only a few
milliseconds and with a reasonable amount of certainty, whether the complete
SLA can be satisfied or not. Future application of this methodology on real-world
use cases will allow for further evaluation.

6 Conclusions and Future Work

In this paper we presented a novel application of (Shared) Reduced Ordered
Binary Decision Diagrams, for representing and managing SLAs, as well as fa-
cilitating the construction of SLA hierarchies. BDDs are graph-based structures
which have been used for decades in the field of VLSI design and verification,
with particular success. They are one of the main tools of the VLSI industry
for testing prototypes, and therefore BDDs are a topic under heavy research for
decades. The depth and breadth of existing ideas and research can be applied to
SLA management for further advancement of this complex service management
area. In this particular work we elaborated on the representation through a for-
mal definition of SLAs as boolean functions and from there as BDDs; explained
the advantages of this approach; and showed how such kind of use is possible
for negotiating SLAs, subcontracting (leading to implicit SLA hierarchies) and
detecting SLA violations. Finally, we briefly discussed the encouraging experi-
mental results of applying BDDs to SLA representation.

In the near future we will fully implement these ideas as part of a more general
SLA management design. It is our purpose to explore the topic of BDD structural
optimization, in addition to that of multi-objective optimization, the latter being
necessary for increasing a SLA’s utility. Technology mapping appears to fit well
the requirement to translate between abstract logic representations, and game
theory is suitable for negotiation mechanisms. These technologies will also be
evaluated and possibly applied to our implementation.

204 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

References

1. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

2. Lee, C.: Representation of switching circuits by binary decision diagrams. Bell
System Technical Journal (38), 985–999 (1959)

3. Akers, S.: Binary Decision Diagrams. IEEE Transactions on Computers C-27(6),
509–516 (1978)

4. Open Grid Forum: Web Services Agreement Specification, WS-Agreement (2007)
5. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service

Level Agreements for Web Services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

6. Binder, W., Constantinescu, I., Faltings, B.: Scalable Automated Service Compo-
sition Using a Compact Directory Digest. Database and Expert Systems Applica-
tions, 317–326 (2006)

7. Campailla, A., Chaki, S., Clarke, E., Jha, S., Veith, H.: Efficient filtering in publish-
subscribe systems using binary decision diagrams. In: ICSE 2001: Proc. 23rd In-
ternational Conference on Software Engineering, pp. 443–452 (2001)

8. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decision Support Systems 46(1), 187–205 (2008)

9. Ebendt, R., Drechsler, R., Fey, G.: Advanced BDD optimization. Springer, Heidel-
berg (2005)

10. Shannon, C.E.: A symbolic analysis of relay and switching circuits. AIEE (57),
713–723 (1938)

11. Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments.
Computer Networks 35(1), 5–24 (2001)

12. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

13. Friedman, S., Supowit, K.: Finding the optimal variable ordering for binary decision
diagrams. IEEE Transactions on Computers 39(5), 710–713 (1990)

14. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
ICCAD 1993: Proc. 1993 IEEE/ACM international conference on Computer-aided
design, pp. 42–47. IEEE Computer Society Press, Los Alamitos (1993)

15. Keutzer, K.: DAGON: Technology Binding and Local Optimization by DAG
Matching. In: 24th Conference on Design Automation, June 1987, pp. 341–347
(1987)

16. Detjens, E., Rudell, R., Gannot, G., Wang, A., Sangiovanni-Vincentelli, A.: Tech-
nology mapping in MIS. In: Proc. International Conference on Computer Aided
Design, November 1987, pp. 116–119 (1987)

17. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
18. Fatima, S., Wooldridge, M., Jennings, N.: A Comparative Study of Game Theoretic

and Evolutionary Models of Bargaining for Software Agents. Artificial Intelligence
Review 23(2), 187–205 (2005)

19. Figueroa, C., Figueroa, N., Jofre, A., Sahai, A., Chen, Y., Iyer, S.: A Game Theo-
retic Framework for SLA Negotiation. Technical report, HP Laboratories (2008)

20. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and
Monitoring SLAs in Complex Service Based Systems. In: ICWS 2009: Proceedings
of the 2009 IEEE International Conference on Web Services, pp. 783–790 (2009)

	Modeling Service Level Agreements with Binary Decision Diagrams
	Introduction
	Related Work
	Binary Decision Diagrams
	SLAs as BDDs
	A Motivating Scenario
	SLAs and SLA Hierarchies
	BDD Mapping
	Negotiation Time Operations
	Runtime Operations

	Experimental Verification
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

