
Memory Leakage-Resilient Encryption

Based on Physically Unclonable Functions

Frederik Armknecht1, Roel Maes2, Ahmad-Reza Sadeghi1, Berk Sunar3,
and Pim Tuyls2,4

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
2 ESAT/COSIC and IBBT, Catholic University of Leuven, Belgium

3 Cryptography & Information Security, WPI, MA USA
4 Intrinsic ID, Eindhoven, the Netherlands

Abstract. Physical attacks on cryptographic implementations and de-
vices have become crucial. In this context a recent line of research on a
new class of side-channel attacks, called memory attacks, has received in-
creasingly more attention. These attacks allow an adversary to measure a
significant fraction of secret key bits directly from memory, independent
of any computational side-channels.

Physically Unclonable Functions (PUFs) represent a promising new
technology that allows to store secrets in a tamper-evident and unclon-
able manner. PUFs enjoy their security from physical structures at sub-
micron level and are very useful primitives to protect against memory
attacks.

In this paper we aim at making the first step towards combining and
binding algorithmic properties of cryptographic schemes with physical
structure of the underlying hardware by means of PUFs. We introduce a
new cryptographic primitive based on PUFs, which we call PUF-PRFs.
These primitives can be used as a source of randomness like pseudoran-
dom functions (PRFs). We construct a block cipher based on PUF-PRFs
that allows simultaneous protection against algorithmic and physical at-
tackers, in particular against memory attacks. While PUF-PRFs in gen-
eral differ in some aspects from traditional PRFs, we show a concrete
instantiation based on established SRAM technology that closes these
gaps.

1 Introduction

Modern cryptography provides a variety of tools and methodologies to analyze
and to prove the security of cryptographic schemes such as in [7,8,6,9]. These
proofs always start from a particular setting with a well-defined adversary model
and security notion. The vast majority of these proofs assume a black box model:
the attacker knows all details of the used algorithms and protocols but has no
knowledge of or access to the secrets of the participants, nor can he observe
any internal computations. The idealized model allows one to derive security
guarantees and gain valuable insights.

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 685–702, 2009.
c© International Association for Cryptologic Research 2009

686 F. Armknecht et al.

However, as soon as this basic assumption fails most security guarantees are
off and a new open field of study arises. In cryptographic implementations long-
term secret keys are typically stored by configuring a non-volatile memory such
as ROM, EEPROM, flash, anti-fuses, poly or e-fuses into a particular state.
Computations on these secrets are performed by driving electrical signals from
one register to the next and transforming them using combinatorial circuits
consisting of digital gates. Side-channel attacks pick up physically leaked key-
dependent information from internal computations, e.g. by observing consumed
power [27] or emitted radiation [1], making many straightforward algorithms and
implementations insecure. It is clear that from an electronic hardware point of
view, security is viewed differently, see e.g. [30,49,48,44].

Even when no computation is performed, stored secret bits may leak. For
instance, in [43] it was shown that data can be recovered from flash memory
even after a number of erasures. By decapsulating the chip and using scanning
electron microscopes or transmission electron microscopes the states of anti-fuses
and flash can be made visible. Similarly, a typical computer memory is not erased
when its power is turned off giving rise to so-called cold-boot attacks [22]. More
radical approaches such as opening up an integrated circuit and probing metal
wires or scanning non-volatile memories with advanced microscopes or lasers
generally lead to a security breach of an algorithm, often immediately revealing
an internally stored secret [43].

Given this observation, it becomes natural to investigate security models with
the basic assumption: memory leaks information on the secret key. Consequently,
a recently started line of work has investigated the use of new cryptographic
primitives that are less vulnerable to leakage of key bits [2,36]. These works
establish security by adapting public-key algorithms to remain secure even after
leaking a limited number of key bits. However, no security guarantees can be
given when the leakage exceeds a certain threshold, e.g. when the whole non-
volatile memory is compromised. Furthermore, they do not provide a solution
for the traditional settings, e.g. for securing symmetric encryption schemes.

Here we explore an alternative approach: Instead of making another attempt
to solve the problem in an algorithmic manner, we base our solution on a new
physical primitive. So-called Physically Unclonable Functions (PUFs) provide a
new cryptographic primitive able to store secrets in a non-volatile but highly
secure manner. When embedded into an integrated circuit, PUFs are able to use
the deep submicron physical uniqueness of the device as a source of randomness
[15,14,20,47]. Since this randomness stems from the uncontrollable subtleties of
the manufacturing process, rather than from hard-wired bits, it is practically
infeasible to externally measure these values during a physical attack. Moreover,
any attempt to open up the PUF in order to observe its internals will with
overwhelming probability alter these variables and change or even destroy the
PUF [47].

In this paper, we take advantage of the useful properties of PUFs to build
an encryption scheme resilient against memory leakage adversaries as defined in
[2]. We construct a block cipher that explicitly makes use of the algorithmic and

Memory Leakage-Resilient Encryption Based on PUFs 687

physical properties of PUFs to protect against physical and algorithmic attacks
at the same time. Other protection mechanisms against physical attacks require
either additional algorithmic effort, e.g. [24,34,45,39], on the schemes or separate
(possibly expensive) hardware measures.

Our encryption scheme can particularly be used for applications such as se-
cure storage of data on untrusted storage (e.g., harddisk) where (i) no storage
of secrets for encryption/decryption is needed and keys are only re-generated
when needed, (ii) copying the token is infeasible (unclonability), (iii) temporary
unauthorized access to the token will reveal data to the adversary but not the
key, or (iv) no non-volatile memory is available.

Contribution. Our contributions are as follows:

A new cryptographic primitive: PUF-PRF. We place the PUFs at the core of a
pseudorandom function (PRF) construction that meets well-defined properties.
We provide a formal model for this new primitive that we refer to as PUF-
PRFs. PRFs [19] are fundamental primitives in cryptography and have many
applications, e.g. see [18,32,33].

A PUF-PRF-based provably secure block cipher. One problem with our PUF-
PRF construction is that it requires some additional helper data that inevitably
leaks some internal information. Hence, PUF-PRFs cannot serve as a direct
replacement for PRFs. However, we present a provably secure block cipher based
on PUF-PRFs that remains secure despite the information leakage. Furthermore,
no secret key needs to be stored, protecting the scheme against memory leakage
attacks. The tight integration of PUF-PRFs into the cryptographic construction
improves the tamper-resilience of the overall design. Any attempt at accessing
the internals of the device will result in a change of the PUF-PRF. Hence, no
costly error detection networks or alternative anti-tampering technologies are
needed. The unclonability and tamper-resilience properties of the underlying
PUFs allow for elegant and cost-effective solutions to specific applications such
as software protection or device encryption.

An improved and practical PUF-PRF construction. Although the information
leakage through helper data is unavoidable in the general case, the concrete case
might allow for more efficient and secure constructions. We introduce SRAM-
PRFs, based on so-called SRAM PUFs, which are similar to the general PUF-
PRFs but where it can be shown that no information is leaked through the
helper data if run in an appropriate mode of operation. Hence, SRAM-PRFs are
in all practical views a physical realization of expanding PRFs.

Organization. This paper is organized as follows. First, we give an overview
of related work in Section 2. In Section 3, we define and justify the considered
attacker model. In Section 4, we introduce a formal model for PUFs. Based on
this, we define in Section 5 a new cryptographic primitive, termed PUF-PRFs.
Furthermore, we present a provably secure block cipher based on PUF-PRFs
that is secure despite the information leakage through helper data. In Section 6,

688 F. Armknecht et al.

we explain for the concrete case of SRAM PUFs an improved construction that
shares the same benefits like general PUF-PRFs but where it can be argued that
the helper data does not leak any information. Finally, in Section 7 we present
the conclusions.

2 Related Work

In recent years numerous results in the field of physical attacks emerged showing
that the classical black box model is overly optimistic, see e.g. [42,43,3,28,27].
Due to a number of physical leakage channels, the adversary often learns (part of)
a stored secret or is able to observe some intermediate results of the private com-
putations. These observations give him a powerful advantage that often breaks
the security of the entire scheme. To cope with this reality, a number of new
theoretic adversary models were proposed, incorporating possible physical leak-
age of this kind. Ishai et al. [24] model an adversary which is able to probe, i.e.
eavesdrop, a number of lines carrying intermediate results in a private circuit,
and show how to create a secure primitive within this computational leakage
model. Later, generalizations such as Physically Observable Cryptography pro-
posed by Micali et al. [34] investigate the situation where only computation leaks
information while assuming leak-proof secret storages. Recently, Pietrzak [13,39]
and Standaert et al. [45] put forward some new models and constructions taking
physical side-channel leakage into account.

Complementary to the computation leakage attacks, another line of work
explored memory leakage attacks: an adversary learns a fraction of a stored secret
[2,36]. In [2] Akavia et al introduced a more realistic model that considers the
security against a wide class of side-channel attacks when a function of the secret
key bits is leaked. Akavia et al further showed that Regev’s lattice-based scheme
[41] is resilient to key leakage. More recently Naor et al [36] proposed a generic
construction for a public-key encryption scheme that is resilient to key leakage.
Although all these papers present strong results from a theoretical security point
of view, they are often much too expensive to implement on an integrated circuit
(IC), e.g. the size of private circuits in [24] blows up with O(n2) where n denotes
the number of probings by the adversary. Moreover, almost all of these proposals
make use of public-key crypto primitives, which introduce a significant overhead
in systems where symmetric encryption is desired for improved efficiency.

Besides the information leakage attacks mentioned above, another important
field of studies are tampering attacks. Numerous countermeasures have been
discussed, e.g., use of a protective coating layer [40] or the application of error
detection codes (EDCs) [25,16]. Observe that limitations and benefits of tamper-
proof hardware have likewise been theoretically investigated in a series of works
[17,26,35,10].

3 Memory Attacks

In this work we consider an extension of memory attacks as introduced by Akavia
et. al. [2] where the attacker can extract a bounded number of bits of a stored

Memory Leakage-Resilient Encryption Based on PUFs 689

secret. The model allows for covering a large variety of different memory attacks,
e.g., cold boot attacks described in [22]. However, this general model might not
adequately capture certain concrete scenarios. For example, feature sizes on ICs
have shrunk to nanometer levels and probing such fine metal wires is even for
high-end IC manufacturers a difficult task. During a cryptographic computation
a secret state is (temporarily) stored in volatile memory (e.g. in registers and
flip-flops). In a typical IC, these structures are relatively small compared to the
rest of the circuit, making them very hard to locate and scan properly. Thus,
applying these attacks is usually significantly physically more involved for the
case of embedded ICs than for the non-embedded PC setting where additional
measures to access the memory exist, e.g., through software and networks.

On the other hand, storing long-term secrets, such as private keys, requires
non-volatile memory, i.e. memory that sustains its state while the embedding
device is powered off. Implementation details of such memories like ROM, EEP-
ROM, flash, anti-fuses, poly or e-fuses and recent results on physical attacks
such as [43] indicate that physically attacking non-volatile memory is much eas-
ier than attacking register files or probing internal busses on recent ICs, making
non-volatile memory effectively the weak link in many security implementations.

Motivated by these observations, we consider the following attacker model in
this work:

Definition 1 (Non-volatile Memory Attacker). Let α : �→ � be a func-
tion with α(n) ≤ n for all n ∈ �, and let S be a secret stored in non-volatile
memory. A α-non-volatile memory attacker can access an oracle O that takes
as input adaptively chosen a polynomial-size circuits hi and outputs hi(S) under
the condition that the total number of bits that A gets as a result of oracle queries
is at most α(|S|).

The attacker is called a full non-volatile memory attacker if α = id, that is
the attacker can extract the whole content of the non-volatile memory.

Obviously, protection against full non-volatile memory attackers is only possi-
ble if no long-term secrets are stored within non-volatile memory. One obvious
approach is to require a user password before each invocation. However, this
reduces usability and is probably subject to password attacks. In this paper,
we use another approach and make use of a physical primitive called Physi-
cally Unclonable Function (PUF). PUFs allow to intrinsicly store permanent
secrets which are, according to current state of knowledge, not accessible to a
non-volatile attacker.

4 Physically Unclonable Functions

In this section, we introduce a formal model for Physically Unclonable Functions
(PUFs). We start with some basic definitions. For a probability distribution D,
the expression x← D denotes the event that x has been sampled according to D.
For a set S, x

∗← S means that x has been sampled uniformly random from S. For
m ≥ 1, we denote by Um the uniform distribution on {0, 1}m. The min-entropy

690 F. Armknecht et al.

H∞(D) of a distribution D is defined by H∞(D) def= − log2(maxx Pr[x ← D]).
Min-entropy can be viewed as the “worst-case” entropy in a random variable
sampled according to D [11] and specifies how many nearly uniform random bits
can be extracted from it.

A distinguisher D is a (possibly probabilistic) algorithm that aims for distin-
guishing between two different distributions D and D

′. More precisely, D receives
some values (which may depend on adaptively chosen inputs by D) and outputs
a value from {0, 1}. The advantage of D is defined by Adv(D) def= |Pr[1 ←
D|D] − Pr[1 ← D|D′]|. Furthermore, we define the advantage of distinguishing
between D and D

′ as maxD Adv(D).
In a nutshell, PUFs are physical mechanisms that accept challenges and re-

turn responses, that is behaving like functions. The main properties of PUFs
that are important in the context of cryptographic applications are noise (same
challenge can lead to different (but close) responses), non-uniform distribution
(the distribution of the responses is usually non-uniform), independence (two dif-
ferent PUFs show completely independent behavior), unclonability (no efficient
process is known that allows for physically cloning PUFs), and tamper evidence
(physically tampering with a PUF will most likely destroy its physical structure,
making it unusable, or turn it into a new PUF). We want to emphasize that the
properties above are of a physical nature and hence are very hard to prove in the
rigorous mathematical sense. However, they are based on experiments conducted
worldwide and reflect the current assumptions and observations regarding PUFs,
e.g., see [47]. We first provide a formal definition for noisy functions before we
give a definition for PUFs.

Definition 2 (Noisy functions). For three positive integers �, m, δ ∈ � with
0 ≤ δ ≤ m, a (�, m, δ)-noisy function f∗ is a probabilistic algorithm which accepts
inputs (challenges) x ∈ {0, 1}� and generates outputs (responses) y ∈ {0, 1}m
such that the Hamming distance between two outputs to the same input is at
most δ. In a similar manner, we define a (�, m, δ)-noisy family of functions to
be a set of (�, m, δ)-noisy functions.

Definition 3 (Physically Unclonable Functions). A (�, m, δ; qpuf , εpuf)-
family of PUFs P is a set of physical realizations of a family of probabilistic
algorithms that fulfills the following algorithmic and physical properties.

Algorithmic properties

– Noise: P is a (�, m, δ)-noisy family of functions with δ < m
2

– Non-uniform output and independence: There exists a distribution D

on {0, 1}m such that for any input x ∈ {0, 1}�, the following two distributions
on ({0, 1}m)qpuf can be distinguished with advantage at most εpuf .
1. (Π1(x), . . . , Πqpuf

(x)) for adaptively chosen Πi ∈ P.
2. (y1, . . . , yqpuf

) with yi ← D.
In order to have a practically useful PUF, it should be that qpuf ≈ |P|, εpuf

is negligible and H∞(D) > 0.

Memory Leakage-Resilient Encryption Based on PUFs 691

Physical properties

– Unclonability: No efficient technique is known to physically clone any
member Π ∈ P.

– Tamper evidence: For any PUF Π ∈ P, any attempt to externally obtain
its responses or parameters, e.g. by means of a physical attack, will signifi-
cantly alter its functionality or destroy it.

A number of constructions for PUFs have been implemented and most of them
have been experimentally verified to meet the properties of this theoretical def-
inition. For more details we refer to the literature, e.g. [47,20,29,31,46]. One im-
portant observation we make is that a number of PUF implementations can be
efficiently implemented on an integrated circuit, e.g. SRAM PUFs [20]. Their
challenge-response behavior can hence be easily integrated with a chip’s digital
functionality.

Remark 1. Due to their physical properties, PUFs became an interesting build-
ing block for protecting against full non-volatile memory attackers. The basic
idea is to use a PUF for implicitly storing a secret: instead of putting a secret
directly into non-volatile memory, it is derived from the PUF responses during
run time [20,21].

5 Encrypting with PUFs: A Theoretical Construction

In the previous section, we explained how to use PUFs for protecting any cryp-
tographic scheme against full non-volatile memory attackers (see Remark 1). In
the remainder of the paper, we go one step further and explore how to use PUFs
for protecting against algorithmic attackers in addition. For this purpose, we
discuss how to use PUFs as a source of reproducible pseudorandomness. This
approach is motivated by the observation that certain PUFs behave to some
extent like unpredictable functions. This will allow for constructing (somewhat
weaker) physical instantiations of (weak) pseudorandom functions.

5.1 PUF-(w)PRFs

Pseudorandom functions (PRFs) [19] are important cryptographic primitives
with various applications (see, e.g., [18,32,33]). We recall their defininition.

Definition 4 ((Weak) Pseudorandom Functions). Consider a family of
functions F with input domain {0, 1}� and output domain {0, 1}m. We say that
F is (qprf , εprf)-pseudorandom in respect to a distribution D̃ on {0, 1}m, if the
advantage to distinguish between the following two distributions for adaptively
chosen pairwise distinct inputs x1, . . . , xqprf

is at most εprf :

– yi = f(xi) where f
∗← F

– yi ← D̃

692 F. Armknecht et al.

F is called weakly pseudorandom if the inputs are not chosen by the distin-
guisher, but uniformly random sampled from {0, 1}� (still under the condition of
being pairwise distinct).
F is called (qprf , εprf)-(weakly)-pseudorandom if it is (qprf , εprf)-(weakly)-

pseudorandom with respect to the uniform distribution D̃ = Um.

Remark 2. This definition differs in several aspects slightly from the original
definition of pseudorandom functions, e.g., [5,4]. First, specifying the output
distribution D̃ allows for covering families of functions which have a non-uniform
output distribution, e.g., PUFs. The original case, as stated in the definition, is
D̃ = Um.

Second, the requirement of pairwise distinct inputs xi has been introduced to
deal with noisy functions where the same input can lead to different outputs. By
disallowing multiple queries on the same input, we do not need to model the noise
distribution, which is sometimes hard to characterize in practice. Furthermore,
in the case of non-noisy (weak) pseudorandom functions, an attacker gains no
advantage by querying the same input more than once. Hence, the requirement
does not limit the attacker in the non-noisy case.

Observe that the “non-uniform output and independence” assumption on PUFs
(as defined in Definition 3) does not automatically imply (weak) pseudoran-
domness. The first considers the unpredictability of the response to a specific
challenge after making queries to several different PUFs while the latter consid-
ers the unpredictability of the response to a challenge after making queries to
the same PUF.

Obviously, the main obstacle is to convert noisy non-uniform inputs into re-
liably reproducible, uniformly distributed random strings. For this purpose, we
make use of an established tool in cryptography, i.e. fuzzy extractors (FE) [12]:

Definition 5 (Fuzzy Extractor). A (m, n, δ; μFE , εFE)-fuzzy extractor E is
a pair of randomized procedures, “generate” Gen : {0, 1}m → {0, 1}n × {0, 1}∗
and “reproduce” Rep : {0, 1}m × {0, 1}∗ → {0, 1}n.

The correctness property guarantees that for (z, ω)← Gen(y) and y′ ∈ {0, 1}m
with dist(y, y′) ≤ δ, then Rep(y′, ω) = z. If dist(y, y′) > δ, then no guarantee is
provided about the output of Rep.

The security property guarantees that for any distribution D on {0, 1}m of
min-entropy μFE, the string z is nearly uniform even for those who observe ω:
if (z, ω)← Gen(D), then it holds that SD((z, ω), (Un, ω)) ≤ εFE.

PUFs are most commonly used in combination with fuzzy extractor construc-
tions based on error-correcting codes and universal hash functions. In this case,
the helper data consists of a code-offset, which is of the same length as the PUF
output, and the seed for the hash function, which is in the order of 100 bits and
can often be reused for all outputs.

Theorem 1 (Pseudorandomness of PUF-FE-composition). Let P be a
(�, m, δ; qpuf , εpuf)-family of PUFs which are (qprf , εprf)-pseudorandom with re-
spect to some distribution D. Let E = (Gen, Rep) be an (m, n, δ; H∞(D), εFE)

Memory Leakage-Resilient Encryption Based on PUFs 693

fuzzy extractor. The advantage of any distinguisher that adaptively chooses pair-
wise distinct inputs x1, . . . , xqprf

and receives outputs (z1, ω1), . . . , (zqprf
, ωqprf

)
to distinguish the following two distributions is at most εprf + qprf · εFE:

– (zi, ωi) = Gen(Π(xi)) where Π
∗← P

– (zi, ωi) where zi ← Un, (z′i, ωi) = Gen(Π(xi)) and Π
∗← P

The analogous result holds if P is (qprf , εprf)-weak-pseudorandom and if the chal-
lenges xi are sampled uniformly random (instead of being adaptively selected),
still under the condition of being pairwise distinct.

Proof. We introduce an intermediate case, named case 1’, where (zi, ωi) =
Gen(yi) with yi ← D and Π

∗← P . Any distinguisher between case 1 and case
1’ can be turned into a distinguisher that distinguishes between PUF outputs
and random samples according to D. Hence, the advantage is at most εprf by
assumption. Furthermore, by the usual hybrid argument and the security prop-
erty of fuzzy extractors, case 1’ and case 2 can be distinguished with advantage
of at most qprf · εFE . �	
Definition 6 (PUF-(w)PRFs). Consider a family of (weakly)-pseudorandom
PUFs P and a fuzzy extractor E = (Gen, Rep) (where the parameters are as de-
scribed in Theorem 1). A family of PUF-(w)PRFs is a set of pairs of randomized
procedures, called generation and reproduction. The generation function Gen ◦Π

for some PUF Π ∈ P takes as input x ∈ {0, 1}� outputs (z, ωx) def= Gen(Π(x)) ∈
{0, 1}n×{0, 1}∗, while the reproduction function Rep◦Π takes (x, ωx) ∈ {0, 1}�× ∈
{0, 1}∗ as input and reproduces the value z = Rep(Π(x), ωx).

Theorem 1 actually shows that PUF-(w)PRFs and “traditional” (w)PRFs have
in common that (part of) the output cannot be distinguished from uniformly
random values. One might be tempted to plug in PUF-(w)PRFs wherever PRFs
are required. Unfortunately, things are not that simple since the information
saved in the helper data is also needed for correct execution. It is a known fact
that the helper data of a fuzzy extractor always leaks some information about
the input, e.g., see [23]. Hence, extra attention must be paid when deploying
PUF-PRFs in cryptographic schemes. In the following section, we describe an
encryption scheme that achieves real-or-random security although the helper
data is made public.

5.2 A Luby-Rackoff Cipher Based on PUF-wPRFs

A straightforward approach for using PUF-wPRFs against full non-volatile mem-
ory attackers would be to use them for key derivation where the key is after-
wards used in some encryption scheme. However, in this construction PUF-
wPRFs would ensure security against non-volatile memory attackers only while
the security of the encryption scheme would need to be shown separately. In the
following, we present a construction that simultaneously protects against algo-
rithmic and physical attacks while the security in both cases can be deduced to
PUF-wPRF properties.

694 F. Armknecht et al.

321

R

Plaintext

L

Ciphertext

Helper data

f1

f2

f3

X Y

z1

z2

z3

x1

x2

x3

Random value

Fig. 1. A randomized 3-round Luby-Rackoff-cipher based on PUF-PRFs

One of the most important results with respect to PRFs was developed by
Luby and Rackoff in [33]. They showed how to construct pseudorandom permu-
tations from PRFs. Briefly summarized, a pseudorandom permutation (PRP) is
a PRF that is a permutation as well. PRPs can be seen as an idealization of
block ciphers. Consequently, the Luby-Rackoff construction is often termed as
Luby-Rackoff cipher.

Unfortunately, the Luby-Rackoff result does not automatically apply to the
case of PUF-PRFs. As explained in the previous section, PUF-(w)PRFs differ
from (w)PRFs as they additionally need some helper data for correct execution.
First, it is unclear if and how the existence and necessity of helper data would
fit into the established concept of PRPs. Second, an attacker might adaptively
choose plaintexts to force internal collisions and use the information leakage of
the helper data for checking for these events.

Nonetheless, we can show that a Luby-Rackoff cipher based on PUF-wPRFs
also yields a secure block cipher. For this purpose, we consider the set of concrete
security notions for symmetric encryption schemes that has been presented and
discussed in [4]. More precisely, we prove that a randomized version of a 3-round
Luby-Rackoff cipher based on PUF-PRFs fulfills real-or-random indistinguisha-
bility against a chosen-plaintext attacker.

In a nutshell, a real-or-random attacker adaptively chooses plaintexts and
hands them to an encryption oracle. This oracle either encrypts the received
plaintexts (real case) or some random plaintexts (random case). The encryptions
are given back to the attacker. Her task is to distinguish between both cases. The
scheme is real-or-random indistinguishable if the advantage of winning the game
is negligible (in some security parameter). Next, we first define the considered
block cipher and prove its security afterwards.

Definition 7 (3-round PUF-wPRF-based Luby-Rackoff cipher). Let F
denote a family of PUF-wPRFs with input and output length n. The 3-round
PUF-PRF-based Luby-Rackoff cipher EF uses three different PUF-wPRFs fi ∈

Memory Leakage-Resilient Encryption Based on PUFs 695

F , i = 1, 2, 3, as round functions. The working principle is very similar to the
original Luby-Rackoff cipher and is displayed in figure 1. The main differences
are twofold. First, at the beginning some uniformly random value ρ ∈ {0, 1}� is
chosen to randomize the right part R of the plaintext. Second, the round functions
are PUF-wPRFs that generate two outputs: zi and ωi.

The ciphertext is (X, Y, ω1, ω2, ω3, ρ). Decryption works similar to the case of
the ”traditional” Luby-Rackoff cipher where the helper data ωi is used together
with the Rep procedure for reconstructing the output zi of the PUF-PRF fi and
the value ρ to ”derandomize” the input to the first round function f1.

Since there is no digital secret stored in non-volatile memory, even a full non-
volatile memory attacker has no advantage in breaking this scheme. Although
this makes encrypting digital communication between two different parties im-
possible, various applications are imaginable, e.g., for encrypting data stored in
untrusted or public storage.

Theorem 2. Let EF be the encryption scheme defined in Definition 7 using a
family F of PUF-wPRFs (with parameters as specified in Theorem 1). Then,
the advantage of a real-or-random attacker making up to qprf queries is at most
4εprf + 2qprf · εFE + 2 · qprf

2

2n .

Proof. Let {(L(i), R(i)}i=1,...,qprf
denote the sequence of the adaptively chosen

plaintexts and x
(i)
j , z

(i)
j be the respective inputs and outputs to round function fj ,

and ρ(i) the randomly chosen values. We show the claim by defining a sequence
of games and estimating the advantages of distinguishing between them. Let the
real game be the scenario that the distinguisher receives the encryptions of the
plaintext she did choose.

In game 1, the outputs z
(i)
1 of the first round function f1 are replaced by some

uniformly random values z̃
(i)
1

∗← {0, 1}n. Under the assumption that the values
x

(i)
1 are pairwise distinct, the advantage to distinguish between both cases is at

most εprf + qprf · εFE according to Theorem 1. Furthermore, as the values ρ(i)

are uniformly random, the probability of a collision in the values x
(i)
1 is at most

qprf
2

2n . As a consequence, the advantage to distinguish between the real game and

game 1 is upper bounded by εprf + qprf · εFE + qprf
2

2n .
Game 2 is defined like game 1 where now the inputs x

(i)
1 to the first round

function f1 are randomized to x̃
(i)
1

∗← {0, 1}n. Observe that the values x
(i)
1 are

used in two different contexts: i) for computing the right part of the ciphertext
(by XORing with the output of the second round function) and ii) as input to
the first round function. Regarding i), observe that the outputs of the second
round function are independent of the values x

(i)
1 as the values z̃

(i)
1 (and hence

the inputs to f2) are uniformly random by definition and that the values x
(i)
1 are

independent of the plaintext (because of ρ(i)). Hence, i) and ii) represent two
independent features, possibly allowing for distinguishing between game 1 and
game 2, and hence can be examined separately.

696 F. Armknecht et al.

The advantage of distinguishing between games 1 and 2 based on i) is equiv-
alent to deciding whether the values R(i) ⊕ ρ(i) ⊕ Y (i) are uniformly random or
belong to the outputs of the second round function. With the same arguments
as above, the advantage is upper bounded by εprf + qprf · εFE + qprf

2

2n .
The advantage of distinguishing between game 1 and game 2 based on ii) is at

most the advantage of distinguishing (Π1(x
(1)
1), . . . , Π1(x

(1)
qprf)) from (Π1(x̃

(1)
1),

. . ., Π1(x̃
(1)
qprf)) where Π1 denotes the PUF used in f1. By the definition of wPRFs

(Definition 4), the advantage of distinguishing (Π1(x
(1)
1), . . . , Π1(x

(1)
qprf)) from

(y1, . . . , yqprf
) where yi ← D̃ and D̃ being an appropriate distribution is at most

εprf . Actually, the same holds for (Π1(x̃
(1)
1), . . . , Π1(x̃

(1)
qprf)) (the fact that the

values x̃
(1)
i are unknown cannot increase the advantage). Hence, by the triangular

inequality, it follows that the advantage regarding ii) is at most 2εprf . In total,
the advantage to distinguish between game 1 and game 2 is less than or equal
to 3εprf + qprf · εFE + qprf

2

2n .
Finally, observe that it is indistinguishable whether x

(i)
1 or R(i) is randomized

and likewise whether z
(i)
1 or L(i). Hence, game 2 is indistinguishable from the

random game where the plaintexts are randomized. Summing up, the advantage
of a real-or-random attacker is at most 4εprf + 2qprf · εFE + 2 · qprf

2

2n . �	

6 SRAM PRFs

In the previous section, we showed that secure cryptographic schemes are pos-
sible even if helper data is used that leaks information. In this section, we
show that in the concrete case, information leakage through helper data can
be avoided completely. We illustrate this approach on SRAM PUFs that were
originally introduced and experimentally verified in [20]. In respect to our mod-
eling, an SRAM PUF is a realization of a (�, m, δ; qpuf , εpuf)-PUF that is (2�, 0)-
pseudorandom.

We introduce a new mode of operation that, similarly to the fuzzy extractor
approach in the previous section, allows for extracting uniform values from SRAM
PUFs in a reproducible way. This approach likewise stores some additional helper
data but, as opposed to the case of fuzzy extractors, the helper data does not leak
any information on the input. Hence, this construction might be of independent
interest for SRAM PUF based applications. The proposed construction is based
on two techniques: Temporal Majority Voting and Excluding Dark Bits.

We denote the individual bits of a PUF response as y = (y0, . . . , ym−1), with
yi ∈ {0, 1}. When performing a response measurement on a PUF Π , every bit
yi of the response is determined by a Bernoulli trial. Every yi has a most likely
value y

(ML)
i ∈ {0, 1}, and a certain probability pi < 1/2 of differing from this

value which we define as its bit error probability. We denote y
(k)
i as the k-th

measurement or sample of bit yi in a number of repeated measurements.

Definition 8 (Temporal Majority Voting (TMV)). Consider a Bernoulli
distributed random bit yi over {0, 1}. We define temporal majority voting of yi

Memory Leakage-Resilient Encryption Based on PUFs 697

over N votes, with N an odd positive integer, as a function TMVN : {0, 1}N →
{0, 1}, that takes as input N different samples of yi and outputs the most often
occurring value in these samples.

We can calculate the error probability pN,i of bit yi after TMV with N votes as:

pN,i
def= Pr

[
TMVN

(
y
(0)
i , . . . , y

(N−1)
i

)
�= y

(ML)
i

]
= 1− BinN,pi

(
N − 1

2

)
≤ pi,

(1)
with BinN,pi the cumulative distribution function of the binomial distribution.
From Eq. (1) it follows that applying TMV to a bit of a PUF response effectively
reduces the error probability from pi to pN,i, with pN,i becoming smaller as N
increases. We can determine the number of votes N we need to reach a certain
threshold pT such that pN,i ≤ pT , given an initial error probability pi. It turns
out that N rises exponentially as pi gets close to 1/2. In practice, we also have to
put a limit NT on the number of votes we can perform, since each vote involves
a PUF response measurement. We call the pair (NT , pT) a TMV-threshold.

Definition 9 (Dark Bit (DB)). Let (NT , pT) be a TMV-threshold. We define
a bit yi to be dark with respect to this threshold if pNT ,i > pT .

TMV alone cannot decrease the bit error probability to acceptable levels (e.g.
≤ 10−9) because of the non-negligible occurrence of dark bits. We use a bit mask
γ to identify these dark bits in the generation phase, and exclude them during
reproduction. Similar to fuzzy extractors, (NT , pT)-TMV and DB can be used
for generating and reproducing uniform values from SRAM PUFs.

The Gen-procedure takes sufficient measurements of every response bit yi

to make an accurate estimate of its most likely value y
(ML)
i and of its error

probability pi. If yi is dark with respect to (NT , pT), then the corresponding bit
γi in the bit mask γ ∈ {0, 1}m is set to 0 and yi is discarded, otherwise γi is
set to 1 and yi is appended to the bit string s. The procedure Gen outputs a
helper string ω = (γ, σ) and an extracted string z = Extractσ(s), with Extractσ
a classical strong extractor1 with seed σ.

The Rep-procedure takes NT measurements of a response y′ and the corre-
sponding helper string ω = (γ, σ), with γ ∈ {0, 1}m as input. If γi contains a 1,
then the result of TMVNT

(
y′(0)

i , . . . , y′(NT−1)
i

)
is appended to a bit string s′,

otherwise, y′
i is discarded. Rep outputs an extracted string z′ = Extractσ(s′).

A strong extractor [37] is a function that is able to generate nearly-uniform
outputs from inputs coming from a distribution with limited min-entropy. It
ensures that the statistical distance of the extracted output to the uniform dis-
tribution is negligible. The required compression rate of Extractσ depends on
the remaining min-entropy μ of the PUF response y after the helper data is
observed. We call the above construction a TMV-DB-SRAM-PUF.
1 See e.g. [37,12] for a definition of a strong extractor. Typical seed lengths of strong

extractors are in the order of 100 bits, and in most cases the same seed can be reused
for all outputs.

698 F. Armknecht et al.

Using analogous arguments as in Theorem 1, one can show that the output of a
TMV-DB-SRAM-PUF is indistinguishable from random except with negligible
advantage. Additionally, in an SRAM PUF, the most likely value of a bit is
independent of whether or not the bit is a dark bit, hence no min-entropy on
the PUF output is leaked by the bit mask2. However, by searching for matching
helper strings, an adversary might still be able to find colliding TMV-DB-SRAM-
PUF inputs (especially as the input size is small), which can impose a possible
security leak. In order to overcome this issue, we present the following way of
using a TMV-DB-SRAM-PUF:

Definition 10 (All-at-once mode). Consider a TMV-DB-SRAM-PUF as de-
scribed above. We define the all-at-once mode of operation to be the pair of pro-
cedures (Enroll, Eval).

The enrollment procedure Enroll outputs a helper table Ω ∈ {0, 1}2�×∗ when
executed. The helper table is constructed by running ∀x ∈ {0, 1}� the generation
function (Gen◦Π)(x), and storing the obtained helper data ωx as the x-th element
in Ω, i.e. Ω[x] := ωx.

The evaluation function Eval : {0, 1}�×{0, 1}2�×∗ → {0, 1}n takes an element
x ∈ {0, 1}� and a helper table Ω ∈ {0, 1}2�×∗ as inputs and (after internal com-
putation) outputs a value Eval(x, Ω) = z ∈ {0, 1}n, with z = (Rep ◦Π)(x, Ω[x]).

The Enroll-procedure has to be executed before the Eval-procedure, but it has
to be run only once for every PUF. Every invocation of Eval can take the same
(public) helper table Ω as one of its inputs. However, in order to conceal exactly
which helper string is used, it is important that the Eval-procedure takes Ω as a
whole as input, and does not just do a look-up of Ω[x] in a public table Ω. The
all-at-once mode prevents an adversary from learning which particular helper
string is used during the internal computation.

Definition 11 (SRAM-PRF). An SRAM-PRF is a TMV-DB-SRAM-PUF
that runs in the all-at-once mode.

Using the arguments given above we argue that SRAM-PRFs are in all prac-
tical views a physical realization of PRFs. Observe that one major drawback
of SRAM-PRFs is that the hardware size grows exponentially with the input
length. Thus, SRAM-PRFs cannot be used as a concrete instantiation of PUF-
PRFs for our construction from Section 5.2. This section rather shows up an
alternative approach for constructing cryptographic mechanisms based on PUFs
despite of the noise problem. As a possible application of SRAM-PRFs, we dis-
cuss an expanding Luby-Rackoff cipher where the round functions are replaced
by SRAM-PRFs that take 8-bit challenges as input and produce 120-bit ex-
tracted outputs. According to [38], at least 48 rounds are necessary for security
reasons.

As an instantiation for the PUF, we take an SRAM PUF with an assumed
average bit error probability of 15% and an estimated min-entropy content of
0.95 bit/cell. We use TMV-threshold of (NT = 99, pT = 10−9). Simulations and
2 By consequence, also no min-entropy on the PUF input is leaked.

Memory Leakage-Resilient Encryption Based on PUFs 699

experiments on the SRAM PUF show that about 30% of the SRAM cells produce
a dark bit with respect to this TMV-threshold. The strong extractor only has to
compress by a factor of 1

0.95 , accounting for the limited min-entropy in the PUF
response. Hence, 1

0.95 · 28·120
70% bits = 5.6 kbyte of SRAM cells is needed to build

one SRAM-PRF. Thus, the entire block cipher uses 48 · 5.6 kbyte ≈ 271 kbyte of
SRAM cells. The helper tables also require 5.6 kbyte each.

Implementing 48 SRAM PUFs using a total of 271 kbyte of SRAM cells is fea-
sible on recent ICs, and 48 rounds can be evaluated relatively fast. Storing and
loading 48 helper tables of 5.6 kbyte each is also achievable in practice. Observe
that the size depends linearly on the number of rounds. The according parameters
for more rounds can be easily derived. Reducing the input size of the SRAM-PRF
will yield an even smaller amount of needed SRAM cells and smaller helper tables,
but the number of rounds will increase. A time-area trade-off is hence possible.

7 Conclusions

In this paper we propose a leakage-resilient encryption scheme that makes use
of Physically Unclonable Functions (PUFs). The core component is a new PUF-
based cryptographic primitive, termed PUF-PRF, that is similar to a pseudo-
random function (PRF). We showed that PUF-PRFs possess cryptographically
useful algorithmic and physical properties that come from the random character
of their physical structures.

Of course, any physical model can only approximately describe real life. Al-
though experiments support our model for the considered PUF implementations,
more analysis is necessary. In this context it would be interesting to consider
other types of PUFs which fit into our model or might be used for other crypto-
graphic applications. Furthermore, a natural continuation of this works would be
to explore other cryptographic schemes based of PUF-PRFs, e.g., hash functions
or public key encryption.

Acknowledgements

The work described in this paper has been supported [in part] by the Euro-
pean Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. The work of Berk Sunar was supported by the National Science
Foundation Cybertrust grant No. CNS-0831416. The work of Roel Maes is funded
by IWT-Flanders grant No. 71369 and is in part supported by the IAP Program
P6/26 BCRYPT of the Belgian State and K.U.Leuven BOF funding (OT/06/04).

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The em side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

700 F. Armknecht et al.

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Proceedings of the 5th International Workshop on Security Protocols, London,
UK, pp. 125–136. Springer, Heidelberg (1998)

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997: Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (FOCS 1997), Washington, DC, USA, p. 394.
IEEE Computer Society, Los Alamitos (1997)

5. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer,
Heidelberg (1994)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer,
Heidelberg (1994)

8. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: STOC 1995: Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, pp. 57–66. ACM, New York (1995)

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

10. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

11. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS ’08: Pro-
ceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, Washington, DC, USA, pp. 293–302. IEEE Computer Society, Los Alami-
tos (2008)

14. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled Physical Ran-
dom Functions. In: Annual Computer Security Applications Conference — ACSAC
2002, Washington, DC, USA, p. 149. IEEE Computer Society, Los Alamitos (2002)

15. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown
functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications
Security — CCS 2002, pp. 148–160. ACM, New York (2002)

16. Gaubatz, G., Sunar, B., Karpovsky, M.G.: Non-linear residue codes for robust
public-key arithmetic. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 173–184. Springer, Heidelberg (2006)

17. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware
tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer,
Heidelberg (2004)

Memory Leakage-Resilient Encryption Based on PUFs 701

18. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 276–288. Springer, Heidelberg (1985)

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

20. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

21. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: Physical Unclonable Func-
tions and Public Key Crypto for FPGA IP Protection. In: International Conference
on Field Programmable Logic and Applications — FPL 2007, August 27-30, pp.
189–195. IEEE, Los Alamitos (2007)

22. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold
boot attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security
Symposium, pp. 45–60. USENIX Association (2008)

23. Ignatenko, T., Willems, F.: On the security of the XOR-method in biometric au-
thentication systems. In: Twenty-seventh symposium on Information Theory in the
Benelux, pp. 197–204 (2006)

24. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

25. Karpovsky, M., Kulikowski, K., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: Proc. Int. Conference on Dependable Systems and Networks (DNS 2004) (July
2004)

26. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

27. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

28. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

29. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: The Butterfly PUF:
Protecting IP on every FPGA. In: IEEE International Workshop on Hardware-
Oriented Security and Trust – HOST 2008, June 9. IEEE, Los Alamitos (2008)

30. Lemke, K.: Embedded security: Physical protection against tampering attacks. In:
Lemke, C.P.K., Wolf, M. (eds.) Embedded Security in Cars, ch. 2, pp. 207–217.
Springer, Heidelberg (2006)

31. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (2005)

32. Luby, M.: Pseudo-randomness and applications. Princeton University Press,
Princeton (1996)

33. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

34. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

702 F. Armknecht et al.

35. Moran, T., Segev, G.: David and goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

36. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

37. Nisan, N., Zuckerman, D.: More deterministic simulation in logspace. In: STOC
1993: Proceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pp. 235–244. ACM, New York (1993)

38. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 325–341. Springer, Heidelberg (2007)

39. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

40. Posch, R.: Protecting devices by active coating. Journal of Universal Computer
Science 4, 652–668 (1998)

41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pp. 84–93 (2005)

42. Samyde, D., Skorobogatov, S., Anderson, R., Quisquater, J.-J.: On a new way
to read data from memory. In: SISW 2002: Proceedings of the First International
IEEE Security in Storage Workshop, Washington, DC, USA, p. 65. IEEE Computer
Society, Los Alamitos (2002)

43. Skorobogatov, S.P.: Data remanence in flash memory devices. In: Rao, J.R., Sunar,
B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 339–353. Springer, Heidelberg (2005)

44. Smith, S.W.: Fairy dust, secrets, and the real world [computer security]. IEEE
Security and Privacy 1(1), 89–93 (2003)

45. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 134–152. Springer, Heidelberg (2009)

46. Edward Suh, G., Devadas, S.: Physical Unclonable Functions for Device Authenti-
cation and Secret Key Generation. In: Proceedings of the 44th Design Automation
Conference, DAC 2007, San Diego, CA, USA, June 4-8, pp. 9–14. ACM, New York
(2007)

47. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

48. Verbauwhede, I., Schaumont, P.: Design methods for security and trust. In: Proc.
of Design Automation and Test in Europe (DATE 2008), NICE, FR, p. 6 (2007)

49. Weingart, S.H.: Physical security devices for computer subsystems: A survey of
attacks and defences. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 302–317. Springer, Heidelberg (2000)

	Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions
	Introduction
	Related Work
	Memory Attacks
	Physically Unclonable Functions
	Encrypting with PUFs: A Theoretical Construction
	PUF-(w)PRFs
	A Luby-Rackoff Cipher Based on PUF-wPRFs

	SRAM PRFs
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

