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Abstract. This work investigates the problem of texture recognition under vary-
ing lighting and viewing conditions. One of the most successful approaches for
handling this problem is to focus on textons, describing local properties of tex-
tures. Leung and Malik [1] introduced the framework of this approach which was
followed by other researchers who tried to address its limitations such as high
dimensionality of textons and feature histograms as well as poor classification of
a single image under known conditions.

In this paper, we overcome the above-mentioned drawbacks by use of recently
introduced supervised nonlinear dimensionality reduction methods. These meth-
ods provide us with an embedding which describes data instances from the same
classes more closely to each other while separating data from different classes as
much as possible. Here, we take advantage of the superiority of modified meth-
ods such as “Colored Maximum Variance Unfolding” as one of the most efficient
heuristics for supervised dimensionality reduction.

The CUReT (Columbia-Utrecht Reflectance and Texture) database is used
for evaluation of the proposed method. Experimental results indicate that the
algorithm we have put forward intelligibly outperforms the existing methods.
In addition, we show that intrinsic dimensionality of data is much less than the
number of measurements available for each item. In this manner, we can practi-
cally analyze high dimensional data and get the benefits of data visualization.
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1 Introduction

Texture is a fundamental characteristic of natural materials and has the capacity to pro-
vide important information about scene interpretation. Consequently, texture analysis
plays an important role both in computer vision and in pattern recognition. Over the past
decades, a significant body of literature has been devoted to texture recognition based
on mainly over-simplified datasets. Recently, more and more attention has been paid
to the problem of analyzing textures achieved in different illumination and viewing di-
rections. As Figure 1 shows, recognizing textures with such variations generally causes
much trouble. Leung and Malik [1] were amongst the first to comprehensively study
such variations. They proposed 3-D textons which are cluster centers of a number of
predefined filter responses (textons) over a stack of images with different viewpoint and
lighting conditions. The basic idea here is to build a universal vocabulary from these
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Fig. 1. Changing viewpoint and illumination can have a dramatic impact on the appearance of a
texture image. Each row shows texture images of the same class under different viewpoint and
lighting conditions.

textons describing generic local features of texture surfaces. Given a training texture
class, the histogram of its 3-D textons forms the model corresponding to that texture.
In the training stage, the authors acquired a model for each material using stacked im-
ages of different albeit a priori known conditions. This model, however, requires the
test images to be in the same order as in the training. Leung and Malik also developed
an algorithm for classifying a single image under known conditions. Yet, this method
does not classify a single image as efficient as the case for the multiple images. Later,
Varma and Zisserman [2] presented an algorithm based on Leung and Malik’s frame-
work, without requiring any a prior knowledge of the imaging conditions. In Varma
and Zisserman’s method, textons are obtained from multiple unregistered images of a
particular texture class using K-means clustering. A representing model for each class
is brought out using the texture library which is, actually, a collection of textons from
different texture classes.

For the purpose of achieving a faithful representation of various textures, a finite set
of textons (i.e., texton library) closely representing all possible local structures, ought
to be obtained. Hence, the cardinality of our texton library must be considerably large.
Nevertheless, this may, by itself, cause high-dimensional models. To address this issue,
Cula and Dana [3] employed the method of Principal Component Analysis (PCA) and
compressed the feature histogram space into a low-dimensional one. Applying PCA as a
method for unsupervised linear dimensionality reduction causes a number of limitations
to be discussed later on.

In this paper, we focus on the problem of high dimensionality of texture models
and, furthermore, introduce an efficient algorithm for classifying a single texture image
under unknown imaging conditions. Here, our attempt is to shed light on a new approach
to overcome this difficulty. In this viewpoint of ours, a richer space is sought after that
can reflect modes of variability which are of particular interest. As a result, we propose
to project data onto an ideal space peculiar to our problem. Not only is the new space
thus gained supposed to be of low dimension, but also it has to provide us with a better
representation of data, i.e. to be more discriminative for the classification algorithm.
In other words, we aim at transforming the ill-posedness of texture classification into
a better-posed problem. To find this transformation, we take the benefits of recently
introduced supervised nonlinear dimensionality reduction methods.

The rest of this paper is organized as follows: Section 2 provides an overview on
texton-based texture representation. Next, we briefly describe one of the most efficient
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heuristics for reducing the dimensionality of nonlinear data. In section 3, we introduce
our new method which represents a model of enough capability for classifying a sin-
gle image under unknown imaging conditions. Experimental results of the proposed
algorithm are presented in section 4 followed by “Conclusion” in section 5.

2 Background Review

2.1 Texton-Based Texture Representation

A texture image is constructed based on certain structures, such as spot-like features of
various sizes, edges with different orientations and scales, bar-like characteristics and
so on. It was reported that local structure of a texture can be closely represented by its
responses to an appropriate filter bank [4,5,6].

Different filter banks focus on different constructive structures. Accordingly, Leung
and Malik [1] introduced an appropriate LM filter bank which was later employed by
a number of other researchers. The LM set is a multi-scale, multi-resolution filter bank
that has a combination of edge, bar and spot filters. It consists of the first and the second
derivatives of Gaussian (at six orientations and three scales), eight Laplacian of Gaus-
sian (LOG) filters and four Gaussian filters, a total of 48 filters. In this study we used
this filter bank.

One of the fundamental properties of textures is pattern repetition, which means that
filter responses to only a small portion of texture image are sufficient to describe its
structure. This small set of prototype response vectors of one image was called 2-D
textons by Leung and Malik. They also proposed 3-D textons definition; this definition
is based on the idea that the vectors obtained from concatenating filter responses of
different images of the same class will encode the appearance of dominant features
in all of the images. They used 3-D textons to represent a framework for recognizing
textures under different imaging conditions. Since the inspiration of our work comes
from the Leung and Malik’s algorithm [1], let us briefly review this method.

The Leung and Malik’s algorithm uses 3-D textons from all the texture classes to
compute a universal vocabulary. To construct such a desirable vocabulary, the K-means
clustering algorithm is applied to the data from each class individually. The class centers
are, then, merged together to produce a dictionary. This dictionary should be pruned in
order to produce a more efficient, faithful and least redundant second version. After
constructing the vocabulary, different images from each class are passed through the
filter bank and stored in a large vector, which is then assigned to the nearest texton
labels from the said dictionary. The histogram of texton frequencies is computed in such
a manner as to obtain one model per class. Textons and texture models are learnt from
training images. Once this is done, classification of a test image is done by computing
a model from images with different imaging conditions, as in the training stage. The
algorithm selects the class for which chi-square distance between the sample histogram
and the model histogram could be minimized. Readers interested in other aspects of the
original algorithm are referred to Leung and Malik’s original paper [1]. Despite the fact
that Leung and Malik’s algorithm has numerous advantages, it has its own limitations
discussed by several authors from different aspects. These disadvantages were to be
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addressed by the very authors. In section 3, we discuss shortcomings of this algorithm
and introduce a new approach based on dimensionality reduction methods.

2.2 Dimensionality Reduction

The problem of dimensionality reduction and manifold learning has recently attracted
much attention on the part of many researchers. Manifold learning is a method to re-
trieve low dimensional global coordinates that faithfully represent the embedded mani-
fold in the high dimensional observation space.

Most dimensionality reduction methods are unsupervised. That is to say, they do
not respect the label or the real-valued target covariate. Therefore, it is not possible to
guide the algorithm towards those modes of variability that are of particular interest.
For example, where possible, by using labels of a subset of the data according to the
kind of variability that one is interested in, the algorithm can be guided to reflect this
kind of variability.

Amongst the proposed supervised nonlinear dimensionality reduction methods,
“Colored Maximum Variance Unfolding” (CMVU) [7] is of much interest and capabil-
ity.This method is built upon “Maximum Variance Unfolding” (MVU) method [8]. By
integrating two sources of information, data and side information, CMVU is able to find
an embedding which: 1) preserves the local distances between neighboring observa-
tions, and 2) maximally aligns with the second source of information (side information).
Theoretically speaking, CMVU constructs a kernel matrix K for the dimension-reduced
data X which has the capacity to keep the local distance structure of the original data
Z unchanged, so that X maximally depends on the side information Y as described by
its kernel matrix L. This method is formulated by the following optimization problem:

Maximize tr HKHL subject to:
1.K � 0
2.Kii + Kjj − 2Kij = dij for all (i, j) with ηij = 1

where K, L ∈ R
m∗m are the kernel matrices for the data and the labels, respectively,

Hij = δij −m−1 centers the data and the labels in the feature space, and binary param-
eter ηij denotes whether inputs zi and zj are k-nearest neighbors or not. The objective
function is an empirical estimate of “Hilbert-Schmidt Independence Criterion” (HSIC)
that measures the dependency between data and side information [9]. This optimization
problem is an instance of semi-definite programming (SDP). From the solution of SDP
in the kernel matrix K , output points Xi could be derived using singular value decom-
position. Figure 2 illustrates embedding of 2007 USPS digits produced by CMVU and
PCA, respectively.

3 Methodology

In this section, we discuss different texton-based texture representation methods. Then,
we present our new method to address all accompanying drawbacks, and will show its
superiority compared to other methods each focusing on a specific limitation.

As stated in the previous section, issues associated with the use of 3D textons to
classify 3D texture images are:



Learning an Efficient Texture Model 213

Fig. 2. Embedding of 2007 USPS digits produced by CMVU and PCA, respectively [7]

– increased dimensionality of feature space to be clustered in the later stages,
– increased time complexity of the iterative procedure to classify a single image

which causes the convergence problem,
– necessity of a set of ordered texture images captured under known imaging condi-

tions, and
– introduction of only one comprehensive model per class whereas it is unlikely that

a single model can fully account for the various appearance of real-world surfaces.

By use of 2-D textons, none of the above problems would appear. 2-D textons are cluster
centers of filter responses over a single image (and not over a stack of images) captured
at different conditions. The problem here is how we should represent different instances
from the same class as being inter-related while preserving the between-class distances.
One solution is to select the models which best represent their texture classes. Cula and
Dana [3] proposed a model selection algorithm in a low dimensional space. They fit-
ted a manifold to low dimensional representation of models specifically generated for
each class and removed the models which least affected the manifold shape. Their algo-
rithm, notwithstanding, introduces some drawbacks. For projecting models into a low
dimensional space, they utilized PCA which is an unsupervised linear dimensionality
reduction method. The PCA works well if the most important modes of data variability
are linear. But in this study, the variability of models cannot be expressed linearly and
this causes poor performance of PCA. The second problem stems from the fact that two
different distance measures are used in constructing the manifold path in the training
stage and selecting the closest model in the classification stage. In other words, when
constructing the manifold path, at each step the closest point in terms of imaging angles
is chosen, while in classification phase, the closest surface class is selected in terms of
distance between models feature vectors. Another significant issue is that this algorithm
ignores inter-class variation between textures since the models for a texture are selected
without considering the other texture classes.

Having discussed the above issue, we propose to analyze this problem from another
viewpoint: reducing the dimensionality of model histograms to their intrinsic dimen-
sionality. By mapping the models to a very low dimensional space, the complexity of
the classification decreases and model selection can take the benefits of data visualiza-
tion. It is important to note that the basic modes of variability of our data are nonlinear.
Therefore, the dimensionality reduction method should be capable of unfolding the
manifold on which the nonlinear dataset is lying. On the other hand, we are searching



214 E. Barshan, M. Behravan, and Z. Azimifar

for a space in which models from the same classes stay more closely while models from
different classes remain as much discriminated as possible.

Here we take the advantages of CMVU, which is one of the most efficient heuristics
for supervised dimensionality reduction, as discussed in § 2. This method generates
brilliant results for training data, e.g., it is empirically observed that the most significant
modes of the variability of a dataset with dimensionality of 1200 can be presented in a
space of as low as five dimensions. It confirms our reasoning of selecting the CMVU to
visualize the train data. This method, however, faces some complications in projecting
the test data. Desired embedding for training data could be computed with respect to
its labels. Because of the fact that at the testing time the second source of information
(the labels) is not available, this method does not provide us with an embedding of
testing data to the space in which the training data is embedded. Herein, we choose to
project the testing data based on the fundamental idea of “Locally Linear Embedding”
(LLE) [10]. The projection procedure for testing data S is as follows:

Alg. 1. The projection procedure for testing data
Input: training data matrix in the original space, Z, projected training data matrix, X, testing data
matrix in the original space, S, and the number of testing data, m
Onput: Projected testing data matrix, P
1: for all i ∈ {1. . .m}
2: N = {zj ∈ Z|ηij = 1}
3: W = argminW E(W ) = |si − ΣjwijNj |
4: pi = ΣjWijxj

5:end for

The projection of testing data using this LLE-like method causes some negligible
differences under the circumstances of the presence of labels being computed using
CMVU.

4 Experimental Results

We perform all experiments on the CUReT dataset [11]. This dataset provides a starting
point in empirical studies of texture surfaces under different viewing and illumination
directions. This database contains 61 different textures, each observed with over 200
combinations of viewpoint and illumination conditions.

In order to construct our texton library, 40 unregistered images with different imaging
conditions from 20 texture classes are employed. We use the same texture set as the
one examined by Cula and Dana [3]. We extract 2-D textons from each image, and
apply K-means algorithm to the texture classes individually in order to obtain 60 centers
from each different materials. These 1200 centers are used as initial points for the final
clustering step, which produce an efficient and least redundant dictionary from 1200
textons.

To justify the effectiveness of our approach, we have performed three sets of exper-
iments. 10 arbitrary texture images from each texture class are selected in all three of
experiments. Thence, the total number of test images is 200. In the first experiment,
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Fig. 3. Classification rate on CURet dataset for different projection dimensions. Three sets of
experiments have been performed. In experiment (1) exactly the same images involved in con-
structing the vocabulary have been used. Experiment (2) is a bit more complex, in the sense that
testing image conditions differ from those used in constructing the vocabulary. In Experiment (3)
two disjoint sets of texture classes are used in library construction and the texture recognition,
separately.

(a) Original Space (b)CMVU Space

Fig. 4. The first two dimensions of CUReT dataset in the original space and the space produced
by CMVU, respectively. Dot shapes are used to denote textures from different classes.

exactly the same images involved in constructing the vocabulary have been used. The
second experiment is a bit more complex, in the sense that testing image conditions
differ from those used in constructing the vocabulary. In the last experiment, the most
complex one, two disjoint sets of texture classes are used in library construction and tex-
ture recognition, separately. Figure 3 shows the percentage of correctly classified test
images as a function of dimensions used to represent projected models by CMVU. This
figure clearly shows that up to a certain level the accuracy increases with dimension-
ality and converges to a fixed point with very low variability. Additionally, this Figure
shows better results for experiment 3, which is the consequence of selecting more dis-
criminative classes than the other sets chosen for constructing the library. In Figure 4
the first two dimensions of data in the original space is shown as well as its projection
in/on to the new space using CMVU. Obviously enough, CMVU introduces a clear data
separation with an excellent visualization.

5 Conclusions

This paper introduces the idea of supervised nonlinear dimensionality reduction to alle-
viate the difficulties associated with texture recognition. Although we were not the first



216 E. Barshan, M. Behravan, and Z. Azimifar

to address the high dimensionality of texture models, the contribution of this work is
its efficient mapping of data nonlinearity, i.e., we have shown how to represent the data
intrinsic information while magnifying the descriptive properties of the original feature
space. Besides, we proposed a LLE-like approach to cope with shortcoming of CMVU
in projecting the test data when carrying no side information. This paper presents a new
framework to efficiently visualize a hugely dimensioned data in a very low dimension
yet rich space.

This study can be extended in different directions: 1) orientation and scale invariant
features may be extracted using techniques such as gradient histograms, 2) advanced
classifiers and clustering algorithm can be investigated, and 3) the data visualization
techniques may also be employed in selecting the most discriminative texture models.
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