

S. Lee and P. Narasimhan (Eds.): SEUS 2009, LNCS 5860, pp. 240–251, 2009.
© IFIP International Federation for Information Processing 2009

Exploring the Design Space for Network Protocol Stacks
on Special-Purpose Embedded Systems

Hyun-Wook Jin and Junbeom Yoo

Department of Computer Science and Engineering
Konkuk University

Seoul 143-701, Korea
{jinh,jbyoo}@konkuk.ac.kr

Abstract. Many special-purpose embedded systems such as automobiles and
aircrafts consist of multiple embedded controllers connected through embedded
network interconnects. Such network interconnects have particular characteris-
tics and thus have different communication requirements. Accordingly, we need
to frequently implement new protocol stacks for embedded systems. Imple-
menting new protocol stacks on embedded systems has significant design space
but it has not been explored in detail. In this paper, we aim to explore the design
space of network protocol stacks for special-purpose embedded systems. We
survey several design choices very carefully so that we can choose the best de-
sign for a given network with respect to performance, portability, complexity,
and flexibility. More precisely we discuss design alternatives for implementing
new network protocol stacks over embedded operating systems, methodologies
for verifying the network protocols, and the designs for network gateway.
Moreover, we perform case studies for the design alternatives and methodolo-
gies discussed in this paper.

Keywords: Embedded Networks, Embedded Operating Systems, Network
Protocol Stacks, Formal Verification, Protocol Verification, Network Gateway.

1 Introduction

Many special-purpose embedded systems consist of multiple embedded controllers
connected through network interconnects. For example, machine control systems such
as automobiles and aircrafts are equipped with more than hundreds embedded control-
lers or boards, which collaborate by communicating each other. Since such embedded
systems use special network interconnects and have different communication re-
quirements, there are many cases where new protocol stacks are needed to be imple-
mented. Implementing new protocol stacks on embedded systems has significant
design space but it has not been explored in detail. Thus it is highly desirable to ana-
lyze the possible design alternatives and present their case studies as references.

In this paper, we aim to explore the design space of network protocol stacks for spe-
cial-purpose embedded systems. The legacy protocol stacks such as TCP/IP have sev-
eral implementations already exist, which can help significantly to reduce the time
frame of design and implementation phases. Adding new protocol stacks, however,
requires significant cost in terms of time and complexity from the industry perspective.

 Exploring the Design Space for Network Protocol Stacks 241

Therefore, we need to consider several design choices very carefully so that we can
choose the best design for a given network with respect to performance, portability,
complexity, and flexibility. In this paper, we present various design alternatives and
compare them in several aspects. Moreover, we perform the case studies for the design
alternatives.

The rest of the paper is organized as follows: Section 2 discusses the design alter-
natives for implementing new network protocol stacks over embedded operating sys-
tems. Section 3 describes the methodologies for verifying the network protocols.
Section 4 addresses the network interoperability issue and discusses the designs for
network gateway. Finally we conclude the paper in Section 5.

2 Protocol Stacks on Embedded Nodes

In this section, we explore the design and implementation alternatives of network
protocol stacks on embedded nodes. The designs can highly depend on operating
systems and their task models but we try to generalize this discussion as much as
possible so that the designs described can be applied to the most of embedded operat-
ing systems. One of the most important issues when implement new network protocol
stacks is who takes charge of multiplexing and demultiplexing of network packets.
Accordingly, we classify the possible designs into two: i) user-level design and ii)
kernel-level design.

2.1 User-Level Design

In this design alternative, the protocol stacks are implemented as a user-level thread or
process, which performs (de)multiplexing across networking tasks. The user-level pro-
tocol stacks can be portable across several embedded operating systems as far as they
follow the standard interfaces such as POSIX. The overall designs are shown in Figure
1. As we have mentioned, the way to implement new network protocol stacks are de-
pendent on the task models of operating systems. Many embedded operating systems
such as VxWorks [18] and uC/OS-II [19] define the thread-based tasks on top of the flat
memory models in which the user-level protocol stacks are implemented as a user
thread. On the other hand, some other embedded operating systems such as Embedded
Linux and QNX [20] define isolated memory spaces between tasks. In such systems, the
user-level protocol stacks are implemented as a user process in general. Though most of
these process-based task models also support multiple threads, the design of process-
based protocol stacks is still attractive. This is because, in this task model, if we imple-
ment the protocol stacks as a thread it can only support the threads belong to the same
process. That is, the thread-based protocol stacks over the process-based task models is
not suitable to support multiple networking processes.

In either thread or process-based design, the protocol stacks send the network
packets by accessing the network device driver directly. Thus the device drivers have
to provide the interfaces (e. g., APIs or system calls) for the network protocol stacks.
The user-level tasks request the protocol stacks to send their packets through Inter-
Process Communication (IPC). In case of thread-based design, since the protocol
stacks share the memory space with other tasks, the network data can be directly ac-
cessed from the protocol thread without data copy as far as the synchronization is

242 H.-W. Jin and J. Yoo

guaranteed by an IPC such as semaphore. On the other hand, the process-based proto-
col stacks need to pass the network data between the networking tasks and the proto-
col stacks explicitly by using an IPC such as message queue. This can add message
passing overhead because the messaging IPCs usually require memory copy opera-
tions to move data between two different memory spaces.

On the receiver side, how it works is similar with the sender side; however, there is
a critical design issue of how to detect the incoming new packets. Since the protocol
stacks are implemented at the user-level, there is no proper asynchronous signaling
mechanism at the device driver to notify new packet arrival to the user-level protocol
stacks. Thus, the interfaces provided by the device driver are the only way to check
new packet arrival. However, if the interface has a blocking semantic then the proto-
col stacks cannot handle other requests (e.g., sending requests) from the tasks while
waiting a new packet arrived. There are two solutions to overcome this issue. One is
to use asynchronous interface and the other one is to have multithreaded protocol
stacks. The asynchronous interface is easy to use but it is hard to come up with an
optimal strategy of calling the interface in terms of when and how frequently. Thus it
is likely to achieve lower performance than what the actual network can provide or
waste the processor resources. Instead, the multithreaded protocol stacks can have
separate threads to serve the sending and receiving operations respectively. That is,
for both thread- and process-based designs, the protocol stacks consist of a set of
threads. Only one difference is that the multiple threads belong to the same process in
case of the process-based design. The receiving thread can block on waiting a new
packet while the sending thread handles the requests from the tasks. Once the new
packet has been recognized by returning from the blocked function, the receiving
thread of the protocol stacks interpret the header and pass the packet to the corre-
sponding process through an IPC.

Since the protocol stacks are implemented at the user-level, they are scheduled as
other user-level tasks by the task scheduler. If we give the same priority to the proto-
col stacks with other tasks, the execution of the protocol stacks can get delayed,
which results in high network latency. Thus it is desired that the protocol stacks have
higher priority than general user-level tasks and block on waiting new packets re-
ceived or sending requests, which allows other tasks to utilize the processor resources
if there are no pending jobs of the protocol stacks.

As a case study we have implemented Network Service of Media Oriented System
Transport (MOST) [1] at the user-level over Linux [2]. MOST is an automotive high-
speed network to support multimedia data streaming. The current MOST standard
specifies 25Mbps ~ 150Mbps network bandwidth with QoS support. To meet the
demands from various automotive applications, MOST provides three different mes-
sage channels: control, stream, and packet message channels. Network Service is the
transport protocol for the control messages, which covers from layer 3 to parts of
layer 7 of OSI 7 layers. In order to implement Network Service, we have applied the
process-based design where the protocol stacks consist of sending and receiving
threads. We have utilized the ioctl() system call to provide interfaces between the
protocol stacks and the device driver. We have also implemented library for applica-
tions, which provides interfaces to interact with the protocol stacks using POSIX
message queue. The performance results show 0.9ms of one-way latency with 8-byte
control message.

 Exploring the Design Space for Network Protocol Stacks 243

Fig. 1. User-level protocol stacks: (a) thread-based design and (b) process-based design

2.2 Kernel-Level Design

In this design alternative, the protocol stacks are implemented as a part of operating
system. Thus we do not need to move data between the device driver and the protocol
stacks. This is because both use the kernel memory space and can share the network
buffer. In addition, since the kernel context has higher priority than the user context,
the kernel-level protocol stacks can guarantee the network performance. Accordingly,
it has more potential of achieving better performance than the user-level protocol
stacks. This design however may require modifications of the kernel, which is not
portable across several operating systems. As shown in Figure 2, we classify the ker-
nel-level design into bottom half based design and device driver based design accord-
ing to where the protocol stacks are implemented (especially for receiver side). The
traditional protocol stacks are implemented as a bottom half in general. In such de-
sign, when a packet has been received from the network controller, the interrupt han-
dler simply queues it to a queue shared with the bottom half. Then the bottom half
takes care of most of protocol processing including demultiplexing. The bottom half
is scheduled by the interrupt handler when there is no interrupts to be processed. On
the other hand, in the device driver based design, the entire protocol stacks are im-
plemented in the device driver. Therefore, if the protocol stacks are heavy like TCP/IP
then the device driver based design may not be suitable.

In case of the kernel-level design, the user tasks request a sending operation
through a system call. The system call eventually passes the request to the device
driver. On the sender side, the main difference between two design alternatives is that,
in case of the bottom half based design, the kernel performs most of protocol process-
ing before passing down the user request to the device diver. It is to be noted that the
data copy operation between the user and kernel spaces should be carefully designed.
In either synchronous or asynchronous interface, we can copy the user data into the
kernel and return immediately; however, this results in the copy overhead. On the
contrary, we can avoid the copy operation by delaying the notification of completion
but this can hinder the application’s progress.

244 H.-W. Jin and J. Yoo

Fig. 2. Kernel-level protocol stacks: (a) bottom half based design and (b) device driver based
design

On the receiver side, once a new packet comes in from the network controller, the in-
terrupt handler does urgent process before passing it to the upper layer. In the bottom
half based design, as we have mentioned earlier, the bottom half takes care of interpret-
ing the header and demultiplexing. Some of operating systems such as Embedded Linux
provide an interface to insert a new bottom half (more precisely tasklet in Embedded
Linux) without kernel modification. The microkernel based operating systems such as
QNX also allow adding new protocol stacks in a similar manner. In the device driver
based design, the bottom half is not taken into account at all. In this design alternative,
the protocol stacks are implemented in the system call and the interrupt handler. The
distribution of weight between the system call and the interrupt handler can vary in
terms of which does more protocol processing but usually the interrupt handler does
majority of the protocol processing. This is because doing demultiplexing at the inter-
rupt handler is more efficient. Otherwise, the system call needs to search the incoming
packet queue internally, which requires exhaustive searching time and locking overhead
between tasks. However, doing more work at the interrupt handler is not desirable be-
cause it is supposed to finish its work very quickly. Therefore, this design is valuable
when the overhead for protocol processing is low.

As a case study of kernel-level design, we have implemented a device driver based
protocol called RTDiP (Real-Time Direct Protocol) in the Embedded Linux over
Ethernet [3, 4]. RTDiP is a new transport protocol that can provide priority aware
communication, communication semantics for synchronization, and low communica-
tion overhead. In the synchronous semantics, the communication protocols do not
queue the packets but keep only the last packet received, which is suitable for distrib-
uted synchronization over relatively small area embedded networks. The performance
results show that RTDiP reports 48us one-way latency with 8-byte message and
provides better overhead prediction. We are currently implementing RTDiP over
Control Area Network (CAN) as well. In addition we plan to implement it in another
embedded operating system such as QNX.

3 Verification Methodologies

Protocol verification [5] is an activity to assure the correctness of network communica-
tion protocols. The design alternatives we have studied in Section 2 should be verified

 Exploring the Design Space for Network Protocol Stacks 245

thoroughly before proceeding to the implementation. The formal verification has been
known as the prominent but cost-ineffective technique. This section introduces formal
verification techniques for verifying network protocol stacks. We briefly overview
formal verification techniques and then review the techniques from aspect of network
protocol stacks verification. We then share our experience of verifying protocol stacks
of system air conditioning system.

3.1 Formal Verification

Formal verification and formal specification altogether are called as formal methods
[6]. Formal specification [7] is a technique for specifying the system on the basis of
mathematics and logic. It has various techniques and notations, e.g. algebra, logic,
table, graphics and automata. After completing the formal specification, we can apply
formal verification techniques to the specification to prove that the system satisfies
required properties. There are two main approaches in formal verification: deductive
reasoning and algorithmic verification.

Deductive reasoning is a verification methodology using axioms and proof rules to
establish the reasoning. Experts construct the proofs in hands, and it usually requires
greater expertise in mathematics and logic. Even if tools called theorem prover have
been developed to provide a certain degree of automation, its inherent characteristic
makes it difficult to be used widely for verifying recent network protocol stacks. Sec-
ond methodology is algorithmic verification, usually called model checking [8].
Model checking is a technique verifying finite state systems through exhaustively
searching all states space to check whether specified correctness condition is satisfied.
It is carried out automatically without almost any intervention of experts, but re-
stricted to the verification of finite state systems. The deductive reasoning, on the
other hand, has no such limitations.

With respect to protocol verification, the latter - model checking is more efficient
and cost-effective than the former - theorem proving. The former’s main drawback,
requiring considerable expertise, makes the model checking techniques better suited
for protocol stacks verification. Indeed, as the performance of model checking tech-
nique has increased rapidly, it can do various verifications more efficiently than when
it had been firstly proposed.

3.2 Formal Verification Techniques for Network Protocol Stacks

The formal verification techniques for network protocol stacks fall into several cate-
gories. General-purpose model checkers such as Cadence SMV [9] and SPIN [10] can
verify protocols efficiently. General-purpose proof tools which are not the model
checker but conduct formal verification such as UPPAAL [11] are useful too. We can
also use specialized protocol analysis tools (e.g., Meadows’ NRL [12] and Cohen’s
TAPS [13])

Formal specification should be prepared before conducting formal verification. Fi-
nite State Machine (FSM) based formal specification technique has been widely used
for specifying network protocols and stacks. FSM mainly consists of a set of transi-
tion rules. In the traditional FSM model, the environment of the FSM consists of two
finite and disjoint sets of signals, input signals and output signals. A number of papers

246 H.-W. Jin and J. Yoo

using FSM based formal specification have been reported. Especially, network proto-
cols can be well specified using communicating FSM or extended FSM as reported in
[14, 15].

With respect to the formal verification of network protocol stacks, we have to con-
sider two tasks: specification of protocol stacks and modeling of the system imple-
menting the protocol. In the first step, we have to model the protocol algorithm and
stack hierarchy using a formal specification method. Then the modeling of the whole
embedded network system which includes the implementations of the protocol stacks
can proceed. Therefore, verifying the network protocol stacks requires not only the
formal specification for the protocol stacks but also the encompassing environment
where the protocol stacks are implemented and used.

Formal verification for network protocol stacks totally depends on the formal
specification developed beforehand. If we use FSM-based formal specifications (e.g.,
Statecharts [16] and Specification and Description Language (SDL) [17]), most gen-
eral-purpose model checkers are available. In case that exact timing constraints
should be preserved, timed automata based formal specification like UPPAAL is a
good choice. We can also use specialized protocol verification tools, but it is not easy
to model the whole system with them. Therefore, the combination of FSM based
formal specification and general-purpose model checking tools will be more effective
than others.

3.3 SDL-Based Verification of Protocol Stacks

SDL is a formal specification language and tool suite widely used to model the sys-
tem which consists of a number of independently communicating subsystems. The
SDL specification can be translated into FSM forms, and then used as an input for
general-purpose model checkers such as SMV and SPIN. Figure 3 describes the archi-
tecture of system air conditioning system. We performed the formal verification of the

Fig. 3. The architecture of system air conditioning system

 Exploring the Design Space for Network Protocol Stacks 247

network protocol between distributed controllers called DMS (Distributed Manage-
ment System) and a personal controller called MFC (Multi-Function Controller). A
DMS controls all indoor air conditioners, outdoor compressors and network routers
under its control. An MFC is a touch-screen based personal controller like PDA.

In our experience, special-purpose embedded network system such as the above
can be well specified with SDL and verified formally through general-purpose model
checkers such as SPIN. We implemented an automatic translator from SDL into
PROMELA, SPIN’s input program language, and conducted SPIN model checking.
We verified several properties, categorized as feasibility test, responsiveness, envi-
ronmental assumptions and consistency checking. In addition to the SPIN model
checking, the SDL tool has its own validation tool, which checking syntax errors and
completeness of the specification.

4 Network Interoperability

Since various network interconnects can be utilized on a distributed embedded sys-
tem, the network interoperability is a critical requirement in such system. For exam-
ple, in modern automobile systems, several network interconnects such as CAN, LIN,
FlexRay, and MOST are widely used in an integrated manner. In such systems, we
need a gateway for interoperation between different networks [2, 21, 22], which is
similar with bridges or routers on Internet. Thus the gateway needs to understand
several network protocols and convert one into another. In this section, we explore the
design alternatives for embedded network gateways. Especially, we classify the gate-
way designs into two based on how to operate the operating system on the gateway.

4.1 Single OS Based Gateway

In this design alternative, the gateway architecture has a single or multiple homoge-
neous Micro-Controller Units (MCUs) that run single operating system’s image. The
MCU can include the network controllers for different network interconnects sup-
ported by the gateway or can be connected with the network controllers on the same
board through buses such as Serial Peripheral Interface (SPI), Inter-Integrated Circuit
(I2C), etc.

The protocol stacks can be designed and implemented as any of the design choices
described in Section 2 but a layer of protocol stacks is required to perform the gate-
way functions. If the network layer performs the gateway functions, it can be trans-
parent to the networking processes running on the embedded nodes. The network
protocols for embedded systems, however, usually have no strict distinction between
the network and transport layers because their network layers do not suppose to allow
arbitrary transport layers while the Internet Protocol (IP) layer does. In addition, even
if the gateway performs the protocol conversion at the network layer, in many cases it
is hard to conserve the end-to-end communication semantics due to significant differ-
ences between transport protocols of embedded networks.

248 H.-W. Jin and J. Yoo

Fig. 4. Single OS based gateway: (a) transport layer based design and (b) global addressing
layer based design

Another solution is to introduce a gateway module at the transport layer as shown
in Figure 4(a). In this design alternative, the gateway should manage the protocol
conversion tables that map between message headers of both network and transport
layers for different networks. Since the transport layer translates the protocols inter-
nally the legacy applications do not need any modifications. A drawback of this de-
sign is the limitation of scalability. The number of possible header patterns can be
numerous in some embedded systems, which can result in memory shortage on
the gateway node. Therefore, this design is useful only when the number of entries of
the protocol conversion tables is predictable. Fortunately, in many embedded systems,
we can figure out the number of embedded devices that need to collaborate (i.e.,
communicate) each other across different networks at the design phase.

We can also add a new layer on top of the transport layer as shown in Figure 4(b).
The new layer defines global addressing and APIs to access the layer from the appli-
cations. If the gateway uses global addressing the networking processes on every
embedded node have to be aware about it. Thus the applications need to be modified
but if once this is done they can run transparently on any networks in which the addi-
tional layer is inserted. In this case, the gateway only requires managing the routing
table and thus the scalability in terms of memory space can be better than the previous
design. However, if the most of embedded nodes perform intra-network communica-
tion, the overhead of additional layering can harm the performance. Therefore, the
decision among the design alternatives described can vary based on the system re-
quirements and characteristics.

As a case study of single OS gateway, we have implemented a gateway between
MOST and CAN networks based on the transport layer based design [2]. In this case
study, we utilize the MOST Network Service implemented in Section 2.1. The com-
munication semantics of MOST control message are very different with the tradi-
tional send/receive semantics. The MOST control message invokes a function on a
MOST device. However, CAN does not provide such communication semantics
while providing multicast like communication semantics which is not in MOST
Network Service. Thus, simple message forwarding with address translation at the
network layer does not work. To provide transparent conversion of communication
semantics we have suggested a gateway module. In addition, we have implemented
the protocol conversion table and defined some entries for performance measure-
ment. The performance results show that the suggested design hardly adds additional

 Exploring the Design Space for Network Protocol Stacks 249

overhead, which is about 15% of pure communication overhead, and can deliver
control messages very efficiently.

4.2 Multi-OS Based Gateway

Since the embedded nodes on different networks can have different requirements the
desirable operating systems can vary. For example, the automobile gateway node can
have many kinds of peripheral interfaces such as USB and wireless network for sup-
porting infotainment applications over MOST. Therefore, an operating system that
has fluent device drivers such as Embedded Linux is highly expected. On the other
hand, the electronic units such as chassis, powertrain and body controllers connected
to CAN or LIN demand to guarantee the real-time requirements and thus an RTOS is
desirable. Since the gateway needs to meet such various requirements we can consider
having multiple operating systems on the gateway node. The address translation issue
discussed in Section 4.1 is still applied in the similar manner even in this design alter-
native. However, an efficient scheme for communication between operating systems
has to be taken into account.

A gateway node can be equipped with multiple heterogeneous MCUs that have dif-
ferent network controllers as shown in Figure 5(a). Each MCU can run its own operat-
ing system that satisfies the requirements of responsible networks. The MCUs on the
gateway node can collaborate by communicating each other through a bus or shared
memory module. Since an MCU may do not have all network controllers required to a
specific embedded system, we can need several MCUs, which makes the connection
architecture between MCUs very complicate. Thus the architecture based on multiple
MCUs can be applied to limited cases.

Another approach is to exploit the virtualization technology, which allows running
several operating systems on the same MCU as shown in Figure 5(b). The virtualiza-
tion technology can isolate the system fault from propagating to other operating sys-
tems and provide service assurance. In addition, the state-of-the-art virtualization
technologies enable low overhead virtualization and better resource scheduling, which
lead to high scalability. In addition to the existing optimization technologies, a lighter
I/O virtualization can be suggested because the network controllers on the gateway

Fig. 5. Multi-OS based gateway: (a) multiple MCUs based design and (b) system virtualization
based design

250 H.-W. Jin and J. Yoo

node may not be shared between operating systems. An important issue is how effi-
ciently the operating system domains can communicate each other. In general, the
portion of inter-domain communication on a virtualized node is not dominant com-
pared with inter-node communication. However, on the gateway node, many of net-
work messages cause inter-domain communication because they are supposed to be
forwarded to another network interface of which another operating system domain
may take care.

As a case study of the gateway with multiple operating systems, we are implement-
ing a MOST-CAN gateway using virtualization technology provided by Adeos [23].
Adeos provides a flexible environment for sharing hardware resources among multi-
ple operating systems by forwarding hardware events to appropriate operating system
domain. We run Linux and Xenomai [24], a parasitic operating system to Linux, over
Adeos. The Linux operating system takes charge of the MOST interface while
Xenomai does the CAN interface. The gateway processes are running on each operat-
ing system and communicate each other through inter-domain communication inter-
face provided by Xenomai. Since the protocol stacks for MOST and CAN run on
different operating systems we perform the protocol conversion at the above of the
transport layer but we do not use global addressing. Instead we define a protocol con-
version table that maps network connections over different networks.

5 Conclusions

In this paper, we have explored the design space of network protocol stacks for
special-purpose embedded systems. We have surveyed several design choices very
carefully so that we can choose the best design for a given network with respect to
performance, portability, complexity, and flexibility. More precisely we have dis-
cussed design alternatives for implementing new network protocol stacks over em-
bedded operating systems, methodologies for verifying the network protocols, and the
designs for network gateway. Moreover, we have performed case studies for the de-
sign alternatives and methodologies.

Acknowledgments. This work was partly supported by grants #NIPA-2009-C1090-
0902-0026 and #NIPA-2009-C1090-0903-0004 by the MKE (Ministry of Knowledge
and Economy) under the ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry Promotion Agency) and grant
#R33-2008-000-10068-0 by MEST (Ministry of Education, Science and Technology)
under the WCU (World Class University) support program.

References

1. MOST Cooperation.: MOST Specification. Rev 3.0 (2008)
2. Lee, M.-Y., Chung, S.-M., Jin, H.-W.: Automotive Network Gateway to Control Elec-

tronic Units through MOST Network (2009) (under review)
3. Lee, S.-H., Jin, H.-W.: Real-Time Communication Support for Embedded Linux over

Ethernet. In: International Conference on Embedded Systems and Applications (ESA
2008), pp. 239–245 (2008)

 Exploring the Design Space for Network Protocol Stacks 251

4. Lee, S.-H., Jin, H.-W.: Communication Primitives for Real-Time Distributed Synchroniza-
tion over Small Area Networks. In: IEEE International Symposium on Ob-
ject/component/service-oriented Real-Time distributed Computing (ISORC 2009), pp.
206–210 (2009)

5. Palmer, J.W., Sabnani, K.: A Survey of Protocol Verification Techniques. In: Military
Communications Conference - Communications-Computers, pp. 1.5.1–1.5.5 (1986)

6. Peled, D.: Software Reliability Methods. Springer, Heidelberg (2001)
7. Wing, J.M.: A specifier’s introduction to formal methods. IEEE Computer 23(9) (1990)
8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
9. SMV, http://w2.cadence.com/webforms/cbl_software/index.aspx

10. SPIN, http://spinroot.com/spin/whatispin.html
11. UPPAAL, http://www.uppaal.com/
12. Meadows, C.: Analysis of the Internet Key Exchange protocol using the NRL Protocol

Analyzer. In: SSP 1999, pp. 216–231 (1999)
13. Cohen, E.: TAPS: A first-order verifier for cryptographic protocols. In: 13th IEEE Comp.

Sec. Found. Workshop, pp. 144–158 (2000)
14. Aggarwal, S., Kurshan, R.P., Sabnani, K.: A Calculus for Protocol Specification and Veri-

fication. In: Int. Workshop on Protocol Specification, Testing and Verification (1983)
15. Sabnani, K., Wolper, P., Lapone, A.: An Algorithmic Procedure for Protocol Verification.

In: Globecom (1985)
16. Harel, D.: Statecharts: A Visual Formalism for complex systems. Science of Computer

Programming 8, 231–274 (1987)
17. SDL, http://www.telelogic.com/products/sdl/index.cfm
18. Wind River, http://windriver.com
19. Labrosse, J.: MicroC/OS-II: The Real-Time Kernel. CMP Books (1998)
20. QNX Software Systems, http://www.qnx.com
21. Hergenhan, A., Heiser, G.: Operating Systems Technology for Converged ECUs. In: 7th

Embedded Security in Cars Conference (2008)
22. Obermaisser, R.: Formal Specification of Gateways in Integrated Architectures. In: Brink-

schulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 34–45.
Springer, Heidelberg (2008)

23. Yaghmour, K.: Adaptive Domain Environment for Operating Systems (2001),
 http://www.opersys.com/adeos

24. Xenomai, http://www.xenomai.org

	Exploring the Design Space for Network Protocol Stacks on Special-Purpose Embedded Systems
	Introduction
	Protocol Stacks on Embedded Nodes
	User-Level Design
	Kernel-Level Design

	Verification Methodologies
	Formal Verification
	Formal Verification Techniques for Network Protocol Stacks
	SDL-Based Verification of Protocol Stacks

	Network Interoperability
	Single OS Based Gateway
	Multi-OS Based Gateway

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

