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Abstract. In this paper, we analyze the hash functions Dynamic SHA
and Dynamic SHA2, which have been selected as first round candidates
in the NIST hash function competition. These hash functions rely heav-
ily on data-dependent rotations, similar to certain block ciphers, e.g.,
RC5. Our analysis suggests that in the case of hash functions, where the
attacker has more control over the rotations, this approach is less favor-
able than in block ciphers. We present practical, or close to practical,
collision attacks on both Dynamic SHA and Dynamic SHA2. Moreover,
we present a preimage attack on Dynamic SHA that is faster than ex-
haustive search.
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1 Introduction

New generic cryptanalytic techniques for hash functions [IL[2] and the recent
results on MD5 and SHA-1 [Bl4L[5], along with the fact that the SHA-2 family of
hash functions was designed with a similar structure, have led to the initiation
of the NIST hash function competition [6], a public competition to develop a
new hash standard, which will be called SHA-3.

The competition has sparked a great deal of submissions: 64 new hash func-
tion proposals were submitted to the competition, of which 51 were accepted as
meeting the submission criteria for the first round. Among the 51 candidates,
Dynamic SHA and Dynamic SHA2 stand out as a combination of the SHA family
design with data-dependent rotations.

The concept of data-dependent rotations has been explored for block ciphers in
several constructions, most notably in the RC5 and RC6 block ciphers [71[8]. The
security of such block ciphers has been challenged many times, and a majority
of attacks is based on guessing the distances of the rotations. In cryptanalysis of
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hash functions, however, the internal state is known. The attacker even has con-
trol over (parts of) the internal state, including rotations, though sometimes this
control is only indirect. For example, Mendel et al. [9] exploited data-dependent
rotations to find collisions for the hash function of Shin et al. [I0]. Our attacks
on Dynamic SHA and Dynamic SHA2 also exploit data-dependent rotations, to
find (second) preimages and collisions.

2 Brief Description of Dynamic SHA and Dynamic SHA2

Dynamic SHA and Dynamic SHA2 use similar building blocks, but have different
compression functions. This section gives a brief description of these algorithms.

Dynamic SHA and Dynamic SHA2 follow a classical Merkle-Damgard con-
struction, based on a compression function that maps an 8-word chaining value
and a 16-word message to a new 8-word chaining value. The 256-bit versions use
32-bit words, and the 512-bit versions use 64-bit words. We focus on the 256-bit
versions, also called Dynamic SHA-256 and Dynamic SHA2-256. See [111[12] for
details on the 512-bit versions, Dynamic SHA-512 and Dynamic SHA2-512. The
following presents a bottom-up description of the compression function, thus
starting with its building blocks.

The symbol @ stands for exclusive OR (XOR), A for logical AND, V for logical
OR, and + for integer addition. Numbers in hexadecimal basis are written in
typewriter font (e.g., FF = 255). We count bit indices starting from zero at the
least significant bit (LSB). Thus, the first bit of a word w is written as w®,
and more generally we use the notation w’ for the bit i of the word w. The
most significant bit (MSB) of w is thus w3! for Dynamic SHA-256, and w%
for Dynamic SHA-512. Note that the i-th bit of a word corresponds to the bit
number i — 1, since we start counting from zero.

2.1 Building Blocks

The function G takes as input three words x1, z2, x3 and an integer t €{0, 1, 2, 3},
and returns one word, computed as follows:

1 D xo D xs ift=0
(x1 Nx2) ® a3 ift=1
(.731/\$2)EB.733€B—\$1 ift=2
(.731/\$2)EB.733€B—\$2 ift=3

Gi(z1,22,23) =

Note that this definition is simplified, but equivalent to the original in [IT,[12].
The function R takes as input eight words x1,...,2zs and an integer ¢, and
returns one word computed as follows:

R(zq,...,z8,t) = ((((x1 ®x2) +x3) Dxyg) + 25) Dae) +x7) Dwg) S>>t .

The function R1 takes as input eight words x1,...,zs and returns one word
computed as follows (in the 256-bit versions):
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to — (((x1 + x2) B x3) +24) B x5) + 26) B 27
t1 — ((to > 17) @ to) A 0001FFFF
to <« ((t1 > 10) @ t1) A 000003FF
ts < ((t2 > 5) @ ta) A OO0000LF
return zg >> i3

Finally, the COMP function takes as input eight words a, ..., h representing the
internal state, eight message words wy, . .., w7, or ws, ..., w5, and an integer ¢.
COMP updates the internal state as follows (in the 256-bit versions):

T «— R(a,...,h,w mod 32) T «— R(a,...,h, (w; > 15) mod 32)
h—g h — g+ w7

g > ((wy > 5)mod 32) g — f>> ((wy > 20) mod 32)

[ —etws [ —e+we

e «—d>> ((wy > 10) mod 32) e« d>> ((wy > 25) mod 32)

d +— Gy, s30(a,b,¢c) +wiio d «— G mod 4(a, b, ¢) + wiis

c—b c—b+w

b—a b—a

a— T+ wi a— T 4+ wiiq

2.2 Compression Functions

Given a chaining value hy, ..., hy and a message block wy, ..., w15, the compres-
sion function of Dynamic SHA (Dynamic SHA2, respectively) produces a new
chaining value, as described in Algorithm [ (Algorithm 2 resp.).

The compression function of Dynamic SHA is composed of an initialization,
an iterative part of 48 rounds, and a feedforward of the initial chaining value. It
uses three constants TTy, TTy, TTs.

The compression function of Dynamic SHA2 is composed of an initialization
followed by three iterative parts, and finally by a feedforward. Note that, when
calling COMP with the message words ws, ..., w5 and an integer ¢, w; stands

for wg, wyyq stands for wy, etc. Dynamic SHA2 surprisingly enough, uses no
constants.

3 Collision Attack on Dynamic SHA

This section describes a practical collision attack on Dynamic SHA. It builds
on a 9-step local collision that exploits an important differential property of
the function R1, which we introduce first. The same local collision pattern is
repeated three times to find collisions for the entire compression function. Fur-
thermore, these three instances of the local collision pattern can be decoupled,
which drastically reduces the attack complexity. We present the attack on Dy-
namic SHA-256 here. We could adapt it to Dynamic SHA-512 with only minimal
changes, as detailed in Appendix [Cl
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Algorithm 1. Compression function of Dynamic SHA

Initialization
a:ho b:h1 C:hz d:h3 6:h4 f:h5 g:ha h:h7
Iterative part

for t=0,1...,47

T — Rl(a7b7 C7d7e7f7g7h’)
U «— G(a,b,c,t mod 4) + wt mod 16 + T Tt
(a7b7c7d7e7f7g7h) — (T7a7b7U7d7e7f7g)

Feedforward

ho «—ho+a hi<—hi+b hay<—ha+c hz<—hs+d
hs < hs+e hs<—hs+f hes<—hs+g hr<—hr+h

Algorithm 2. Compression function of Dynamic SHA2

Initialization
a:ho b:h1 C:hz d:h3 6:h4 f:h5 g:ha h:h7
First iterative part

COMP (a,b,c,d,e, f, g, h,wo,w1,..., wr,0)
COMP (a7b7 c, dv €, f7gah7w87w97 .. .,U)15,0)

Second iterative part
fort=0,1...,8

T<—R1(a7b7c7d7e7f7g’h)
(a7b7c7d7e7f7g’h) — (T7a7b7c7d7e7f’g)

Third iterative part
fort=1,2...,7

COMP(a7b? c, d7e7f7gah7w07w17~ ) ’LU7,t)
COMP (a,b,c,d,e, f,g,h, ws, wo, ..., wis,t)

Feedforward

ho«<—ho+a hi<—hi+b hay<—ha+c hz<—hs+d
hs < hs+e hs<—hs+f hes<—hs+g hr<—hr+h
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3.1 A Differential Property of the Function R1

To overcome the obstacle of data-dependent rotation, our attack ensures that no
difference occurs in any of the data-dependent rotation amounts. This section
clarifies how to achieve this.

The data-dependent rotations are located in the 8-input function R1. For
Dynamic SHA-256, consider the difference A = 80004000, i.e., only bits 31
and 14 are set. Let one of the first seven inputs to the function R1 have this
difference, i.e., one of x1,...,z7. In the first step of R1, an intermediary word
to is computed as follows:

to — ((((z1 + x2) ®x3) + 24) D w5) + 26) B 27 -

The difference in the MSB always propagates to to. Assuming that no carry
occurs for bit 14, the intermediary to also has the difference A. If ¢y has a
difference A, this difference is then absorbed by the rest of the function RI1.
Indeed, the next step computes the intermediary word ¢; as

t1 — ((to > 17) & to) A 0001FFFF .

Note that (A > 17) & A = 80000000, which is absorbed by the logical AND
operation. We note that there are other differences of Hamming weight 2 that
exhibit the same property and may be used without any change in the attack,
e.g., A = 80000010.

We now estimate the probability that a single A-difference in one of the first
seven inputs of the function R1 is absorbed. As a A-difference in t( is absorbed
with certainty, it suffices that a A-difference in one of the seven first inputs
propagates to tg. This happens when no carry difference occur for bit 14 in any
of the modular additions. The probability that a one-bit difference in one of the
summands in an addition does not cause a carry difference is 1/2. Thus, the
probability that a A-difference is absorbed by the function R1 can be estimated
to 27%, where k is the number of modular additions the difference propagates
through. For instance, a difference in x3 activates two modular additions, so
k=2.

However, the actual probability is higher, as the undesirable effects of a carry
difference in one modular addition can be reverted by another carry difference
in a subsequent addition. The combination of modular additions and XOR can
be represented compactly in a trellis, and a variant of the Viterbi algorithm
can be used to efficiently count the probability that a A-difference is passed
to tp unchanged. Our computer aided research revealed that this is indeed an
important effect: For a difference in 3 or x4, the actual probability is 2718
rather than 272, and for a difference in 2 or x5, the actual probability is 27207
rather than 273, For differences in the other words, only one modular addition
is affected, so no carry differences can be canceled. Hence, in those cases, the
simple estimation is correct.
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Table 1. A 9-step local collision for Dynamic SHA. The difference at step t is the
difference in the state before computing step t.

Pr
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2—1
271
1
2—5
272.07 . 272
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3.2 A 9-Step Local Collision

We present a simple 9-step local collision for Dynamic SHA in Table[Il A differ-
ence of A = 80004000 is introduced, then, all further diffusion of this difference
is avoided. After seven more steps, the difference has rotated through the internal
state of Dynamic SHA once, and can be canceled via an appropriate difference
in the message word. The characteristic has probability 272°-3.

In step 0, a A-difference is introduced via the message word. Note that the
message word itself can contain any additive difference that can cause a A-
difference in the state. In steps 1 to 4, the A-difference in one of the state
variables is absorbed by the function R1, as described in Section Bl Then, at
the beginning of step 5, there is a A-difference in the internal state word h. This
word is rotated by a data-dependent amount, and thus we can require that it is
rotated by zero bits, i.e., not rotated at all. In steps 6 and 7, the A-difference
should be absorbed by the G-functions. Any G-function except XOR absorbs
differences in its first two inputs with probability 1/2 per bit. Also, R1 should
absorb the differences in these steps. Finally, in step 8, the difference in the state
variable ¢ is canceled by another A-difference coming from the message word.

The probability that the local collision pattern is followed is estimated by
simply multiplying the probabilities of all the events discussed above. The prob-
abilities of each step are indicated in Table[Il This yields an overall probability
of 27203 for the entire 9-step local collision.

3.3 The Attack

Our attack repeats the 9-step collision three times. This made possible by the
simple message schedule, which consists of a simple repetition of the 16 words
in a message block. Thus, the only message words that have a difference are wy,
which introduces the differences, and wg, which cancels them.

A straightforward attack would consist of choosing an arbitrary message block,
and applying a difference of A = 80004000 to wy and wg. As the local collision
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is repeated three times, the complexity of this attack would be approximately
(220-3)3 = 261 This can be improved tremendously by making the three local
collisions independent. Then, the three local collision complexities can be added
rather than multiplied.

The first two local collisions can be decoupled in a straightforward manner as
only the message words wq to wg influence the first local collision. Therefore, once
suitable values for these message words have been found, there is still enough
freedom remaining in the other message words. The words wg to wg can thus
be kept constant, while values for wg to w5 are searched such that the second
local collision is also achieved.

Controlling Internal State Values. In each step of Dynamic SHA, the new
value of the internal state word d is found as the modular addition of a message
word and an intermediate depending on the internal state words a, b and ¢. Full
control over message words allows an adversary to give the internal state word d
any desired value. Indeed, it holds that

Wt mod 16 = Anew — G(a, b, ¢, t mod 4) — TTt>>4 .

Applying this to eight consecutive steps allows one to almost fully control the
final internal state. In every step, the new value of d is fixed to some desired
value. These values then shift through the internal state words a number of times,
to end up as one of the internal state words after the eighth step. However, a
complication arises with the first three steps, which ends up in the state words a,
b and c. Before a controlled value from d ends up in one of these three state words,
it is be rotated by a data-dependent amount. An obvious way to sidestep this
issue is to choose a rotation-invariant value for these three words, i.e., 00000000
or FFFFFFFF. Then, the data-dependent rotations have no influence.

Decoupling All Three Local Collisions. Our attack consists of three phases,
each dealing with one local collision. The first phase satisfies the first local col-
lision, using the message words wg to wg. It would be possible to use message
modification techniques here to find a conforming message pair quicker, but as
the later phases of the attack dominate the overall complexity anyway, no sig-
nificant gains can be made in this way.

To satisfy the second local collision, we use the freedom in the remaining
message words. However, we do not choose the remaining message words directly,
but rather choose the internal state after step 15. We then use the words wg to
w15 to connect to this state, using the technique outlined earlier. We fix the
values of a, b and ¢ to zero, to make them rotation-invariant, and choose the
remaining five words arbitrarily. Note that ws was already determined in phase 1,
so it should not be modified again, but wg is used here to force a zero value,
which ends up in the internal state word d after step 15. This issue is solved by
shifting this condition on wg to phase 1. Instead of arbitrarily choosing wg there,
it is computed such that the required zero is generated. This does not change
the complexity of the first phase.
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Finally, to satisfy the third local collision, we modify w7. Then, only d changes
after step seven. As the value in ws, which should force d to zero after step
eight, depends only on the internal state words a, b and ¢ before step eight,
modifying w7 does not require a correction in wg. Thus, such modifications do
not change the fact that the first local collision pattern is followed. The values
of wg to w5 are then updated such that the internal state after step 15 is
unchanged, and so the start of the second local collision will be unaltered. For
the same reasons as before, the change in w; also does not affect the end of the
second local collision pattern.

Hence, we dispose of a modification algorithm that leaves the first two local
collisions unaffected, but changes the internal state values before the third local
collision randomly. This provides the required freedom to also satisfy this third
and final local collision. Hence, the overall attack complexity can be estimated
at about 22! Dynamic SHA compression function computations. Appendix [A]
reports on our implementation of the attack, with an example of collision.

4 Preimage Attack on Dynamic SHA

This section describes (first and second) preimage attacks on Dynamic SHA. We
first describe how to find preimages for the compression function of Dynamic
SHA, and then explain how to extend this to first and second preimage attacks.
on the Dynamic SHA hash function. We describe how to attack Dynamic SHA-
256 here, and refer to Appendix [C] for details on how to adapt the attack to
Dynamic SHA-512.

Conceptually, our preimage attack bears some similarity to the work on SHA-0
and SHA-1 by De Canniére and Rechberger [I3], for it finds a preimage bit
slice per bit slice. If all data-dependent rotation amounts in Dynamic SHA are
assumed to be zero, then a bit of any intermediate word cannot be influenced by
any other bit of higher position. This is because, besides rotations, all operations
are either bit-wise or modular additions.

4.1 Preimage Attack on the Compression Function

Assume that the rotations in a block of Dynamic SHA are all zero. Then, all
words in Dynamic SHA can be divided into bit slices, as all computations are
now T-functions [I4]. As noted above, bit ¢ of each word can only be influenced
by bits 0 to i of other words. When bits 0 to (¢ — 1) of each word are known,
bit i of all words can be determined.

In a preimage attack on the Dynamic SHA compression function, the internal
state is given before step 0 and after step 47. Our attack starts by determining
the LSB of each word. To determine this bit of all of the internal state words in
every step, only the LSBs of the 16 message words need to be known. There are
216 choices for these 16 bits. Then, it can be verified whether the LSBs of the
eight internal state words after step 47 are correct. This occurs with probability
278, 5o 2% choices are expected to survive.
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We then proceed to the next bit slice. Keeping the choice for the LSB slice
fixed, the same procedure can be repeated. For each choice of the LSB slice again
28 choices for the second LSB are expected to survive. For Dynamic SHA-256,
this procedure is repeated until the 28 LSBs (bits 0-27) have been determined. At
that point, one of the bits of each of the 48 rotation constants can be determined,
as it does not depend on the higher bits of any word. Now, it can be verified
if the initial assumption that all rotation constants are zero indeed holds. This
corresponds to a 48-bit condition, i.e., for all rotation constants to be zero, surely
this single bit of each rotation constant has to be zero. Any choices that do not
satisfy this condition are eliminated. Then, the next bit is determined as before,
after which another bit of each rotation constant can be verified. This is repeated
until all bits have been determined.

4.2 Complexity Evaluation

The attack can be described as a simple tree search, where a tree level corre-
sponds to a bit slice, and a node represents an assignment for all bits in the
slice under consideration, and all LSB slices. To expand a node in the tree, one
guesses the 16 message bits of the next slice, and checks that the conditions on
the state words after step 47 are satisfied. As explained above, on average about
28 choices are expected to survive, i.e., the tree has a branching factor of 25.
When the 28 LSB slices are known, however, the average number of child nodes
drops by 2748 due to the additional filtering. The cost of expanding one node is
about 2'6 Dynamic SHA compression function evaluations, as 2'6 choices have
to be investigated. The expected number of solutions is equal to the expected
number of nodes at the deepest level of the tree, which is 2832.2748'5 = 216 Thjig
agrees with the observation that for a given input/output chaining values of the
compression function, there are expected to be 22°% message blocks that conform
to this combination. For each of these, the probability that all the rotations are
by 0 positions is 2724°, so about 2'¢ remain.

As we aim to find just one solution, i.e., any node on the deepest level of
the tree, a depth-first search is well suited to our application. It requires only
negligible memory and can easily be parallelised. Since, for Dynamic SHA-256,
216 solutions are expected, the depth-first search needs to search only about
a fraction 2716 of the entire tree before encountering the first solution. Due
to the large branching factor, the total number of nodes in the tree is well
approximated by the number of nodes on the widest level of the tree, which
has 2827 = 2216 nodes for Dynamic SHA-256. The search is thus expected to
expand about 22°° nodes, each of which costs 216 Dynamic SHA-256 compression
function evaluations, resulting in a total attack complexity of 22'¢ Dynamic SHA-
256 compression function evaluations.

4.3 Application to the Hash Function

Our preimage attack on the compression function directly gives a second preim-
age attack on the Dynamic SHA hash function with the same complexity,
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provided that there is at least one message block that does not contain any
padding in the challenge message.

For a first preimage, the padding bits limit the control an attacker has over
the message bits. It is not possible to simply copy the padding as in a second
preimage attack. Thus, we use the following approach instead. First, choose a
message length such that the last padded message block only contains 65 bits of
padding, which is the minimum. Then, choose an arbitrary message for all but
the last message block. Finally, a modified version of the attack in Section [£1]is
used to determine the last message block.

The main difference is that the last 65 bits of the message block can not be
chosen by the adversary, as they are padding bits. Their contents are fixed by
the choice of the message length. However, the same approach as in Section 1]
can still be applied, except that fewer bits can be chosen in each bit slice. For
Dynamic SHA-256, the expected number of solutions in the search tree now be-
comes 2027 . 97424 . 9=43-1 — 949 A golution is thus only expected to exist
with probability 27%°, thus the attack is repeated sufficiently many times with a
different message length. The number of nodes at the widest level of the tree is
2627 "and the cost for expanding a single node at this level is 2'* Dynamic SHA
compression function calls. Thus, the total attack complexity becomes approxi-
mately 249 - 26:27. 214 = 2225 Dynamic SHA compression function evaluations.

5 Collision Attack on Dynamic SHA2

To attack Dynamic SHA2, we use similar ideas as for Dynamic SHA. Specifically,
we use the control of the message to ensure that as many rotations as possible
are by the amounts that we need. Moreover, as many of the rotations amounts
are directly determined by the message, our task becomes easier. Our attack
is based on introducing a difference in the most significant bit of two message
words, wg and wi4. As a 32-bit condition is imposed on the chaining value, a two-
block collision finding technique is used, where the first block is searched until
a suitable chaining value is encountered. We describe our attack on Dynamic
SHA2-256 here. It can be adapted to Dynamic SHA2-512, as Appendix [Clshows.

5.1 First Iterative Part

Given an initial value a, . . ., h, the first iterative part of the compression function
of Dynamic SHA2 updates the chaining value words a, ..., h by computing

COMP(a,b, ..., hywy,w1,...,w7) ,

Since there is no difference in the message words wy, ..., w7 nor in the initial
value, we have no difference at this stage.
Then, Dynamic SHA2 computes

COMP(GJ), . .7h,wg,w97 N 7w15) .



Cryptanalysis of Dynamic SHA(2) 425

To follow our characteristic, the difference in wg and in w4 should lead to a
difference A = 80000000 in ¢ and in f. Below, we show that, to obtain these
differences, it suffices to set w3’ = 1 and to ensure that b equals FFFFFFFF after
the first COMP. These conditions are easily satisfied, and do not increase the
complexity of our attack.

We note that wi4 is used only once in the first iterative part. Thus the differ-
ence A in wyy only propagates to f, when COMP sets f <« e 4+ w14. The word
wsg, however, is used eight times, but as only the MSB has a difference, only two
of these require our attention: first, when setting ¢ <« b+ ws (which gives the
difference A in ¢ with probability one), and second when setting

d — Gugs30(a,b,c) +wig .

Here, the two MSBs of wg encode the index of the function used in G. Since we
have a difference in the MSB of wg, different functions are applied to (a, b, ¢). To
obtain the same output, we require that the functions G; and G3 are used, that
is, we set the bit w3? = 1. The reason for this is that, when b equals FFFFFFFF,
it is ensured that the outputs of both functions are equal, as can readily be seen
from the definition of the G-functions in Section 211

To summarize, a difference A in wg and wy4 yields a difference A in ¢ and f
after the first iterative part. To have b = FFFFFFFF, it is sufficient to start from
a chaining values that gives at the very first COMP a T such that T+ wy; =
FFFFFFFF. Such a chaining value can be reached in about 232 trials, and needs
to be precomputed only once. That is, one first needs to find a message block
leading to a chaining value that satisfies T'+ w; = FFFFFFFF, before starting the
actual differential attack with a second block. Actually, by using the freedom in
wg and wy rather than fixing them a priori, this step can be accelerated further.
However, as the other parts of the attack dominate the overall complexity, no
significant gains can be made in this way.

5.2 Second Iterative Part

Table 2] describes our differential characteristic for the second iterative part of
Dynamic SHA2. Note that no message word enters this part. A set of conditions
that ensure that this characteristic is followed, is relatively simple. Indeed, except
when ¢ = 2 and t = 5, the two differences A vanish in the first step of the
computation of R1, namely when computing

(((a+b)®e)+d)de)+ fleg.

Therefore, particular conditions are only required for ¢ = 2 and ¢ = 5.

When t = 2, the difference in e gives a difference of 16 in the rotation amounts,
and so the function R1 returns h 3> r and (h @ A) >> (r + 16 mod 32), re-
spectively. In order to obtain, as required by our differential characteristic, the
relation

(h>r)oA=(hodA)>> (r+ 16 mod 32) ,
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Table 2. Differential characteristic for the second iterative part of Dynamic SHA2.
The difference at step t is the difference in the state before computing step t.
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a sufficient condition is to have r = 16, and h invariant under 16-bit rotation,
i.e., (h >> 16) = h. This means that h should be of the form XYZTXYZT, which
we call symmetric. When ¢ = 5, we require similar conditions.

Now, observe that the words that should be symmetric are ¢ and f obtained
after the first iterative part. The values of ¢ and f then directly depend on wsg
and w14 (see description of COMP in Section B2]). We now have to find values of
wg and of wy4 that give symmetric ¢ and f.

Such wg and w4 can be found as follows: first fix wy4 to some arbitrary value,
and search for a ws that gives a symmetric ¢, in 2'6 trials. Then, fix ws to the
value found, and search for a pair (ws,w14) that gives a symmetric f after the
first iterative part. Here we need ws to have enough freedom, since for certain
choices of ws, there does not exist a suitable wq4. Again, 2'6 trials are expected.
Then we are enough degrees of freedom in the message words that do not affect
c and f to find rotation r = 16.

Assuming symmetric ¢ and f after the first iterative part, the characteristic
is followed with probability 2710, since the condition r = 16 is satisfied for both
t =2 and t = 5 with probability 275 x 275. By trying several values of, for
example, wg, and leaving the other message words fixed, one can thus find a
conforming message pair for the first two iterative parts in about 2'° trials.

5.3 Third Iterative Part

Given the final difference of the second iterative part, we found a characteristic
for the second round that yields no difference in the final state, thus given a colli-
sion. Table[fin Appendix [Bldescribes our differential characteristic. Appendix [Bl
also explains in detail why the characteristic can be followed with probability
2742 given some conditions on the input.

Combining our differential characteristics with their respective conditions on
the message, we obtain a method for finding a 2-block collision in about 24210 =
252 trials. The attack succeeds with probability close to one.
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Table 3. Summary of our results

Hash Function Attack Complexity Section
Dynamic SHA-256 Collision 221
Dynamic SHA-512 Collision 222 BIC]
Dynamic SHA-256  Second preimage 2216 2]
Dynamic SHA-512  Second preimage 2256
Dynamic SHA-256 First preimage 2225 @
Dynamic SHA-512 First preimage 2262 51/[@)
Dynamic SHA2-256 Collision 252
Dynamic SHA2-512 Collision 285 [51/(@)

6 Conclusion

In this paper we have discussed the security of the two SHA-3 candidates Dy-
namic SHA and Dynamic SHA2. We have analyzed their security, and found out
that, despite their reliance on data-dependent rotations and in the case of Dy-
namic SHA2 even data-dependent functions, their security is subverted by the
vast control and knowledge the adversary has while attacking a hash function.
We also showed that neither Dynamic SHA nor Dynamic SHA2 are suitable to
be selected as SHA-3, following their lack of security. Table Bl summarizes our
results.
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Practical Results

We have implemented our collision attack on Dynamic SHA. Collisions for Dy-
namic SHA-256 and Dynamic SHA-512 are found in a matter of seconds on
an average desktop PC. A collision example for Dynamic SHA-256 is given in
Table @l An all-zero block was appended to both messages to circumvent an er-
ror in the padding routine of the Dynamic SHA reference implementation, which
causes part of the last message block to be reused in the padding block.

Table 4. Collision example for Dynamic SHA-256: two messages and their common
digest

34BC5378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E
22FBFA2E O8CES0DF 95CDE61F 71ESF222 3D30C361 EB7676B8 F1AE9728 758B70AF
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

B4BC9378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E
A2FBBA2E O8CES50DF 95CDE61F 71ES5F222 3D30C361 EB7676B8 F1AEQ728 758B70AF
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

703C40F7 9DDFE2C6 8298F6D0 8D2B45B6 664CBB71 8BAB1BE3 DD563F77 ODO901E6
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B Differential Characteristic for Dynamic SHA2

This appendix describes the differential characteristic for the third iterative part
of Dynamic SHA2, used in our collision attack presented in Section [l

A transition in Table[6 has probability 1/2 when there is a difference in a or b
and G1, Gy or G is used. In this case, the difference does (not) propagate with
probability 1/2. When there is a difference only in ¢, it always propagates to the
output of the G function, independent of the function used. We also note that a
difference A in one operand of R is always transferred to T', and thus to a, except
when w41 or wyyq are wg or wiy, in which case the differences vanish. When
two operands of T have a difference A, they cancel out and yield no difference
inT.

The probabilities for each step assume some conditions on the message. We
will take as example the first COMP when ¢ = 2: we start with a difference

0 A0 AO0O0O0O0

in the chaining value a, b, . .., h. In the computation of COMP (first half), there is
no difference in T, because the A difference in b cancels that of d. The assignment
of the new values of f,g,h requires no condition on the message, for it only
involves words with no difference. To obtain a difference A in e, we need that
d is rotated by zero bit positions, that is, we need the bits 10 to 14 of ws to
be zero. This is easy as we have direct control over ws. Then, to obtain no
difference in d, we require that the difference in b does not propagate in G. This
is only possible if the Boolean function in G is not z1 @ x2 @ 3 (see Section 2I]).
Since the Boolean function is determined by the last two bits of ws, we require
w3’ Vw3l =1, i.e., these bits should not be both zero. Now, the difference will
not propagate in G with probability 1/2. Finally, we get a difference A in ¢ with
probability 1.

By applying a similar reasoning to all the steps of our differential charac-
teristic, we obtain conditions on the message wy, ..., w5 that are sufficient to
conform to the characteristic with probability 2742, Table [l summarizes these
conditions, along with the conditions for the other iterative parts.

Conditions on wy, ..., w7 ensure that in the first COMP of each step the
rotations are by bit zero positions, and thus the difference remains in the MSB.
The probabilities smaller than one are the probabilities that the function G
absorbs or passes a difference in a or b. In the second COMP, we need some
rotations to be zero in order the difference to stay in the MSB. This is achieved
by setting conditions on the message, for example at ¢t = 1, the first ten bits of wq
should be zero. Table [] summarizes these conditions. After satisfying all these
conditions, about 200 bits of freedom remain; indeed, besides wg and w4, the
message words w; to wy have to be fixed to let the symmetric ¢ and f unchanged
after the first iterative part.

At step t = 6, the difference in the MSB of w4 implies that G will apply
different functions to (a,b,c). Similarly to Section Bl we will require w3{ = 1
and b = EFFFFFFF, which will occur with probability 2732, The MSB of b should
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Table 5. Conditions on the message words wo, ..., w:s sufficient to follow our differ-
ential characteristic

Word Condition

w2 wil= . =wt=0,wP = =wP =0, W’ Vuwl =1
w3 w 0y it 1

W4 w3’ = wi? =0, wi’vwi =1

ws wi=--=wl=0

we wgz —wé—() w15 —w6 =0, wzo —w%gfo
wr wi= . =wt=0,uw = .. =w=0

wg  difference in wi', wi® =1

Wo wy=---=wj=0

w10 w?o:' _wm:O

w11 w%?:~ —w11—0 w11 \/wﬂzl

W12 w%(z):' —w12:O

w13 w?3:~~:w‘113:0 w%g:~ —wm—O

wis  difference in wii, wi) = - = wif =0, Wi = = wi] =0, W} =
wis wl=--=wdk=0

be zero in order the difference to propagate, which will happen with probability
1/2, thus the total probability for this step 1/2 x 2732 = 2733,

C Extensions to the 512-Bit Versions

The attacks presented in this paper can be extended to the 512-bit versions
of Dynamic SHA and Dynamic SHA2 in a straightforward way. This appendix
details how the attacks can be adapted.

Collision Attack on Dynamic SHA. The attack on Dynamic SHA-256 can be
adapted to Dynamic SHA-512 with almost no change. Due to the different R1
function, the difference word is A = 8000000080000000. Also, the probability
of the local collision is lowered by about 27! compared to Dynamic SHA-256,
as in the fifth step six rotation bits have to be fixed to zero instead of only five.

Preimage Attack on Dynamic SHA. The preimage attack on Dynamic SHA-512
is similar to that on Dynamic SHA-256, except that the 59 LSBs are determined,
instead of the 28 LSBs. Then, when building the tree, 2224 solutions are expected,
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Table 6. Differential characteristic for the third iterative part of Dynamic SHA2. The
difference at step ¢ is the difference in the state before computing step ¢t. The column
T indicates the difference in the temporary variable T'. The probability on a line is the
probability to reach the next difference, when conditions on the message are satisfied.

t (messageinput) a b ¢ d e f g h T prob.

L (w wo) 0 0 0 A 0 0 A 0 0 1

by W0 00 00 A 0 0O A 0 1

| (w ws) 000 0 0 A 0 0 A 1

P T8 A0 0 0 0 0 A 0 0 27

2 ) 0 A 0 A 0 0 0 o0 o 271

W25« -, U1 00 A 0 A 0 0 0 0 1

2 ( ) 0 0 0 A 0 A 0 0 O 1

W10, .-+, Wo 000 0 A 0 A 0 0 1

3 (w ws) A 0 0 0 0 0 0 A o 27!

3o 02 0 A 0 0 0 0 0 0 A 21

A 0 A 0 0 0 0 0 0o 271

3 (wiwo) A g A 0 A 0 0 oA 2!

4 ) A0 A 0 A 0 A 0 0 27

We, .-+, W3 0 A 0 A 0 A 0 A 0 1

4w o) 0 0 A A A 0 A 0 O 1

120000 00 0 0 A A 0 A A 1

5 ) 000 0 0 A A 0 0 1

W, - -+, W4 0000 0 0 A A 0 1

5 (w ) 00 0 0 0 0 0 A A 1

135000 012 00 000 A 0 0 A 1

6 ( ) A0 0 0 0 0 A 0 O 1

We, - - -, Ws 0 A 0 A 0 0 0 A A 271

A 0 A A A 0 0 0 A 273

6 (wawis) 0 A 5 A A A 0 0 0 2

7 ) 0 0 0 A A A A 0 0 1

W, .-+, We 00 0 0 A A A A 0 1

7 (w ws) 0 0 0 0 0 A A A A 1

15y eee 014 00 00 0 0 A A 0 1
00 00 0 0 0 0

leading to an attack complexity of 22°6 on the compression function. Calculations
for preimages on the full hash function (with correct padding bits) give a cost
of of 2262 compression function evaluations.

Collision Attack on Dynamic SHA2. To attack Dynamic SHA2-512 we use a
similar differential path. The changes are that the condition on the first block
is on 64 bits (starting from a chaining value with b = FFFFFFFFFFFFFFFF),
the fact that in the second iterative part the probability is 27° for each of the
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Table 7. Conditions on the message words wo, . . .
ential characteristic in Dynamic SHA2-512

,wis sufficient to follow our differ-

Word Condition

Wo -

w1 w=0wl= =P =0,wPP==wl"=0w’=1,wl =0

wa w%s = = w%g =0, w42 = wé” =0, wSO =0, wgl =1, wSQ V w33 =1

w3 w§4:~~ w3y =0, ws’ w§1:1 w Vws® =1

Wy wi=-=wi'=0,wi® = =wP=0,w?=-=wi =0,
wgofwg :0,w22\/w2371

ws w§:~-~:w§1:O,w =1, w61:1

W6 we = =wP =0, wd =0,wd =1

wr wd = =w? =0, w = =wP =0 w¥ =wl =1

ws difference in w$?, w? =1

wg w2 = = wd =0,wd = - =wil =0, wS® =1,wS' =0

w10 U)(ISOZ ~~—w10—0 w18: —w10—0 w42: —ww—O w10—0
wl =1

wi wi == wi =0, wit = =w =0, wif = wit =1, wit Vel =1

w12 wg: ~—w12—0 w36: —w12—0 w60—w12—0

wiz  wiS = -—wi%—O w$ =1,wfl =0

wia  difference in w83, wii = =wHE =0, Wi = = wl =0, W =0,wll =1

wis  why = =wit =0, w = - =wli=0,wd =wll=1

two transitions, the decrease in the probability only of the sixth COMP from
2733 to 27, and the different set of conditions on the message described in
Table [[ Hence, the total time complexity of this attack is 25°. We note that in
Y and wf! to i mod 4 (which causes the same
function to be used in this case as in the attack on Dynamic SHA2-256).

this approach the attack fixes w?
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