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Abstract. This paper describes new exponentiation algorithms with
applications to cryptography. The proposed algorithms can be seen as
m-ary generalizations of the so-called Montgomery ladder. Both left-to-
right and right-to-left versions are presented.

Similarly to Montgomery ladder, the proposed algorithms always re-
peat the same instructions in the same order, without inserting dummy
operations, and so offer a natural protection against certain implementa-
tion attacks. Moreover, as they are available in any radix m and in any
scan direction, the proposed algorithms offer improved performance and
greater flexibility.

Keywords: Exponentiation algorithms, Montgomery ladder, SPA-type
attacks, safe-error attacks.

1 Introduction

We consider the general problem of evaluating y = gd in a (multiplicatively
written) group G with identity element 1G, on input g ∈ G and d ∈ Z>0. The
m-ary expansion of d is given by d =

∑�−1
i=0 di mi with 0 � di < m and d�−1 �= 0.

Integer � = �(m) represents the number of digits (in radix m) for the m-ary
representation of d and is called the m-ary length of d.

1.1 Left-to-Right Algorithms

The most widely used exponentiation algorithm is the binary method (a.k.a.
“square-and-multiply” algorithm) [15, Section 4.6.3]. It relies on the simple
observation that gd =

(
gd/2

)2
if d is even, and gd =

(
g(d−1)/2

)2 · g if d is
odd.

The binary method extends easily to any radix m. Let Hi =
∑�−1

j=i dj mj−i.
Since Hi =

(∑�−1
j=i+1 dj mj−i

)
+ di = mHi+1 + di, we get

gHi =

{(
gHi+1

)m if di = 0 ,
(
gHi+1

)m · gdi otherwise .
(1)

Noting that gd = gH0 , the previous relation gives rise to an exponentiation
algorithm. It can be readily programmed by scanning the m-ary representation
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of d from left to right. As, at iteration i, for �− 2 � i � 0, the method requires
a multiplication by gdi when di �= 0, the values of gj with 1 � j � m − 1
are precomputed and stored in (m− 1) temporary variables; namely, R[j]← gj

for 1 � j � m − 1. If the successive values of gHi are kept track of in an
accumulator A, Equation (1) then translates into

A←
{

Am if di = 0
Am · R[di] otherwise

(for �− 2 � i � 0)

and where A is initialized to R[d�−1]. The corresponding algorithm is referred to
as the (left-to-right) m-ary algorithm.

1.2 Right-to-Left Algorithms

It is also possible to devise a similar algorithm based on a right-to-left scan of
exponent d. This may be convenient when the m-ary length of d is unknown
in advance. In the binary case (i.e., when m = 2), letting d =

∑�−1
i=0 di 2i the

binary expansion of d, the method makes use of the relation gd =
∏

0�i��−1
di �=0

g2i

.

An accumulator A is initialized to g and squared at each iteration, so that it
contains g2i

at iteration i. Another accumulator, say R[1], initialized to 1G, is
multiplied with A if di �= 0. Hence, we see that at iteration � − 1, accumulator
R[1] contains the value of

∏
0�i��−1

di �=0
g2i

= gd.

Although less known than its left-to-right counterpart, as shown by Yao [29],
this method can be extended to higher radices. The basic idea remains the same.
If d =

∑�−1
i=0 di mi denotes the m-ary expansion of d, we can write

gd =
∏

0�i��−1
di=1

gmi ·
∏

0�i��−1
di=2

g2·mi · · ·
∏

0�i��−1
di=m−1

g(m−1)·mi

=
m−1∏

j=1

(Lj)j where Lj =
∏

0�i��−1
di=j

gmi

. (2)

Hence, using (m−1) accumulators, R[1], . . . , R[m−1], to keep track of the values
of Lj, 1 � j � m− 1, and an accumulator A that stores the successive values of
gmi

, at iteration i, the accumulators are updated as
{

R[di]← R[di] · A if di �= 0
A← Am

(for 1 � i � �− 1)

where A is initialized to g and R[1], . . . , R[m−1] are initialized to 1G. Equation (2)
says that gd is then given by A← ∏m−1

j=1 R[j]j. The so-obtained algorithm, also
known as Yao’s algorithm, is referred to as the right-to-left m-ary algorithm.
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1.3 Implementation Attacks

If not properly implemented, exponentiation algorithms may be vulnerable to
side-channel attacks [16,17] (see also [6,19]). Another threat against implemen-
tations of exponentiation algorithms resides in fault attacks [5] (see also [2,11]).

Two implementation attacks, namely SPA-type attacks and safe-error attacks,
are particularly relevant in the context of exponentiation.

SPA-Type Attacks. By observing a suitable side channel, such as the power
consumption [16] or electromagnetic emanations [10,24], an attacker may re-
cover secret information. For exponentiation-based cryptosystems, the goal of
the attacker is to recover the value of exponent d (or a part thereof) used in
the computation of gd in some group G. SPA-type attacks1 assume that the at-
tacker infers secret information (typically one or several bits of d) from a single
execution of gd.

Consider for example the square-and-multiply algorithm (that is, the left-to-
right m-ary algorithm with m = 2).2

Algorithm 1. Square-and-Multiply Algorithm
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[1]← g; A← 1G1

for i = �− 1 down to 0 do2

A← A2
3

if (di �= 0) then A← A · R[1]4

end5

return A6

Each iteration comprises a ‘square’ and, when the bit exponent is non-zero, a
subsequent ‘multiply’. Since the algorithm behaves differently depending on the
bit values, this may be observed from a suitable side channel. The information
thus gleaned may enable the attacker to deduce one or more bits of exponent d.

One way of preventing an attacker from recovering the bit values is to execute
the same instructions regardless of the value of input bit di. Such an algorithm
is said to be regular. There are several implementations of this idea.

– The test of whether a digit is nonzero may be removed if Line 1 in Algo-
rithm 1 is replaced with A ← A · R[di] and where temporary variable R[0]
is initialized to 1G. Alternatively, a fake multiply may be performed when
di = 0, as suggested in [9]. Doing so, there will be no longer conditional
branchings: at each iteration, there is a square always followed by a multiply.

1 SPA stands for “Simple Power Analysis.”
2 We slightly differ from the presentation of Section 1.1 and initialize accumulator A

with 1G. This prevents the necessity of requiring d�−1 �= 0 and therefore � may denote
any upper bound on the binary length of d. If �′ � � is the exact binary length of d,
observe that accumulator A is correctly set in the for-loop to gd�′−1 , as required.
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This algorithm is known as the “square-and-multiply-always” algorithm.
However, as will be explained in a moment, the resulting implementation
now becomes vulnerable to safe-error attacks.

– Another possibility to get a regular exponentiation is to recode exponent d
in such a way that none of the digits are zero [21,23,27,28]. As exemplified
in [26], this however supposes that the recoding algorithm itself is resistant
to SPA-type attacks.

The above analysis is not restricted to the square-and-multiply algorithm and
generalizes to the m-ary exponentiation algorithms mentioned in Sections 1.1 and
1.2. While it may argued that, for larger m, m-ary exponentiation algorithms are
more regular and therefore more resistant to SPA-type attacks, these algorithms
are not entirely regular since two cases are to be distinguished: di = 0 and di �= 0.

Safe-Error Attacks. By timely inducing a fault during the execution of an
instruction, an attacker may deduce whether the targeted instruction is fake: if
the final result is correct then the instruction is indeed fake (or dummy); if not,
the instruction is effective. This knowledge may then be used to obtain one or
more bits of exponent d. Such attacks are referred to as safe-error attacks [30,31].

Back to the “square-and-multiply-always” algorithm, an attacker can induce a
fault during a multiply. If the final result is correct then the attacker may deduce
that the corresponding exponent bit is a zero (i.e., fake multiply); otherwise, the
attacker may deduce that the exponent bit is a one. Safe-error attacks apply
likewise to higher-radix similar m-ary methods to distinguish zero digits.

1.4 Our Contributions

Using the terminology of [12], we deal in this paper with highly regular
exponentiation algorithms, that is, exponentiation algorithms that

– are regular; i.e., always repeat the same instructions in the same order for
any inputs;

– do not insert dummy operations.

Highly regular exponentiation algorithms protect against SPA-type attacks and
safe-error attacks, at the same time [14]. Examples of such algorithms include
the so-called Montgomery ladder [22] and a recent powering ladder presented at
CHES 2007 [12, Algorithm 1′′]. These two algorithms are depicted below.

Algorithm 2. Montgomery Ladder
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[0]← 1G; R[1]← g1

for i = �− 1 down to 0 do2

R[1− di]← R[1− di] · R[di]3

R[di]← R[di]
2

4

end5

return R[0]6
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Algorithm 3. Joye’s Square-Multiply Ladder
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[0]← 1G; R[1]← g1

for i = 0 to �− 1 do2

R[1− di]← R[1− di]
2 · R[di]3

end4

return R[0]5

Montgomery ladder and Joye’s square-multiply ladder both rely on specific
properties of the binary representation. In particular, it is unclear how to gen-
eralize these two algorithms to higher radices.

In this paper, we present a new method to derive highly regular exponentia-
tion algorithms by considering a representation of d−1 rather than that of plain
exponent d. The proposed method is independent of the radix representation
and of the scan direction (left-to-right or right-to-left). Interestingly, when par-
ticularized to m = 2, the method yields algorithms dual to Algorithms 3 and 2;
i.e., similar algorithms but with the opposite scan direction.

Outline of the Paper. The rest of this paper is organized as follows. The
next section is the core of our paper. We describe our new exponentiation algo-
rithms. In Section 3, we present some applications thereof. Finally, we conclude
in Section 4.

2 New Exponentiation Algorithms

As aforementioned, the goal is to evaluate y = gd given an element g ∈ G

and an �-digit exponent d =
∑�−1

i=0 di mi. Our algorithms rely on the following
proposition.

Proposition 1. Let d =
∑�−1

i=0 di mi denote the m-ary expansion of d. Then

d = (d�−1 − 1)m�−1 +

(
�−2∑

i=0

(di + m− 1)mi

)

+ 1 .

Proof. Straightforward by noting that
∑�−2

i=0 (di + m − 1)mi =
∑�−2

i=0 di mi +
∑�−2

i=0(m− 1)mi = (d− d�−1 m�−1) + (m�−1 − 1). ��

2.1 General Case

Proposition 1 can be rewritten as

d− 1 =
�−1∑

i=0

d∗i mi where d∗i =

{
di + m− 1 for 0 � i � �− 2
d�−1 − 1 for i = �− 1

. (3)
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Left-to-Right Algorithm. If d > 0, it follows that d�−1 � 1 and so d∗�−1 �
0. Remember that the m-ary algorithm can accommodate a leading zero digit
(i.e., when d∗�−1 = 0); see Footnote 2. It is also important to note that all the
subsequent digits are nonzero (i.e., d∗i > 0 for i � �−2). We can therefore devise
a regular method to get the value of gd−1 for some d > 0. The value of y = gd

is then obtained as y = gd−1 · g.
The algorithm is an adaptation of the m-ary algorithm, as described in

Section 1.1. It makes use of an accumulator A, initialized to gd∗
�−1 . At each

iteration of the main loop, accumulator A is raised to the power of m and then
always multiplied by gd∗

i (remember that d∗i �= 0). Since d∗i ∈ {m−1, . . . , 2m−2},
the values of gm−1, . . . , g2m−2 are precomputed and stored in temporary vari-
ables R[1] . . . , R[m]. At the end of the main loop, the accumulator is multiplied
by g to get the correct result.

Precomputation & Initialization. Accumulator A has to be initialized to gd∗
�−1

with d∗�−1 = (d�−1 − 1) in {0, . . . , m − 2} and this must be done in a regular
manner. Moreover, since (i) the values of gm−1, . . . , g2m−2 have to be precom-
puted and stored in registers R[1], . . . , R[m − 1] before entering the main loop
and (ii) d�−1 ∈ {1, . . . , m− 1}, it is possible to

1. write gj−1 in R[j] for 1 � j � m,
2. assign A to the corresponding register so that it contains gd�−1−1 (i.e., A←

R[d�−1]), and
3. multiply registers R[1], . . . , R[m] by gm−1 so that they contain gm−1, . . . ,

g2m−2, respectively;

or algorithmically, we replace Lines 1 and 2 in Algorithm 4 with

� Precomputation & Initialization
R[1]← 1G; R[2]← g; for i = 3 to m do R[i]← R[i− 1] · R[2]1

A← R[d�−1]; for i = 1 to m do R[i]← R[i] · R[m]2

Doing so, the evaluation of gd�−1−1 is regular.

Algorithm 4. Regular Left-to-Right Exponentiation (General description)

Input: g ∈ G, d =
∑�−1

i=0 di mi (d > 0)
Output: gd

Uses: A and R[1], . . . , R[m]

� Precomputation & Initialization

for i = 1 to m do R[i]← gm+i−2
1

A← gd�−1−1
2

� Main loop

for i = �− 2 down to 0 do3

A← Am · R[1 + di]4

end5

� Final correction

A← A · g6

return A7
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Yet another way of obtaining a regular evaluation is to force the leading digit
to a predetermined value by adding to d a suitable multiple of the order of g prior
to the exponentiation. When applicable, this method should be preferred. Fur-
thermore, it nicely combines with the classical DPA countermeasure consisting
in adding to d a random multiple of the order of g [9].

Final correction. The final correction can be avoided by replacing d with d + 1
prior to the exponentiation, d ← d + 1. This may be useful when the memory
is scarce and that the value of g is not available in memory. Note also that this
step may be combined with the addition of a multiple of the order of g.

Right-to-Left Algorithm. We can likewise devise a right-to-left m-ary ex-
ponentiation algorithm. We follow the presentation of Section 1.2. From Equa-
tion (3), we have

gd−1 =
(
gm�−1)d∗

�−1 ·
m−1∏

j=1

(L∗
j )

m+j−2 where L∗
j =

∏

0�i��−2
d∗

i =j

gmi

. (4)

The algorithm makes use of m accumulators, R[1], . . . , R[m], to keep track of the
values of L∗

j , 1 � j � m, and an accumulator that keeps track of the successive
values of gmi

. Accumulators R[1], . . . , R[m] are initialized to 1G and accumulator
A is initialized to g. Again, it is to be noted that all digits d∗i are nonzero (i.e.,
d∗i ∈ {m−1, . . . , 2m−2} for 0 � i � �−2). As a consequence, at each iteration i,
an accumulator R[j] is updated (namely, R[d∗i ]← R[d∗i ] ·A) and accumulator A is
updated as A← Am. Hence, we see that the evaluation of L∗

j is regular. It then
remains to evaluate the above relation in a regular manner to obtain a regular
right-to-left m-ary exponentiation algorithm to get gd−1 and thus y = gd as
gd−1 · g.

Initialization. In certain groups, the neutral element 1G requires special treat-
ment (e.g., elliptic curves given by the Weierstraß form).3 In such groups, the
multiplication of two elements A and B is typically implemented by checking
whether A or B is 1G: if this is the case, then the other element is returned;
if not, the ‘regular’ multiplication, A · B, is evaluated and returned. As this
may be observed through SPA, this can leak the first occurrence of a digit in
{0, . . . , m−1} in the m-ary representation of d. One way to prevent this leakage
is to initialize R[1], . . . , R[m] to values different from 1G.
3 By special treatment, we mean that the group operation is not unified. The usual ad-

dition formulas obtained by the chord-and-tangent rule on Weierstraß elliptic curves
are not valid for 1G (i.e., the point at infinity). In contrast, in G = Z

∗
N , neutral

element 1G = 1 does not require a special treatment. Further, in this latter case, it
is easy to get SPA-resistance even if multiplication by 1 modulo N may be observed
through some side channel. For example, this can be achieved by working in Z

∗
2wN

and replacing 1 with an equivalent representation 1 + αN ; the correct result is then
obtained by reducing the final output modulo N .
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Algorithm 5. Regular Right-to-Left Exponentiation (General description)

Input: g ∈ G, d =
∑�−1

i=0 di mi (d > 0)
Output: gd

Uses: A and R[1], . . . , R[m]

� Initialization
for i = 1 to m do R[i]← 1G1

� Main loop

A← g2

for i = 0 to �− 2 do3

R[1 + di]← R[1 + di] · A4

A← Am
5

end6

� Aggregation

A← Ad�−1−1 ·∏m
i=1 R[i]m+i−2

7

� Final correction

A← A · g8

return A9

As an example R[1], . . . , R[m] are initialized to g. Since each R[i] will be raised
to the power of (m + i− 2) during the aggregation step, we subtract

∑m
i=1(m +

i− 2) = 3m(m−1)
2 from d prior to the exponentiation. In more detail, we replace

Line 1 in Algorithm 5 with

� Initialization
for i = 1 to m do R[i]← g1a

d← d− 3m(m− 1)/21b

In groups where inverses can be easily obtained (e.g., on elliptic curves), another
option is to keep the value of d unchanged but to correct the result at the end
of the computation. This can be for example achieved by replacing Line 8 in
Algorithm 5 with

� Final correction

A← A · g3m(m−1)/2+1
8

Alternatively, R[1], . . . , R[m] can be initialized to elements of small order in G.
Suppose that R[1], . . . , R[m] are all initialized to h with ordG(h) = t. Define
b = 3m(m − 1)/2 mod t. At the end of the computation, accumulator A then
contains a multiplicative surplus factor of hb. Hence, the correct result is obtained
by multiplying A by ht−b. For example, in RSA groups G = Z

∗
N , we can take

h = N − 1, which is of order t = 2.

Aggregation. If done naively, the aggregation step at Line 5 (i.e., the evaluation
of

∏m
i=1 R[i]m+i−2) can be somewhat expensive. We extend a technique described

in [15, p. 634] to suit our present needs. It requires an accumulator A initialized
to R[m]. If we set R[i] ← R[i] · R[i + 1] and A ← A · R[i] for i = m − 1, . . . , 1,
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we end up with R[1] ← ∏
1�i�m R[i] and A ← ∏m

i=1 R[i]i. Therefore, writing
∏m

i=1 R[i]m+i−2 as
∏m

i=1 R[i]i · (∏m
i=1 R[i])m−2, we can use the above technique

to get it as A ·R[1]m−2. In our case, accumulator A is initialized to Ad�−1−1 ·R[m]
to get the value of gd−1 as per Eq. (4).

� Aggregation

A← Ad�−1−1; A← A · R[m]7a

for i = m− 1 down to 1 do7b

R[i]← R[i] · R[i + 1]; A← A · R[i]7c

end7d

A← A · R[1]m−2
7e

The initialization of accumulator A (i.e., A← Ad�−1−1) must be performed in a
regular manner. An easy way to do so is to add to d a suitable multiple of the
order of g so as to force the leading digit of the resulting d to a predetermined
value. An alternative method is described in Appendix A.

Final correction. As for the left-to-right version, the final correction can be
avoided by replacing d with d + 1. Again, this step can be combined with other
steps, including the initialization step when neutral element needs a special treat-
ment or the initialization of accumulator A in the aggregation step to force the
leading digit.

2.2 Binary Case

The m-ary algorithms we developed are subject to numerous variants. We present
now algorithms tailored to the binary case.

In the binary case, we have m = 2 and thus, provided that d > 0, d�−1 = 1.
Equation (3) then simplifies to d− 1 =

∑�−2
i=0 d∗i 2i with d∗i = di + 1.

Left-to-Right Algorithm. We can use Algorithm 4 as is, where m is set to 2
and accumulator A is initialized to gd�−1−1 = 1G. Alternatively, assuming d > 1
(and thus � � 2), we can initialize the accumulator to gd∗

�−2 and start the loop
at index �− 3; this avoids dealing with neutral element 1G.

Algorithm 6. Regular Left-to-Right Binary Exponentiation
Input: g ∈ G, d =

∑�−1
i=0 di 2i (d > 1)

Output: gd

R[1]← g; R[2]← R[1]21

A← R[1 + d�−2]2

for i = �− 3 down to 0 do3

A← A2 · R[1 + di]4

end5

A← A · R[1]6

return A7



Highly Regular m-Ary Powering Ladders 359

Right-to-Left Algorithm. A direct application of Algorithm 5 with m = 2
yields a regular right-to-left algorithm. To prevent the final correction,4 assuming
d > 1, we can initialize accumulators R[1] to gd0 and R[2] to g. We then swap
the order of squaring and multiplication and start the loop at index 1.

Algorithm 7. Regular Right-to-Left Binary Exponentiation
Input: g ∈ G, d =

∑�−1
i=0 di 2i (d > 1)

Output: gd

R[1]← gd0 ; R[2]← g1

A← R[2]2

for i = 1 to �− 2 do3

A← A2
4

R[1 + di]← R[1 + di] · A5

end6

A← R[1] · R[2]27

return A8

Implementation notes. In some cases, exponent d is known to be odd (this is for
example the case in RSA [25]). If so, R[1] can be initialized to g. When the least
significant bit of d is arbitrary, R[1] and R[2] can be initialized as R[1] ← 1G;
R[2]← g; R[1]← R[1] · R[1 + d0]. Yet another strategy, provided that the order
of g is odd, is to add a suitable multiple thereof to force the parity of d.

Comparison. It is striking to see the resemblance between the so-obtained
algorithms (i.e., Algorithms 6 and 7) and Algorithms 3 and 2, respectively. For
Algorithm 7 and Montgomery ladder, this is even more apparent from the general
description (i.e., when the multiply is performed prior the squaring). Actually,
our algorithms when m = 2 may be considered as dual of Algorithms 3 and 2
in the sense that they execute similar instructions but scan the exponent in the
opposite direction.

3 Further Results

The proposed exponentiation algorithms apply to any group G. In this section,
we exploit some of their features to get faster yet secure implementations in
certain groups. Our focus will be on the group of points of an elliptic curve over
a large prime field. We note however that similar speed-ups may be available in
other groups.

Composite Group Operations. Elliptic curves over prime field Fp are usually
implemented using Jacobian coordinates. A point P on elliptic curve E given by

E/Fp
: Y 2 = X3 + a4XZ4 + a6Z

6

4 Note that, contrarily to the left-to-right version, the value of g is not readily available
from R[1].
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is then represented as a triple (X1 : Y1 : Z1). Such a representation is not unique:
(X2 : Y2 : Z2) ∼ (X1 : Y1 : Z1) if X2 = λ2X1, Y2 = λ3Y1 and Z2 = λZ1 for
some nonzero λ ∈ Fp. We refer the reader to [3,4] for state-of-the-art formulas
for point addition and point doubling in Jacobian coordinates.

In [20], Meloni developed new point addition formulas for points with the
same Z-coordinate. This technique was successfully applied in [18] to derive ef-
ficient composite point addition formulas of the form kP + Q for some k � 2.
The key observation is that the intermediate calculations in the computation
of P + Q = (X3 : Y3 : Z3) with Z3 = αZ1 involve quantities α2X1 and α3Y1.
Initial point P can then be viewed as (α2X1 : α3Y1 : Z3) and the evaluation
of 2P + Q can be done as (P + Q) + P where P and P + Q have the same
Z-coordinate. This technique can be used recursively to obtain the value of
kP + Q.

As the main loop of our regular left-to-right exponentiation algorithm (Algo-
rithm 4) consists of evaluating such a composite operation (i.e., mA + R[1 + di]
in additive notation), it can benefit from these improved formulas for faster
computation of a point multiple on E.

Repeated Powerings. Building on [7], Cohen et al. [8] suggested considering
mixed coordinate systems for representing points. An interesting case for point
doubling is when curve parameter a4 is equal to −3 as it saves some multiplica-
tions (in Fp). Similar performance for an arbitrary parameter a4 can be achieved
by representing points in modified Jacobian coordinates, namely tuples of the
form (X1 : Y1 : Z1 : W1) where W1 = a4Z1

4.
For efficiency purposes, m is usually chosen as a power of 2, say m = 2k, in

m-ary exponentiation algorithms. Raising to the power of m (resp. multiplying
by scalar m, in additive notation) then amounts to computing k squarings (resp.
k doublings). As in [13], our right-to-left m-ary algorithm (Algorithm 5) repeat-
edly updates accumulator A as A ← Am (resp. A ← mA). The key observation
here is that accumulator A is only modified in this step during the main loop
(i.e., Line 5 in Algorithm 5).

As a consequence, back to elliptic curves, dP can be evaluated using mixed
coordinate systems: R[1], . . . , R[m] are tuples (X : Y : Z) representing points in
Jacobian coordinates and A is a tuple (X : Y : Z : W ) representing a point in
modified Jacobian coordinates. Line 5 (i.e., R[1+di]← R[1+di]+A using additive
notation) only use the three first coordinates of A to evaluate a regular Jacobian
point addition whereas Line 5 (i.e., A ← 2kA in additive notation) updates
accumulator A as a series of k doublings in modified Jacobian coordinates. This
allows one to have a fast point doubling without increasing the cost of a point
addition, regardless of the value of a4. More precisely, the evaluation of dP can
be implemented using the fastest formulas [3] for both point doubling (i.e., the
same speed as when a4 = −3 even if a4 �= −3) and point addition.

Other improvements using different mixed coordinate systems for right-to-left
algorithms can be found in [1].
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4 Conclusion

In this paper, we developed new m-ary exponentiation algorithms. Remarkably,
the proposed algorithms are highly regular: they always repeat the same (effec-
tive) instructions in the same order. This feature is useful in the implementation
of exponentiation-based cryptosystems protected against SPA-type attacks and
safe-error attacks. Contrary to previous regular exponentiation algorithms, our
algorithms are not restricted to radix 2 but are available in any radix m. They
can also accommodate a left-to-right or a right-to-left exponent scanning. Both
scan directions have their own advantages. Furthermore, being generic, we note
that the proposed algorithms can easily be combined with other known counter-
measures to protect against other classes of attacks, including DPA-type attacks
and fault attacks.

Acknowledgments. I am grateful to the anonymous referees for useful
comments.
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In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

11. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Quisquater, J.-J., et al.
(eds.) Smart Card Research and Advanced Applications VI (CARDIS 2004), pp.
159–176. Kluwer, Dordrecht (2004)

http://www.hyperelliptic.org/EFD/jacobian.html


362 M. Joye

12. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007)

13. Joye, M.: Fast point multiplication on elliptic curves without precomputation. In:
von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130,
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Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

15. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1981)

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

18. Longa, P., Miri, A.: New composite operations and precomputation scheme for
elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

20. Meloni, N.: New point addition formulæ for ECC applications. In: Carlet, C., Sunar,
B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)
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A Regular Aggregation

In the general description of the regular right-to-left exponentiation algorithm
(i.e., Algorithm 5), the aggregation step consists in evaluating the product
Ad�−1−1 · ∏m

i=1 R[i]m+i−2. When multiplication by 1G can be distinguished
through SPA, the initialization of A ← Ad�−1−1 is not sufficient to prevent the
leakage of d�−1. We present here an alternative method for evaluating Ad�−1−1 ·∏m

i=1 R[i]m+i−2 in such a case. For concreteness, we detail it for the ternary case
(i.e., m = 3) but it can easily be extented to other radices. The case m = 2 is
treated in § 2.2.

For m = 3, the aggregation step becomes Ad�−1−1 ·∏m
i=1 R[i]m+i−2 with d�−1 ∈

{1, 2}. To ease the presentation, we let R[0] denote the accumulator. So, we need
to evaluate

{
R[0]← R[1]2 · R[2]3 · R[3]4 if d�−1 = 1
R[0]← R[0] · R[1]2 · R[2]3 · R[3]4 if d�−1 = 2

.

The idea is to rewrite the product so that the different cases appear as a same
series of squarings and multiplications. For example, we can write

{
B← R[1]2 and R[0]← (B · R[2]) · (R[3] · R[2] · R[3])2

B← R[3]2 and R[0]← (R[0] · R[2]) · (R[1] · R[2] · B)2

respectively. Moreover, in order not to introduce an additional temporary vari-
able (B in the above description), we make use of R[1] and R[3], respectively. We
have:

d← d�−1 − 1
R[1 + 2d]← R[1 + 2d]2

R[0]← R[2] · R[1− d]
R[2]← R[2] · R[3− 2d]; R[2]← R[2] · R[3]; R[2]← R[2]2

R[0]← R[0] · R[2]

There are many possible variants of this methodology; the proposed implemen-
tation can be modified to better suit a given architecture.
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