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Abstract. A practical algorithm that recovers AES key schedules from
decayed memory images is presented. Halderman et al. [1] established
this recovery capability, dubbed the cold-boot attack, as a serious vulner-
ability for several widespread software-based encryption packages. Our
algorithm recovers AES-128 key schedules tens of millions of times faster
than the original proof-of-concept release. In practice, it enables reliable
recovery of key schedules at 70% decay, well over twice the decay capacity
of previous methods. The algorithm is generalized to AES-256 and is em-
pirically shown to recover 256-bit key schedules that have suffered 65%
decay. When solutions are unique, the algorithm efficiently validates this
property and outputs the solution for memory images decayed up to 60%.

Keywords: anti-tamper, digital forensics, decayed memory, cold-boot
attack, AES, key schedule.

1 Introduction

Cold-boot attacks are another troubling example of the increasingly sophisti-
cated threats to security and privacy. In response to these threats we investigate
defensive anti-tamper techniques in the hopes of better understanding the po-
tential of specific attack vectors. In this paper we report on our investigation
of cold boot attacks and demonstrate that the problem is more serious than
previously thought. We present AES key recovery techniques that handle over
twice the decay rate of prior methods at comparable computational effort.

The cold-boot attack [1] is a serious vulnerability for software-based encryp-
tion packages—including BitLocker, FileVault and the open-source project
TrueCrypt—where one can recover secret keys from decayed memory images.
Decryption with decayed AES keys does not produce original plaintexts. How-
ever, the redundancy of key material inherent in the AES key schedule can rectify
these faults. When combined with asymmetric decay, where bits overwhelmingly
decay to their ground state rather than their charged state, this redundancy en-
ables reconstruction of the original key. Heninger and Halderman have developed
a recovery algorithm for AES-128 that recovers keys from 30% decayed data in
less than 20 minutes about half the time.
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Our algorithm recovers keys up to several orders of magnitude faster than
Heninger and Halderman’s method. One case that took their algorithm more
than 10 days to solve was solved by our improved method in 0.047 seconds.
The speed increase enables key recovery from more severely degraded memory
images. In an experimental evaluation, our algorithm recovered all keys from a
5,000 case test suite at 70% decay, with 4,927 instances recovered in less than
20 minutes—more than twice decay rate with almost double the success rate
in 20 minutes. The speed increase also makes it feasible to enumerate all keys
from which an image could have decayed, rather than halt on the first key that
satisfies the decay and schedule constraints. In particular, the algorithm can
determine that a solution is unique. Benchmarks demonstrate feasibility up to
60% decay where there is approximately a 2.5× slowdown compared with the
halt-on-first-key search. The algorithm generalizes to 256-bit AES with only a
moderate drop in the recovery capability. Empirically, the benchmarks show that
AES-256 recovery begins to degrade around 65%; there are no other performance
claims in the open literature about AES-256 recovery.

The AES key-schedule is the primary source of key redundancy. For the 128-bit
version, the original key is bijectively mapped to 10 additional round-keys [2,3].
The mappings form a system of byte-level equations that constrain the space of
likely key candidates.

The asymmetric decay property of DRAM provides a second set of constraints.
When the refresh cycle of DRAM is interrupted, the data overwhelmingly decays
to 0 (or 1 assuming the complementary encoding for the ground state) because
the capacitance is lost over time. Occasionally bits invert to the charged state,
although Halderman et al. bound these effects at 0.1%. The asymmetric decay
property suggests a compatibility criterion for key candidates: if a candidate
schedule subset differs from the decayed memory image only by inversions from
the ground state, then it is compatible with the decayed memory image. The
performance claims for our algorithm, and indeed those in [1] and [4], are based
on the perfect asymmetry assumption, where no bit in the ground state ever
inverts. The algorithm has also been adapted to accommodate inversions to the
charged state by generalizing the compatibility criterion to allow a bounded
number of such cases. No other logic changes are necessary.

Key reconstruction is possible because key candidates must satisfy both the
asymmetric decay property and the system of equations defined by the AES
key schedule. Our algorithm explores a tree of one-byte guesses. At each stage,
or tree-depth, the new byte candidate and all bytes implied by the schedule
equations are checked against the decayed image. The algorithm guesses bytes
in an order such that guess n implies values for n schedule bytes for n < 11 in
the 128-bit version; guesses 11-14 imply an additional 10 bytes each and the last
guess implies the schedule’s remaining 65 bytes.

Byte guessing proceeds in a depth-first manner. Each stage has 256 possi-
bilities, but the schedule and decay-compatibility constraints quickly prune the
possibilities, particularly in the later stages where a single byte guess implies
several byte values. The selection and order of byte guessing is not unique.
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Section 3.4 describes a path selection heuristic for byte guesses which improves
recovery times by a factor of several hundred for decay rates over 50%, when
compared with the static path implementation.

We make the following contributions: 1) our recovery algorithm is several
orders of magnitude faster than the best previously published method, 2) the
new method enables key recovery from images with significantly more decay, 3)
it enumerates all solutions to a decay image and 4) we generalize the method to
AES-256 with little loss of decay performance.
Organization: Section 2 reviews related works. Section 3 describes the algo-
rithm in detail, including a heuristic to optimize the exploration path. Section 4
presents benchmarks for the algorithm with and without the path optimiza-
tion heuristic. Benchmarks for the unique determination capability and AES-256
key recovery are also presented. Section 5 makes some observations about the
benchmark results. Section 6 concludes the paper.

2 Related Work

Halderman et al. [1] established the cold-boot attack as a low-cost way to ex-
tract private key information from computers running software encryption. In
particular, they extracted private keys for full-disk encryption packages such
as BitLocker, FileVault, and the cross-platform open-source project TrueCrypt.
Heninger and Halderman released proof-of-concept implementation that recov-
ers 128-bit AES key-schedules.1 It implements the algorithm from [1] which they
have found to recover keys from 30% decayed memory within 20 minutes about
half the time. Their archives also contain a recovery algorithm for the RSA
cryptosystem.

Heninger and Shacham [4] vastly improved the ability to recover RSA private
keys from decayed memory images. They improve recovery from 6% decay (run-
ning on the order of minutes) to 46% decay (running on the order of seconds)
when p, q, d, dp, and dq are in the image. The paper further casts their recovery
algorithm in terms of known bits, so that the bits may be randomly selected
rather than simply the result of an asymmetric memory decay. We note that
a perfect memory image maps to 50% known bits under the asymmetric decay
assumption, since valid ground-state values theoretically could have decayed.

Nearly a decade before the cold boot attack was demonstrated, Handschuh,
Paillier, and Stern modeled probing attacks [5] on the square-and-multiply
algorithm for modular exponentiation, DES, and RC5. They reconstruct cryp-
tographic secrets by tracing a few critical bits over the target operation’s exe-
cution. Since cold-boot attacks capture a snapshot of the execution state, these
techniques only apply if a trace has been preserved in memory.

Akavia, Goldwasser, and Vaikuntanathan [6] present a model of cold-boot
memory attacks in terms of experiments with probabilistic polynomial time play-
ers. The recovery player chooses a sequence of probing functions that map private

1 http://citp.princeton.edu/memory/code/

http://citp.princeton.edu/memory/code/
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keys to bit vectors; this models key material leakage. They define adaptive and
non-adaptive variants which may or may not alter the choice of probing function
in response to the results of previous probes. They further show that the Regev
public key cryptosystem [7] is secure under both definitions, but with different
leak parameters.

Naor and Segev [8] revisit the above formalism for memory attacks and develop
a schema for constructing public key cryptosystems that are resilient against key
leakage. The schema relies on the assumptions of a universal hash proof system [9]
enabling decisional Diffie-Hellman, quadratic residuosity, and Paillier’s compos-
ite residuosity problem to instantiate the cryptosystem. Alwen, Dodis, and Wichs
also examine leakage resilient public key cryptosystems, including identification
schemes and authenticated key agreement protocols [10]. They extend their re-
sults to the bounded retrieval model, where they consider extremely large keys
and an adversary can not learn more than a predetermined bound over a lifetime.
Katz further constructs a leakage resistant signature scheme in the standard
model [11].

Chari et al. propose the first theoretical model for power analysis [12]. Coron,
Naccache, and Kocher develop a similar formalism for characterizing leakage
immunity, and present several leakage detection tests [13]. Micali and Reyzin
propose a general framework for security against side-channel analysis [14]. These
models do not account for memory remanence or cold-boot attacks.

Countermeasures to cold-boot attacks remain scarce within the current tech-
nology paradigms. Migrating to hardware embedded encryption, such as that
proposed by the Trusted Computing Group’s Opal platform [15], will mitigate
cold-boot attacks on full-disk encryption. Enck et al. [16] propose an encrypt-
ing memory controller that writes only encrypted data to main memory, but
decrypts it on reads into the processor or cache. There have also been attempts
to manipulate the Intel x86 cache-coherence model to ensure that keys and
key-derived state (such as key schedules) remain in L2 caches, but not in main
memory.2 The feasibility of this approach has yet to be demonstrated with the
current architectures, however vendor modification of the instruction set may
indeed make this approach a reality.

Intel has developed specialized instructions for executing AES operations [17].
There are six kinds instructions (encrypt round, encrypt last round, decrypt
round, decrypt last round, inverse mix columns, and key schedule assist) which
use the 128-bit XMM registers to hold round keys and block data. In addition to
improving execution speed, these instructions have been designed to eliminate
vulnerabilities from cache attacks [18], an interprocess side-channel that exploits
timing differences for operations dependent upon cached and uncached data. In-
tel does not claim that these instructions mitigate cold-boot attacks, however we
speculate that the schedule derivation assistance may improve the performance
of just-in-time round-key derivation, thereby reducing the number of round keys
stored in memory.

2 Jürgen Pabel. http://frozencache.blogspot.com/

http://frozencache.blogspot.com/
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3 Algorithmic Description

This primary exposition details the recovery algorithm for AES-128, although the
concepts generalize to the 192-bit and 256-bit cases (Section 3.5). Their differing
block and key sizes create more potential for confusion when referencing schedule
elements. We have implemented the 128-bit and 256-bit cases; Section 4 presents
performance results for both cases.

3.1 Preliminaries

A 128-bit AES key schedule expands a four by 32-bit-word key into a 44 word
sequence. Schedule components are addressed with the following notation: Let
sans-serif variables, S, refer to entire key schedule. Subscripting expresses a hi-
erarchical view of schedule components. Let Sr refer to the four words of round
r. Let Sr,w refer to word w of round r. Let Sr,w,b refer to byte b of word w
of round r. It is also convenient to index the schedule in a flat manner. Let
Sw

i refer to word i of the schedule. Let Sb
i refer to byte i of the schedule.

The notation follows the least-significant-byte-first convention. Some additional
function notation is necessary to express the key schedule. Let sbox(Sb

i) ap-
ply the AES substitution box to the byte Sb

i. For convenience, let sbox(Sw
i)

apply the substitution box to each constituent byte when Sw
i is a word. Let

rot(Sw
i) rotate the word Sw

i by eight bit positions of increasing significance;
e.g. rot(Sr,w,0, Sr,w,1, Sr,w,2, Sr,w,3) = (Sr,w,3, Sr,w,0, Sr,w,1, Sr,w,2), in the least-
significant-byte-first representation. The round constants, denoted by rcon[i],
are the (i − 1)th exponent of 2 in the field GF (28) for the least significant byte
and 0 for the other bytes.

For the 128-bit schedule, the first four words are the key itself. The subsequent
words are prescribed by two equation schema.

Sw
i=Sw

i−1⊕sbox(rot(Sw
i−3)) ⊕ rcon[i/4], when i mod 4 = 0

Sw
i=Sw

i−1⊕Sw
i−3, when i mod 4 �= 0 (1)

The table below illustrates the indexing schema for the 128-bit key schedule.
The column headings indicate the byte and word indices. Row labels indicate
the round. This particular table shows how the flat byte-level references relate
to the hierarchical tags. For instance, S8,2,3 refers to the same byte as Sb

139.

w 0 1 2 3

r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 Sb
0 Sb

1 Sb
2 Sb

3 Sb
4 Sb

5 Sb
6 Sb

7 Sb
8 Sb

9 Sb
10 Sb

11 Sb
12 Sb

13 Sb
14 Sb

15

1 Sb
16 Sb

17 Sb
18 Sb

19 Sb
20 Sb

21 Sb
22 Sb

23 Sb
24 Sb

25 Sb
26 Sb

27 Sb
28 Sb

29 Sb
30 Sb

31

2 Sb
32 Sb

33 Sb
34 Sb

35 Sb
36 Sb

37 Sb
38 Sb

39 Sb
40 Sb

41 Sb
42 Sb

43 Sb
44 Sb

45 Sb
46 Sb

47

3 Sb
48 Sb

49 Sb
50 Sb

51 Sb
52 Sb

53 Sb
54 Sb

55 Sb
56 Sb

57 Sb
58 Sb

59 Sb
60 Sb

61 Sb
62 Sb

63

4 Sb
64 Sb

65 Sb
66 Sb

67 Sb
68 Sb

69 Sb
70 Sb

71 Sb
72 Sb

73 Sb
74 Sb

75 Sb
76 Sb

77 Sb
78 Sb

79

5 Sb
80 Sb

81 Sb
82 Sb

83 Sb
84 Sb

85 Sb
86 Sb

87 Sb
88 Sb

89 Sb
90 Sb

91 Sb
92 Sb

93 Sb
94 Sb

95

6 Sb
96 Sb

97 Sb
98 Sb

99 Sb
100Sb

101Sb
102Sb

103 Sb
104Sb

105Sb
106Sb

107 Sb
108Sb

109Sb
110Sb

111

7 Sb
112Sb

113Sb
114Sb

115 Sb
116Sb

117Sb
118Sb

119 Sb
120Sb

121Sb
122Sb

123 Sb
124Sb

125Sb
126Sb

127

8 Sb
128Sb

129Sb
130Sb

131 Sb
132Sb

133Sb
134Sb

135 Sb
136Sb

137Sb
138Sb

139 Sb
140Sb

141Sb
142Sb

143

9 Sb
144Sb

145Sb
146Sb

147 Sb
148Sb

149Sb
150Sb

151 Sb
152Sb

153Sb
154Sb

155 Sb
156Sb

157Sb
158Sb

159

10 Sb
160Sb

161Sb
162Sb

163 Sb
164Sb

165Sb
166Sb

167 Sb
168Sb

169Sb
170Sb

171 Sb
172Sb

173Sb
174Sb

175
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A candidate key schedule byte, Cb
i, with ground states specified by Mb

i is com-
patible with the decayed byte, Db

i, when Db
i preserves all ground-state bits in

Cb
i, or expressed equationally, when (Cb

i ⊕ Db
i) ∧ (Cb

i ⊕ Mb
i) = 0.

3.2 Maximizing the Implied Schedule Bytes

For the first guess, the candidate byte, Cb
i0 , is only constrained by the known

bits in corresponding decayed byte, Db
i0 . Yet in the second stage, for a properly

chosen i1, Cb
i1 is constrained by Db

i1 and a second byte Db
j . A properly selected

i1 will instantiate a byte slice of one of the two schedule generating equations, (1).
For example Cb

4 ⊕ Cb
16 = Cb

20 is the first byte-slice of the generating equation
for Cw

5 = (Cb
20, C

b
21, C

b
22, C

b
23). If i0 = 4 and i1 = 20, then the implied byte is

at index j = 16 and equals Cb
20 ⊕ Cb

4. Thus Db
16 constrains the implied value

of Cb
20 ⊕ Cb

4.
This algorithm makes use of the following observations: 1) Each schedule byte

Sb
i, 16 ≤ i < 160 is involved in three equations. 2) There are 256 solutions to

each equation when any one variable is fixed. There is a unique solution to each
equation when any two variables are fixed. 3) Guessing a single byte at stage n
implies up to n other byte values for properly structured guessing orders.

Item 1 follows from the fact that every word is generated by its preceding
word and the one 4 words ago; simply limit the scope to the byte-slice of the
concerned byte. For example, consider S1,0,0=Sb

16, the first byte of Sw
4.

S0,0,0 ⊕ sbox(S0,3,1) ⊕ 0x01 = S1,0,0

S0,1,0 ⊕ S1,0,0 = S1,1,0

S1,0,0 ⊕ sbox(S1,3,1) ⊕ 0x02 = S2,0,0

(2)

Item 2 is implied by the fact that ⊕ is the field addition operation for GF (28)
and that sbox() is a bijection in GF (28).

To see item 3, consider the following candidate exploration order, C, for a
decayed schedule D. First choose a candidate for C0,0,0; it is only constrained
by the known bits at that position. The next guess, C1,0,0, is constrained by
the known bits from D1,0,0. Additionally, one can solve the equation C0,0,0 ⊕

Table 1. An order for byte-guesses and consequent values in AES-128; the end of
Section 3.2 describes the scripting notation

w 0 1 2 3

r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 00 1410 1310 1210 11 149
1 10 139 129 22 148 21 138
2 20 128 33 147 32 137 31 127
3 30 44 146 43 136 42 126 41 55 145
4 40 54 135 53 125 52 66 144 51 65 134
5 50 64 124 63 77 143 62 76 133 61 75 123
6 60 74 88 142 73 87 132 72 86 122 141 71 85 99
7 70 84 98 131 83 97 121 140 82 96 1010 130 81 95 109
8 80 94 108 120 1510 93 107 1110 159 92 106 119 158 91 105 118
9 90 104 117 157 103 116 156 102 115 155 101 114 154
100 100 113 153 112 152 111 151 110 150
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sbox(C0,3,1) = C1,0,0 for C0,3,1, since C0,0,0 and C1,0,0 have candidate values.
Thus the second guess is constrained by the known values at D0,3,1 as well. By
the same logic, D2,0,0, D1,3,1, and D1,2,1 constrain the compatible guesses for
C2,0,0. Because Cr−1,3 rotates when computing Cr,0, continuing to propose bytes
in the column Cr,0,0 causes the implied byte indices increment modulo 4 when
the word index wraps around modulo 4.

Table 1 illustrates this behavior by enumerating the order of byte guesses
and their consequent bytes. In the table entries, the full-sized number indicates
the guessing stage and the subscript indicates the sequence of implied bytes. In
particular, i0 indicates a guess for stage i and i1 is the first implied byte from
this candidate. For example, C5,0,0 is guess number 5. This value combined with
the value for C4,0,0 (chosen in step 4), allows one to solve for C4,3,1. The following
equations make the order of solution explicit.

C4,3,1=sbox−1(C5,0,0 ⊕ C4,0,0 ⊕ 01)
C4,2,1=C4,3,1 ⊕ C3,3,1

C4,1,1=C4,2,1 ⊕ C3,2,1

C4,0,1=C4,1,1 ⊕ C3,1,1

C3,3,2=sbox−1(C4,0,1 ⊕ C3,0,1 ⊕ 01)

(3)

After selecting candidates for bytes 0-10, there are a number of ways to guess
bytes 11-15. Table 1 illustrates a choice for these positions that implies values
for an additional 10 bytes for each guess. The last guess implies 65 bytes because
it causes round 8 to be fully specified; the entire schedule may be derived from
any complete round.

3.3 The Recovery Algorithm

The algorithm, recoverKeyRec, explores the candidate space one byte at a time.
It exploits the constraints on guesses and their consequent bytes to prune its ex-
ploration tree. For each guess, recoverKeyRec considers all 256 possible values.
If the candidate satisfies all constraints imposed by the decayed image, D, then
it guesses a value for the next step. Exploration proceeds in a depth-first man-
ner, so that guess i is incremented to the next compatible candidate when all of
descendant candidates have been ruled out.

A breadth-first search is also possible, however this strategy greatly increases
the memory utilization. The advantage of the breadth-first method is that one
could track the distance from decayed data for each candidate and explore the
closest options first. The first implementations of this algorithm maintained the
candidates on a binary heap indexed by their cost. In practice, there were many
cases in the 60-70% decay range, where the process exceeded its 31-bit address
space and halted before recovering the key. On the other hand, recovery speeds
of depth-first search up to the 70% rate have proven fast enough in most cases
and solvable in all attempted cases. The need to solve more cases with less
memory dictated a transfer to depth-first search which consumes a fixed amount
of memory, about 4.2 MB in the experimental implementation. Because depth-
first search has a small memory footprint, it is also inexpensive to halt tree
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recoverKeyRec(CandidateMatrix c, DecaySchedule d):

if (c.length()==16):

return c.key()

for i=0 to 255:

if(d.isCompatible(c.guess(i))):

key = recoverKeyRec(c.guess(i),d)

if (key != NULL)

return key

return NULL

Fig. 1. Recursive expression of key recovery; Appendix A details the core methods

exploration and resume later. The only data necessary to save is the candidate
being examined at the halting time. Breadth-first search would require one to
save the binary heap of candidates.

The following describes the semantics for tokens in recoverKeyRec (Figure 1).
For simplicity of expression assume that operations do not mutate objects, but
return newly constructed objects. Italicized tokens refer to classes and teletype
tokens refer to fields and methods.

Let c be a CandidateMatrix that contains candidates for schedule bytes in the
order indicated by Table 1. CandidateMatrix maintains a count of how many
guesses have been made (0-16) and a flat schedule representation of 176 bytes
to store byte candidates and their consequent bytes. The method guess(Byte
b), returns a new CandidateMatrix whose array has been updated to contain
b at position count0 and its consequent bytes at positions as specified by the
path matrix (e.g., Table 1). In particular, guessing the 16th byte completes the
entire schedule. The key() method returns the key once all 16 bytes have been
guessed and validated. The new CandidateMatrix() constructor simply creates
an empty array with count set to 0.

Let DecaySchedule contain the decayed key schedule and a predicate, is-
Compatible(CandidateMatrix ), that indicates whether or not a guess and its
consequent bytes are compatible the decayed schedule. Compatibility is deter-
mined by checking that the CandidateMatrix contains all the known bits from
the corresponding bytes of the decayed schedule.

The function recoverKeyRec(CandidateMatrix,DecaySchedule) returns a key
whose schedule is decay-compatible and is the result of extending the incom-
ing CandidateMatrix. It returns NULL when there is no compatible key sched-
ule extension to the specified candidate prefix. Proper usage asserts that the
starting CandidateMatrix and DecaySchedule are compatible. The initial call
to recoverKeyRec begins with an empty CandidateMatrix. The recursive ex-
pression in Figure 1 makes the control logic explicit. Figure 1 halts on the first
compatible key schedule, however one could modify it to halt after a full search
of the key space; simply replace the return with a print on the third line.
Section 4 benchmarks both variants.
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3.4 Path Prioritization

The exploration path illustrated by Table 1 maximizes the number of implied
schedule bytes with the goal of minimizing the number of compatible candidates
at each stage. There are many ways to grow the selection path, and Table 1
illustrates just one of them. For instance, there are 3 symmetric alternatives
obtained by rotating the bytes of each word. Different paths will encounter dif-
ferent constraints and therefore will result in varying recovery times. Within the
stages 0-10, the selection order of Sx,0,0 may be altered and still obtain the same
consequent bytes after 10 candidate stages. Growing the path with guesses adja-
cent to the body of previous guesses will preserve the set of inferred bytes; this
claim has been verified experimentally. The following matrix shows that guesses
may be grown from the middle of the schedule:

The exploration path in Table 2 starts at S5,0,0. To maintain adjacency, the
next choice may be S4,0,0 or S6,0,0. The path grows by extending either the top or
bottom of previous choices in Sx,0,0, where 0 ≤ x < 11. This allows the number
of inferred bytes to grow by one at each stage.

A first heuristic for choosing the best path might be to count up the known
bits in the exploration path and its consequent bytes. However within a set of
guesses and implied bytes, the selection order can also make a difference. Past
a certain threshold, adding more constraints does not prune the exploration
anymore because the byte is already uniquely determined (or its parent has
been ruled out). Consider the case when the decayed data in the candidate
position is 0xFF. If the last guess corresponds to this position, then all of the
consequent bytes are wasted constraints because the byte is uniquely determined.
On the other hand, that byte position would make an excellent initial position
for stage 0 because the first guess never produces any consequent bytes. The
final algorithm’s path comparison heuristic estimates the number of branches at
each stage. At a stage, the estimate simply counts the number of known bits in
the initial and consequent positions. The intuition is that each known bit will
reduce the number of valid branches by a factor of 2. Thus, the branch estimate
for a stage i is 2min(8,ki) where ki is the number of known bits in the ith stage’s
initial and consequent byte positions. This is clearly only an estimate, as some

Table 2. An exploration path starting in round 5; script notation parallels the example
at the end of Section 3.2

w 0 1 2 3

r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 100 101
1 70 102 71
2 60 103 72 61
3 30 104 73 62 31 105
4 20 74 63 32 106 21 75
5 00 64 33 107 22 76 11 65
6 10 44 108 43 77 42 66 41 55 109
7 40 54 88 53 87 52 86 1010 51 85 99
8 50 84 98 83 97 82 96 81 95
9 80 94 93 92 91
10 90
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Table 3. AES-256 exploration path template; script notation parallels the example at
the end of Section 3.2

0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

00157 237317 147227 307 137217 297 127207287 106186266 96176256 86166 24631611156236
10146 226306 136216 296 126206 286 105185265 95 175255 8516524531522155 23530521145225
20135 215295 125205 285 104184 264 94 174254 84 164244 3143315423430432144 22429431134214
30124 204284 103183 263 93 173 253 83 163243 313 44 153233 3034314322329342133 21328341123203
40102 182262 92 172 252 82 162 242312 55 152232 302 54 142222 2925313221228252122 20226151101181
50 91 171251 81 161 241311 66 151 231301 65 141221 291 64 131211 2816312120126062100 18025061 90 170
60 80 160240310 77 150 230300 76 140 220290 75 130210 280 74 120200 2767311619627572115 19527471114194
70113 193273 112192 272 111191 271 110190270

bits may constrain portions of the guess that have already been determined. The
total branching estimate is the product of the stage estimates. Since the stage
estimates are all powers of two, it suffices to sum their exponents. Thus, the
heuristic ranks paths by the scalar value

∑15
i=0 min(8, ki).

The algorithm considers variants of Table 1 along two axes. One axis is byte
slice selection; Table 1 initiates on slice 0, although three other may be obtained
by rotating all schedule words by the same amount. The other axis is byte
guessing order within stages 0-10 as described above; choose a initial round and
then extend the guesses by adding to the adjacent round on the top or the
bottom. There are other paths not reached by these variables; e.g., growth may
be rooted in words 1-3 of the round key rather than 0. Performance may well
improve by selecting these paths from a larger space, however no additional path
analysis is investigated in this work.

3.5 Generalizing to Other Instances of AES

Generalizing the algorithm to operate on 192-bit and 256-bit variants of AES is
straightforward. One needs to construct a different path template and update
the isCompatible() method to incorporate the schedule generating equations
of the larger keys. Table 3 illustrates the path template used by the 256-bit
implementation. The heuristic considers paths on the same axes as the 128-bit
version. Since the key size is twice the length of the block size, the matrix is only
8 deep and therefore the heuristic considers fewer paths.

4 Benchmarks

Test cases are generated with OpenSSL’s RAND bytes() function. For a given
decay rate d, the test generator derives a key schedule from randomly selected
key bytes and then randomly zeroes d% of the bits. Tests assume a ground-
state encoding of 0. Performance was evaluated on Dell Precision Workstation
7400 running a 3.4 Ghz quad-core Xeon processor with 4GB of RAM. The C99
reference implementation of the algorithm is compiled with the MinGW version
of gcc-3.4.5 at the highest level of optimization, -O4. All computations cases
were run to completion in a serial manner. Time was measured by entry and exit
calls to clock() from the time.h library; clock resolution is 64 Hz. The original
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Table 4. Run-time results for four versions of the algorithm; each decay rate test suite
contains 10,000 cases

Case Key size Path selection Halting condition

PathOpt-128 128 bits Heuristically chosen (Section 3.4) First match
PathOpt-256 256 bits Heuristically chosen (Section 3.4) First match
Basic-128 128 bits Fixed to Table 1 First match
Exhaust-128 128 bits Heuristically chosen (Section 3.4) End of key space

PathOpt-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 90.120 93.559 142.322 1,736.321
Avg. 0.009 0.009 0.014 0.174
Med. 0.015 0.015 0.015 0.031
Max 0.015 0.015 0.078 2.094
Min 0.000 0.000 0.000 0.000
St.Dev 0.007 0.008 0.015 0.772

Basic-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 219.204 1,526.308 32,551.469 1,638,788.166
Avg. 0.022 0.153 3.255 163.879
Med. 0.015 0.015 0.078 1.968
Max 9.562 266.390 3,354.890 343,656.375
Min 0.000 0.000 0.000 0.000
St.Dev. 0.140 2.994 55.563 3,753.608

PathOpt-256 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 17.046 26.185 123.250 6,954.231
Avg. 0.002 0.003 0.012 0.695
Med. 0.000 0.000 0.000 0.062
Max 0.016 0.062 2.125 352.015
Min 0.000 0.000 0.000 0.000
St.Dev. 0.005 0.006 0.044 5.920

Exhaust-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 96.403 112.350 258.568 4,497.599
Avg. 0.010 0.011 0.026 0.450
Med. 0.015 0.015 0.015 0.110
Max 0.031 0.468 0.875 75.203
Min 0.000 0.000 0.000 0.000
St.Dev. 0.007 0.009 0.036 1.921

keys were found for all test cases, using the heuristically chosen path and halting
on the first match.

Table 4 summarizes the benchmark results for four variants of the algorithm:
PathOpt-128, PathOpt-256, Basic-128, and Exhaust-128. There are 10,000 cases
for each of the four decay rates, 30%, 40%, 50%, and 60%. The 128-bit variants
have been run on the same test cases, so their results are directly comparable.
All times are measured in seconds. A time of 0.000 means that the computation
finished in less than 1/64 second, or about 53 million processor cycles.

Additional testing (Table 5) was performed to estimate the maximum recov-
erable decay rates for PathOpt-128 and PathOpt-256. Only 5,000 cases were
examined due to extended recovery times.

5 Analysis

PathOpt-128 solves all cases at 50% decay and less in under half a second. At
60% decay, PathOpt-128 recovered the worst case in 35.500 seconds while solving
the average case in 0.174 seconds. At the extended decay rate of 70%, recovery
time averages grew to just over 6 minutes with the median time at just under
five seconds. Nearly half of the 17.4 day run was consumed by solving the worst
case of the test suite; the second slowest case was over six times faster. 4927
cases were recovered in less than 20 minutes.

PathOpt-128 runs faster than Basic-128 across the board and the speedup
quickly grows as the decay rate increases. The speedups for 30%, 40%, 50%, and
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Table 5. Extended decay rate runs; each decay rate test suite has 5,000 cases

Case Total Avg. Med. Max Min St.Dev.
PathOpt-128 @ 70% decay 1,504,487.119 s 300.897 s 4.938 s 737,266.687 s 0.000 s 10,677.913 s
PathOpt-256 @ 65% decay 446,879.849 s 89.376 s 0.875 s 194,410.875 s 0.000 s 2,843.061 s

60% are 2.43×, 16.3×, 228×, and 943×, respectively. At 70%, only 10 cases had
completed after a week when the experiment was terminated. The path selection
heuristic makes 70% decay a feasibly solvable problem in the test environment.
Even for the low decay rates, Basic-128 has a much higher standard deviation;
their worst cases with Basic-128 are several orders of magnitude worse than their
worst cases with PathOpt-128.

The profound impact of heuristic path selection at high decay rates suggests
that a more thorough search for the best path could further extend the maximum
feasible decay capacity. Only a small subset of possible paths are considered. The
current analysis takes less than 1/64 second, as evidenced by the 0.000 timing
results, so there is ample room for more startup analysis.

Full search of the key space appears to be a small factor slower than stopping
at the first compatible key. It widens as the decay increases, but by 60% the
Exhaust-128 only takes 2.590 times longer. We note that all 90,000 test cases
had precisely one solution, so the exhaustive search seems unnecessary at the
tested decay rates.

PathOpt-256 performs well up 60% decay rates, solving cases in an average
of 0.695 seconds and in no more than 352.015 seconds. At 70%, no cases were
solved in the test suite during a 1 week trial. At 65% the results are promising:
the 5,000 cases have been solved in an average of 89.676 seconds. The longest
case took 2.25 days to recover, while 99.4% of the cases have been recovered in
less than 20 minutes.

Interestingly, the PathOpt-256 is slightly faster than PathOpt-128 on decay
rates at 50% and below. The average solution times for these cases is within
two units of the 64 Hz clock resolution. We conjecture that the heuristic path
analysis takes less time with the 256-bit version since there are fewer paths to
consider, due to the flatness of the path matrix (Section 3.5).

As a point of comparison, the original algorithm [1] was compiled in the same
environment and run against the same test suite of 30% and 40% decayed AES-
128 schedules. After three weeks of execution, only the first four cases at 30%
had been solved and the first case at 40% had not yet finished.

6 Conclusion

We presented a new class of recovery capability that is several orders of magni-
tude faster than previous methods, particularly for higher decay rates. It more
than doubles the decay rate recovery feasibility of prior work. The tree-pruning
constraints enable efficient and exhaustive key space searches to determine so-
lution uniqueness. We have generalized the implementation to AES-256 while
maintaining excellent performance up to 65% decay.
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A Extended Pseudocode

path = (( 0),

( 16, 13),

( 32, 29, 25),

( 48, 45, 41, 37),

( 64, 61, 57, 53, 49),

( 80, 77, 73, 69, 65, 62),

( 96, 93, 89, 85, 81, 78, 74),

(112,109,105,101, 97, 94, 90, 86),

(128,125,121,117,113,110,106,102, 98),

(144,141,137,133,129,126,122,118,114,111),

(160,157,153,149,145,142,138,134,130,127,123),

(173,169,165,161,158,154,150,146,143,139,135),

(131,119,107, 95, 82, 70, 58, 46, 33, 21, 9),

(124,115,103, 91, 79, 66, 54, 42, 30, 17, 5),

(120,108, 99, 87, 75, 63, 50, 38, 26, 14, 1),

(174,170,166,162,159,155,151,147,140,136,132))

class CandidateMatrix:

Int count

Byte m[176]

def guess (Byte b):

c = copy(self)

c.count = count + 1

c.m[path[count][0]] = b

if count == 0:

return c

for i = 1 to len(path[count]):

if defined(c.m[path[count][i]-16]):

b4 = path[count][i-1]

b3 = path[count][i]

b0 = b4-16

if inFirstWordOfRoundKey(b4):

c.m[b3] = unsbox(c.m[b4] XOR c.m[b0]

XOR rcon[getRound(b4)][getBytePos(b4)]

else:

c.m[b3] = c.m[b0] XOR c.m[b4]

http://www.trustedcomputinggroup.org/
http://www.intel.com/
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else:

b0 = path[count][i]

b3 = path[count][i-1]

b4 = b0 + 16

if inFirstWordOfRoundKey(b4):

c.m[b0] = sbox(c.m[b3]) XOR c.m[b4]

XOR rcon[getRound(b4)][getBytePos(b4)]

else:

c.m[b0] = c.m[b3] XOR c.m[b4]

if c.count == 16:

c = deriveFullScheduleFromRound8(c)

return c

def key ():

return m[0:16]

class DecaySchedule:

Byte decaySched[176]

Byte gndEnc[176]

def isCompatible (CandidateMatrix candidate):

for i = 0 to 176:

if defined(candidate.m[i]):

if (candidate.m[i] XOR decaySched[i])

AND (candidate.m[i] XOR gndEnc[i]):

continue

else:

return FALSE

return TRUE

def recoverKeyRec(CandidateMatrix c, DecaySchedule d):

if (c.length()==16):

return c.key()

for i=0 to 255:

if(d.isCompatible(c.guess(i))):

key = recoverKeyRec(c.guess(i),d)

if (key != NULL):

return key

return NULL

The pseudocode follows a Python-like syntax, but with some additional ex-
plicit typing and field declaration. Variables may hold their declared types or
undefined values—a property checked by defined().

The path variable encodes the guessing and inference order of Table 1
in the flat byte-level schedule view. The recursive exploration function,
recoverKeyRec(), is the same as in Fig. 1.

The CandidateMatrix class is dominated by the guess method which guesses
a value for the position determined by path[count][0] and infers the conse-
quent bytes. The inference logic splits into two cases: when the unknown byte
is in the first word, Sw

i−4, of the schedule generating equations (see (1)) or
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in the middle word, Sw
i−1. The variable names, b0, b3, and b4 reflect the

relative position of their encapsulating words in the schedule; if b0 comes from
an arbitrary word in the first 10 rounds, then b3 and b4 come from the words
three and four words ahead of b0, respectively. The inference sequence in path
has been chosen to account for the necessary rotations in byte slices when solv-
ing the s-box version of the generating equations. Upon completion of the 16
guesses the eighth round becomes fully specified, implying the remainder of the
schedule. The key() method simply returns the first 16 bytes of completed key
schedule.

DecaySchedule holds the observed decayed data and ground state encoding
for each byte. Its one method isCompatible() checks that each defined bit of
the candidate schedule equals the decayed data or the ground state.
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