
Threshold Things That Think:

Authorisation for Resharing

Roel Peeters�, Markulf Kohlweiss, and Bart Preneel

K.U. LEUVEN, ESAT/SCD/COSIC and IBBT
Kasteelpark Arenberg 10, 3001 Leuven - Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. As we are evolving towards ubiquitous computing, users
carry an increasing number of mobile devices with sensitive informa-
tion. The security of this information can be protected using threshold
cryptography, in which secret computations are shared between multiple
devices. Threshold cryptography can be made more robust by resharing
protocols, which allow recovery from partial compromises. This paper
introduces user-friendly and secure protocols for the authorisation of
resharing protocols. We present both automatic and manual protocols,
utilising a group manual authentication protocol to add a new device.
We analyse the security of these protocols: our analysis considers perma-
nent and temporary compromises, denial of service attacks and manual
authentications errors of the user.

1 Introduction

The arrival of ubiquitous computing results in users spreading their sensitive
personal information across more and more “Things That Think” [1]. Things
That Think are mobile devices with computational power and storage capabili-
ties. The responsibility to protect information is shifting towards the end user,
for whom convenience is often more important than security.

Desmedt et al. [4] have proposed a new approach for this setting based on
threshold cryptography. A private key is shared among personal devices that
are frequently in the user’s proximity and able to interact with each other. The
corresponding public key is known to all devices. If at least the threshold number
of devices cooperate, they can jointly sign and/or decrypt data. The advantages
of deploying a threshold cryptography scheme are twofold: a user does not need
all his personal devices (e.g. empty battery, device left at home) to use the private
key and an adversary does not gain any knowledge of the private key when he
does not compromise the threshold number of devices.

� Roel Peeters is funded by a research grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

J. Camenisch and D. Kesdogan (Eds.): iNetSec 2009, IFIP AICT 309, pp. 111–124, 2009.
c© IFIP International Federation for Information Processing 2009

112 R. Peeters, M. Kohlweiss, and B. Preneel

A mechanism for resharing the private key is needed. Resharing allows to
change the set of devices, hence revoke decryption/signature rights, and forces
an adversary to break the scheme within a certain time frame. Different schemes
for secret resharing are described by Desmedt et al. [5], Frankel et al. [6] and
Wong et al. [15].

In the literature, little attention has been paid to the problem of authorisation
for resharing. Proper authorisation is necessary to prevent an adversary from
altering the set of devices part of the threshold secret sharing in such a way that
he would be able to break the scheme. Moreover authorisation should not allow
the adversary to succeed in a Denial of Service (DoS) attack and prevent the
genuine user from signing and/or decrypting. We are specifically looking at DoS
attacks. This is relevant because mobile devices are constrained in resources, e.g.
battery powered, and considered as critical infrastructure for the user.

We consider the following problem: designing a secure and user-friendly [2]
protocol to authorise resharing. We solve this problem by introducing two ways
to authorise resharing: automatic and manual.

Authentication for resharing is related to voting algorithms in distributed
systems, such as the algorithms proposed by Castro [3] and Hardekopf [9]. The
mobile devices need to decide if resharing is authorised or not.

This paper first gives an overview of the assumptions. It will then go on to
describing the protocols for authorisation for resharing. The security of these
protocols will be discussed in section 4.

2 Assumptions

2.1 Devices

Typically mobile devices have very different capabilities. Some devices have a
Graphical User Interface (GUI), others do not. Some devices can store lots of
data, while others have very limited storage capabilities. We assume that not all
devices have a clock and no reliable global clock is available.

The user has n devices, all in possession of the public key and a share of
the corresponding (k, n)-secret shared private key, where k is the threshold.
Each device that participates to this secret sharing knows the public keys of
the other devices in this secret sharing. These public keys are either stored
by the device itself, or this device has constructed personal certificates [8]. A
personal certificate contains the public key of another device in the threshold
secret sharing. The personal certificates are broadcasted for devices with greater
storage capabilities to store. After resharing, additional personal certificates are
created and broadcasted.

2.2 Communication

Because in normal operation the distance between these devices is small and
communication is wireless, we assume the broadcast model. We assume that all

Threshold Things That Think: Authorisation for Resharing 113

active devices carried by the user receive messages at the same time and that
either all or no devices receive messages.

To set up private communication between two devices, a private channel needs
to be constructed by deploying encryption over the broadcast channel. We as-
sume that all devices in the secret sharing scheme know each other’s public keys
or can ask more powerful devices for their personal certificates in order to set
up private channels.

2.3 Adversary

The adversary can compromise devices. A device is compromised if an adversary
learns its key share. We consider two types of compromised devices: passively and
actively compromised devices. Passively compromised devices are not controlled
by the adversary, the adversary only knows the key shares of these devices. An
example of a passively compromised device is a device to which an adversary
had physical access to for a brief period of time, e.g., lunch break, and succeeded
in reading out the key share. Actively compromised devices are controlled by the
adversary. An example of a actively compromised device is a device on which an
adversary succeeds in installing malware on. The number of devices compromised
by the adversary is t = tp + ta.

The adversary can play two games: he can try to break the scheme or render
the scheme useless to the genuine user. The threshold secret sharing scheme is
broken if an adversary has compromised k devices. The adversary succeeds in
a DoS attack if less than k devices follow the protocol. DoS attacks are even
facilitated by not carrying around all devices and by devices that run out of
battery power, since the adversary does not need to compromise these devices
in order to get them not to follow the protocol.

We distinguish two kinds of DoS attacks, temporary and permanent DoS
attacks. The adversary can try to reduce the number of devices that follow the
protocol, by draining the batteries of the mobile devices. To drain the batteries,
the adversary sends messages that trigger the devices to do some calculations
and send other messages. If less than k uncompromised devices remain, the
adversary succeeded in a temporary DoS attack. To protect against temporary
DoS attacks the number of calculations and bits sent, during the time where a
malicious party cannot be identified, needs to be minimised. A permanent DoS
attack prevents a user from using any threshold functionality, even when the
user has all his devices with fully charged batteries with him. This is the case
we the adversary succeeds in compromising (n − k + 1) devices.

We aim to protect against an adversary breaking the scheme and permanent
DoS attacks. This results in two conditions on the number t of devices that we
allow an adversary to compromise:

t < k (1)
t ≤ n − k . (2)

114 R. Peeters, M. Kohlweiss, and B. Preneel

3 Resharing

Resharing key material is essential for security. On the one hand resharing is a
means to revoke decryption/signature rights of devices, for example, devices no
longer in possession of the user. On the other hand resharing limits the timeframe
in which an adversary needs to compromise enough devices to break the scheme.
Resharing also allow the user to add new devices to the threshold secret sharing.

The key share of a device is updated after a successful resharing. The adver-
sary does not know the new key shares of passively compromised devices. The
new key shares of actively compromised devices are known to the adversary.
After resharing, only passively compromised devices are no longer compromised:

t′p = 0 . (3)

We introduce two ways to authorise resharing: automatic and manual. Auto-
matic authorisation for resharing is used for periodic updates. Manual authori-
sation for resharing requires user interaction. Manual authorisation for resharing
is required if the user wants to alter the number of participants. After success-
ful authorisation, resharing will take place. Each device checks if resharing is
authorised, and trigger the resharing protocol.

3.1 Automatic Authorisation

To limit the timeframe in which an adversary needs to compromise enough de-
vices, the shares of the private key will be updated periodically. Since no reliable
global clock exists, we will use the number of performed decryptions/signatures
as an approximation for time. Each device i has a local counter ci, counting the
number of performed decryptions/signatures since the last (re)sharing of the
private key. We define c as the number of decryptions/signatures after which
resharing is recommended. The number of decryptions/signatures after which
resharing is necessary is C > c. After successful resharing all devices set their
local counter ci = 0.

If the local counter of one device reaches c, this device requests automatic
authorisation for resharing. If this request is denied, the device augments c with
a step Δ, c = c + Δ. If the local counter of one device reaches C, resharing
is necessary. In this case several attempts to get automatic authorisation for
resharing have failed; the user is alerted by the GUI-enabled devices that manual
authorisation for resharing is needed.

Resharing is only authorised if all n devices are present and at least k devices
agree to reshare. A device agrees to reshare if its local counter exceeds c′, as
defined in Eq. (4):

c′ =
⌊

k − 1
n − 1

· c
⌋

. (4)

Threshold Things That Think: Authorisation for Resharing 115

The value c′ is the expected value of a device’s local counter if only the mini-
mum number of devices (k) participate in every decryption/signature and the
requesting device is always one of these.

Replay of the request and/or granting of the request for automatic authori-
sation needs to be prevented. This is prevented by the introduction of nonces.
Fig. 1 shows the protocol for automatic authorisation.

1. Device j (cj > c) broadcasts a session identifier.

broadcast(sessid) .

2. Each device i broadcasts a nonce.

broadcast(sessid, i, noncei) .

3. After receiving all other (n − 1) nonces, each device i, if its local counter
ci > c′, constructs the request for automatic authorisation and broadcasts its
approval.

broadcast(i,Ai), Ai = Si(request), request = (sessid, nonce1, . . . , noncen).

If after a certain time a device did not receive all other (n − 1) nonces, this
device aborts. Device j updates c = c + Δ when it aborts.

4. After verifying the signatures of (k− 1) other approvals, each device that has
given its approval concludes that automatic resharing is authorised.

Fig. 1. Protocol for automatic authorisation

Note. Instead of each device placing a signature with its private key, a threshold
signature protocol, for instance Shoup’s protocol [13], can be deployed. Each de-
vice puts a partial signature on the request; these partial signatures are then
combined to construct the signature on the request. When using a threshold sig-
nature only one signature needs to be verified. However, in the case of dishonest
parties, the effort needed to verify the correctness of the threshold signature in-
creases. For non-verifiable signature schemes, combinations of partial signatures
need to verified until a correct combination is found. For verifiable signature
schemes, the partial signatures need to be verified.

3.2 Manual Authorisation

Resharing can be authorised by the user, possibly altering the participating
devices, e.g. adding or removing a device. The user can also be requested by
GUI-enabled devices to manually authorise resharing. This will be the case if
the local counter of one device reaches C or the resharing protocol failed. Adding
a device is a special case and is discussed afterwards.

116 R. Peeters, M. Kohlweiss, and B. Preneel

We distinguish three types of devices: participating, non-participating and
new devices. Participating devices refer to devices that are part of the threshold
secret sharing both before and after resharing. Devices no longer part of threshold
secret sharing after resharing are referred to as non-participating devices; these
are the devices that will be removed from the threshold secret sharing. New
devices are only part of the threshold secret sharing after resharing; these are
the devices that will be added to the threshold secret sharing. The proxy refers
to the first device the user interacts with by entering his request for manual
authorisation for resharing.

The problem of the user authenticating his request is similar to the “What
You See Is What You Sign” problem [10]. The user cannot be sure that what
is displayed on the screen is his request. The adversary, when controlling the
device, could display another request than the one the user authenticates. The
user can manifest himself towards his devices by interaction with the threshold
number of these. This allows to detect cheating devices.

Since we require explicit interaction of the user before resharing takes place,
we do not need to put safeguards in place to prevent DoS attacks, as is the case
with automatic resharing. However, replay needs to be prevented as this could
be used to annoy the user by constantly asking for interaction.

The proposed solution consists of three steps: first the user enters his request
at the proxy which broadcasts the request, second he confirms his request at
other devices and third the devices conclude resharing is authorised. Figure 2
shows the protocol for manual authorisation.

1. The user selects device j as the proxy and enters his request at the proxy. The
proxy broadcast the user’s request and approval.

broadcast(j, request,Aj), request = (sessid,G), G = {id1, . . . , idn},
Aj = Sj(request) .

2. Each device i verifies that it is a participating device and verifies the approval
from the proxy. If correct, the request is displayed for the user to confirm.

user(request) .

When the user approves the request at device i, the request is signed by this
device and the approval is broadcasted.

broadcast(i,Ai), Ai = Si(request) .

3. After verifying the signatures of (k− 1) other approvals, each device that has
broadcasted the user’s approval concludes that manual resharing is authorised.

Fig. 2. Protocol for manual authorisation

Threshold Things That Think: Authorisation for Resharing 117

The proxy broadcasts the user’s request to authorise resharing. The request
consists of the identities of the participating devices. G is the vector that contains
the identities. The request is signed by the proxy.

Each device verifies that it is a participating device and verifies the signature
on the request. It is assumed that all devices in the secret sharing scheme know
each other’s public keys. If the signature on the request is correct, the request is
displayed for the user to confirm. When a user confirms the request on a device,
the request is signed by this device and this signature is broadcasted. The user
confirms his request on at least (k − 1) participating devices; in total the user
needs to interact with at least k participating devices. Before confirming, a user
can verify his request at all GUI-enabled devices.

Each participating device verifies the correctness of the signatures and checks
whether the request is signed by a participating device. After k valid signatures
from participating devices, resharing is authorised and takes place.

Adding a device. When adding a new device, this device is not yet known
to the participating devices. The user needs to verify that the device he intends
to add is the device that will be added, hence this device first needs to be
authenticated to the group of participating devices and vice versa. For this goal
we need a way of authenticating new information, in this case public keys. We
considered three possible approaches:

1. A group of at least k agreeing devices can act as a trusted entity. We only
need a manual authentication protocol between the new device and this
trusted entity. When performing standard MANual Authentication (MANA)
protocols [7] between two parties we need to perform the MANA protocol
at least k times, which is not user-friendly.

2. Another approach could be to only perform a MANA protocol between the
new device and the proxy and verify, after the resharing protocol took place,
that the new device is part of the resharing. However, this approach would
introduce new weaknesses, for example, an actively compromised proxy could
act as a man-in-the-middle and add an actively compromised device instead.
This weakness is the result of the fact that there is no authentication between
the new device and other participating devices.

3. Group manual authentication protocols, such as the ones proposed by Laur
et al. [11], Nguyen et al. [12] and Wang et al. [14], allow authentication to
all devices at once and do not require more effort from the user.

To exchange public keys between the new device and the participating devices,
we use the Group Message Authentication (GMA) protocol that exchanges Short
Authenticated Strings (SAS) by Laur and Pasini [11], shown in Fig. 3. The or-
dered vectors m̂i and r̂i represent respectively all messages mj and subkeys rj

as received by device i from devices j. The commitment in the first phase of the
protocol commits a device to the final hash. Because the commitments are only
opened in the second phase, no device can force the hash to a specific value.

118 R. Peeters, M. Kohlweiss, and B. Preneel

1. R1: each participating device i broadcasts a message and a commitment value

broadcast(i,mi, ci), (ci, di)← commit(i, ri), random ri .

2. R2: each device i broadcasts its decommitment value and opens the commit-
ments from each device j. Abort if abnormal behaviour.

broadcast(i, di), (j, r̂ji)← open(ĉji, d̂ji) .

3. SAS: each device i calculates the SAS value, a SAS value is broadcasted over
the authenticated channel and compared with the other SAS values.

user(SASi), SASi = h((G, m̂i), r̂i) .

Fig. 3. SAS-GMA proposed by Laur and Pasini [11]

The new device starts by sending a session identifier, its identity and its public
key as the message in the SAS-GMA protocol with the participating devices. The
message of the participating devices in the SAS-GMA protocol consists of the
session identifier, the public state and their public key. The public state consists
of the identities of all participating and new devices, and the threshold k. In the
second round of the SAS-GMA protocol an additional check is required to detect
abnormal behaviour. The new device verifies that all received messages contain
the same public state. A single SAS value needs to be broadcasted over the
authenticated channel: the user needs to compare the displayed values between
his mobile devices.

The comparison of this SAS value is combined with the users consent for
adding this device. The new device will display its SAS value, and the partici-
pating devices will ask the user if he wants to add a new device displaying the
calculated SAS value. When the user confirms at device i, this device construct
and signs the request and broadcasts the approval. After k valid signatures from
participating devices, resharing is authorised and takes place. Figure 4 gives an
overview of the protocol to manually authorise adding a device.

Other applications. The protocol for adding a device can also be used to
authorise signatures or decryptions. This authorisation can be necessary to place
signatures on documents or to decrypt very sensitive data. In either case the
proxy has some data, unknown to the other participating devices. This unknown
data is a digest of the data to be signed or an encapsulated symmetric key that
needs to be decrypted to decrypt the data.

The SAS-GMA protocol provides authentic data exchange between the parti-
cipating devices. The proxy’s message consists of a session identifier, its identity
and the data to be signed or decrypted. Other participating devices just send the
session identifier as message. In round two of the SAS-GMA protocol the proxy

Threshold Things That Think: Authorisation for Resharing 119

1. SAS-GMA R1:
(a) new device sends the session identifier, its identity and its public key as

message.
mNEW = sessid||idNEW ||PKNEW .

(b) in response, each participating device i sends the session identifier, the
public state and its public key as message.

mi = sessid||G||k||PKi, G = {id1, . . . , idn, idNEW } .

2. SAS-GMA R2: Abort if abnormal behaviour, additional check: the new
device verifies that all received messages contain the same public state.

3. SAS-GMA SAS: A single SAS message needs to be broadcasted over the au-
thenticated channel. The user is requested by all participating devices if he
wants to add the new device and if it displays the same SAS value.

user(SASNEW) .

When the user approves at participating device i, the request is constructed
and signed by this device, and the approval is broadcasted.

broadcast(i,Ai), request = (sessid, G, SASi), Ai = Si(request) .

4. After verifying the signatures of (k− 1) other approvals, each device that has
broadcasted the user’s approval concludes that manual resharing is authorised.

Fig. 4. Protocol for manually authorising adding a device

verifies that the session identifier matches. The request consists of the identity
of the proxy, the data to be signed or decrypted, the session identifier and the
SAS value.

4 Security Discussion

This section discusses for the two cases of authorisation how an adversary is
prevented from breaking the scheme or mounting DoS attacks.

4.1 Automatic Authorisation

Since the number of devices and the threshold remain the same after resharing,
the adversary can gain no advantage in the resharing protocol. The number of
actively compromised devices remains the same.

Although resharing does not pose any security risk in the sense of the adver-
sary breaking the scheme, the adversary should be prevented from being able
to constantly get automatic authorisation for resharing as this would help him to

120 R. Peeters, M. Kohlweiss, and B. Preneel

set up a temporary DoS attack. For automatic authorisation at least k devices
need to agree: have their local counter ci ≥ c′. The adversary controls t < k
devices and needs at least (k−t) uncompromised devices with a local counter ci ≥
c′ to get automatic authorisation to trigger resharing. Once resharing is triggered,
either it ends successfully and all uncompromised devices reset their local counter
ci = 0, or it is aborted and the user is alerted. Under no circumstances will the
adversary succeed in getting the devices to reshare more than once.

If less than k uncompromised devices have their local counter ci ≥ c′, these
devices can be forced to broadcast a nonce, construct the request, sign the re-
quest and broadcast the approval. Uncompromised devices having their local
counter ci < c′ can only be forced to send a nonce. As long as resharing is not
triggered and the local counters are not updated, the adversary can force the
uncompromised devices to do this indefinitely.

4.2 Manual Authorisation

When the number of devices and threshold remain the same, the adversary
gains no advantage by resharing. Because of the user interaction, the adversary
can only mount a temporary DoS attack when sending a request and incorrect
approval, which will make the other devices verify the approval but not display
the request.

When allowing a user to add or remove devices while resharing we introduce a
possible advantage for the adversary. When removing an uncompromised device,
the total number of devices decreases while the number of actively compromised
devices remains the same. When adding an actively compromised device, both
the total number of devices and the total number of actively compromised devices
increase. The threshold k will be set according to the number of participants.

Threshold. Threshold secret sharing schemes require that the adversary con-
trols fewer than the threshold number of devices. To prevent the adversary from
breaking the scheme, the threshold should be as high as possible. Since we also
want to protect the user against permanent DoS attacks, the threshold should
be as low as possible. Therefore the threshold should be the smallest majority
of devices.

For an even number of devices this leads to an interesting observation: the
maximum number of devices an adversary is allowed to compromise when fixing
the threshold to the smallest majority is the same as when fixing the threshold to
half the number of devices. In the former case this results from the condition to
prevent the adversary from succeeding in a DoS permanent attack. In the latter
case this follows from the condition to prevent the adversary from breaking the
scheme.

Keeping in mind that usually the required effort from the adversary to succeed
in a DoS attack is smaller than the effort needed to break the scheme, we opt for

Threshold Things That Think: Authorisation for Resharing 121

the latter. Furthermore this choice improves usability as authenticating a request
from the user requires user interaction with the threshold number of devices.

k =
⌈n

2

⌉
tmax = k − 1 . (5)

Number of devices that can be added and/or removed. If we do not
allow devices that will be removed to participate in the manual authorisation,
the adversary could stop manual authentication if uncompromised devices are
not part of the request. An adversary controlling t = k−l devices can stop manual
authorisation for resharing if the number of uncompromised devices that will be
removed is greater than l. Since tmax = k − 1, at least 1 uncompromised device
can be removed without the adversary having the possibility to stop it. This
puts no bounds on the total number of devices that can be removed.

We do not allow the adversary to win one of his two games by resharing,
conditions (1) and (2) still hold after resharing. This puts bounds on the number
of devices that can be added and/or removed. For a the number of added devices,
r the number of removed devices, and an adversary having actively compromised
ta = k − l devices:

t′ = ta + a (6)
n′ = n + a − r . (7)

a + r < 2l for n even
< 2l − 1 for n odd .

(8)

The intuition behind the difference based on the number n of devices before
resharing can be explained as follows:

– for n even:
• adding an actively compromised device: both the number of actively

compromised devices and the threshold increase by one.
• removing an uncompromised device: the number of compromised devices

and the threshold remain the same.
Conditions (1) and (2) still apply after resharing.

– for n odd:
• adding an actively compromised device: the number of actively compro-

mised devices increases by one while the threshold remains the same.
• removing an uncompromised device: the number of compromised devices

remains the same and the threshold decreases by one.
Conditions (1) and (2) might not apply any longer after resharing.

Alternatively we can define a bound on the number of devices an adversary is
allowed to actively compromise before resharing by fixing the number of devices
a user can add and/or remove in one execution of the resharing. If we allow the
user to add or remove only one device:

ta <
⌊

n
2

⌋
= k for n even
= k − 1 for n odd .

(9)

122 R. Peeters, M. Kohlweiss, and B. Preneel

Verifying request. Once the adversary has actively compromised the proxy,
he can send an alternate request. A user will not be aware of this cheating proxy
unless he verifies his request before confirming it on his devices. The adversary
can get his other actively compromised devices to display the original request.

The probability of an adversary cheating successfully decreases with each
device where a user verifies his request. The factor by which this probability de-
creases depends on the number p of participating devices, k ≤ p ≤ n. The adver-
sary’s success probability is reduced by a factor fp, as defined in Equation (10),
for each device where the user verifies his request. Because it is unknown how
many devices the adversary controls, it is assumed that he controls the maximum
allowed number of devices and that all these devices are participating devices.

fp =
p − 1
ta − 1

. (10)

In order to reduce the adversary’s success probability to 0 ≤ success ≤ 1, a user
should verify his request at Qp(success) randomly chosen devices:

Qp(success) = �−logfp(success)� . (11)

For typical values of n and allowing only one device to be removed, the user
reduces the adversary’s success probability to less than 50% by verifying his
request at one randomly chosen device.

Table 1 gives an overview for typical values for the number of devices. There fn

and Qn are applicable when resharing with all devices or adding one device, fn−1

and Qn−1 are applicable when removing one device. To reduce the adversary’s
success probability to 10% or less, the given number of devices where a user
needs to verify his request applies.

Table 1. Security overview. Let n be the number of devices, k the threshold, t the
total number of compromised devices, ta the number of actively compromised devices,
f the factor by which the adversary’s success probability is reduced when checking one
random device and Q(0.1) the number of devices needed to be checked to reduce the
adversary’s probability to 10%. When resharing with all devices or adding one device,
the columns with subscript n are applicable; when removing one device, the columns
with the subscript n−1 are applicable.

n k max t max ta fn Qn(.1) fn−1 Qn−1(.1)

3 2 1 0 - - - -

4 2 1 1 ∞ 1 ∞ 1

5 3 2 1 ∞ 1 ∞ 1

6 3 2 2 5 2 4 2

7 4 3 2 6 2 5 2

8 4 3 3 3.5 2 3 3

9 5 4 3 4 2 3.5 2

10 5 4 4 3 3 2.67 3

Threshold Things That Think: Authorisation for Resharing 123

5 Conclusion

We have presented secure and user-friendly protocols that allow authorisation
for resharing in a threshold setting for Things That Think. We introduced two
ways to authorise resharing: automatic and manual.

The automatic authorisation for resharing allows for periodic updates and
requires no user interventions, freeing the user of any cognitive workload.

Manual authorisation provides the user with the flexibility needed to alter
the set of devices that participate in the threshold secret sharing, e.g., to add or
remove a device. Manual authorisation for resharing avoids confronting the user
with the manual input of passwords, steering away from all related trade-offs
between memorability and security.

For the manual authorisation protocol we have shown that by authorising
resharing the adversary will not succeed in a permanent DoS attack or be able
to break the scheme when adding or removing one device. Also the adversary will
not be able to prevent manual authorisation. Towards temporary DoS attacks
the adversary can only trigger parts of the protocol, which only trigger minimal
energy usage at the uncompromised devices.

References

1. Internet of Things in 2020. Technical report, Joint European Commission / EPoSS
Expert Workshop (2008)

2. Adams, A., Sasse, M.A.: Users are not the enemy. Communications of the
ACM 42(12), 40–46 (1999)

3. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Third Symposium
on Operating Systems Design and Implementation, New Orleans, USA (1999)

4. Desmedt, Y., Burmester, M., Safavi-Naini, R., Wang, H.: Threshold Things That
Think (T4): Security Requirements to Cope with Theft of Handheld/Handless
Internet Devices. In: Symposium on Requirements Engineering for Information
Security, West Lafayette, Indiana, USA (2001)

5. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical Report ISSE-TR-97-01, George Mason University (July
1997), ftp://isse.gmu.edu/pub/techrep/97_01_jajodia.ps.gz

6. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal Resilience Proactive
Public-Key Cryptosystems. In: CRYPTO 1997. LNCS, vol. 1294, pp. 384–393.
Springer, Heidelberg (1997)

7. Gehrmann, C., Mitchell, C., Nyberg, K.: Manual Authentication for Wireless De-
vices. RSA Cryptobytes 7(1), 29–37 (2004)

8. Gehrmann, C., Nyberg, K., Mitchell, C.: The personal CA–PKI for Personal Area
Network. In: Proceedings of the 11th Information Society Technologies (IST) Mo-
bile and Wireless Communications Summit, pp. 31–35 (2002)

9. Hardekopf, B., Kwiat, K., Upadhyaya, S.: A Decentralized Voting Algorithm for
Increasing Dependability. In: Distributed Systems. 5th World MultiConference on
Systemic, Cybernetics and Informatics, SCI 2001 (2001)

10. Landrock, P., Pedersen, T.: WYSIWYS? – What you see is what you sign? Infor-
mation Security Technical Report 3(2), 55–61 (1998)

ftp://isse.gmu.edu/pub/techrep/97_01_jajodia.ps.gz

124 R. Peeters, M. Kohlweiss, and B. Preneel

11. Laur, S., Pasini, S.: SAS-Based Group Authentication and Key Agreement Pro-
tocols. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 197–213. Springer,
Heidelberg (2008)

12. Nguyen, L.H., Roscoe, A.W.: Efficient group authentication protocols based on
human interaction. Cryptology ePrint Archive, Report 2009/150 (2009),
http://eprint.iacr.org/

13. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

14. Wang, S., Safavi-Naini, R.: New Results on Unconditionally Secure Multi-receiver
Manual Authentication. In: ICITS 2007. LNCS. Springer, Heidelberg (2007)

15. Wong, T.M., Wang, C., Wing, J.M.: Verifiable Secret Redistribution for Threshold
Sharing Schemes. Technical Report CMU-CS-02-114, Carnegie Mellon University
(2002)

http://eprint.iacr.org/

	Threshold Things That Think: Authorisation for Resharing
	Introduction
	Assumptions
	Devices
	Communication
	Adversary

	Resharing
	Automatic Authorisation
	Manual Authorisation

	Security Discussion
	Automatic Authorisation
	Manual Authorisation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

