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Abstract. The QL profile of OWL 2 has been designed so that it is pos-
sible to use database technology for query answering via query rewriting.
We present a comparison of our resolution based rewriting algorithm with
the standard algorithm proposed by Calvanese et al., implementing both
and conducting an empirical evaluation using ontologies and queries de-
rived from realistic applications. The results indicate that our algorithm
produces significantly smaller rewritings in most cases, which could be
important for practicality in realistic applications.

1 Introduction

Ontologies can be used as conceptual schemas to provide an intuitive and unified
view over one or more data repositories, allowing queries to be independent of the
structure and location of the data. The use of ontologies as conceptual schemas
for data repositories has been extensively studied in a variety of contexts, such
as information integration [4]. The use of data repositories to store instance
data is becoming increasingly important, for instance in the semantic Web, due
to the scalability requirements of many applications and the widespread use of
ontologies.

In OWL 2—a new version of the OWL ontology language that is currently
a W3C candidate recommendation—scalability requirements are addressed by
profiles—subsets of the language that enjoy desirable computational properties.
The OWL 2 QL profile was designed to allow query answering via query rewrit-
ing: a query over an OWL 2 QL ontology and a set of instance data stored in
a data repository can be answered by rewriting the query w.r.t. the ontology
and then answering the rewritten query in the data repository. In this paper we
focus on the case where the data is stored in a relational database and accessed
using SQL queries, but the same technique could be applied to data stored in a
triple store and accessed via SPARQL queries.

OWL 2 QL is based on DL-Liteg—one of a family of description logics devel-
oped by Calvanese et al. [3]. The DL-Liteg rewriting algorithm of Calvanese et
al., which we will refer to as CGLLR, transforms a conjunctive query @ and a
DL-Liter ontology O into a union of conjunctive queries Qo such that the an-
swers to () and any set of instance data 4 can be obtained by evaluating Q¢ over
A only. This technique has been implemented in reasoners such as QuOnt and
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Owlgre&ﬁ. Unfortunately, as shown by Calvanese et al., the size of Q¢ is worst-
case exponential w.r.t. the size of @ and O [3], and as we show in Section []
realistic ontologies and queries can result in Qo being extremely large (e.g.,
containing tens of thousands of conjunctive queries). Thus, on the one hand,
Qo may be costly to compute, and, on the other hand, evaluation by RDBMSs
may be costly or even unfeasible. Trying to produce small rewritings is therefore
of critical importance to the practical application of query rewriting in general,
and of OWL 2 QL in particular.

Motivated by the prospect of applying deductive database techniques to im-
prove the scalability of reasoners, in our previous work [9] we considered the
problem of query rewriting for various logics of the DL-Lite and ££ families,
the latter being the basis for the OWL 2 EL profile. Our algorithm takes as
input a conjunctive query @ and an ontology O, and uses a resolution-based
technique to produce a rewritten query Qo. Although Qo will, in general, be
a (possibly recursive) datalog query, and thus necessitate the use of a deductive
database system, the algorithm exhibits “pay-as-you-go” behavior for various
logics. In particular, if O is a DL-Liteg ontology, then QY is a union of con-
junctive queries. Our algorithm can therefore be seen as a generalization and
extension of CGLLR.

In this paper we describe a simplified version of our algorithm that we will re-
fer to as RQR (Resolution-based Query Rewriting). Like CGLLR, RQR rewrites
a query w.r.t. a DL-Liter ontology to produce a union of conjunctive queries.
RQR differs from CGLLR mainly in the way it handles existential restrictions in
an ontology. First, RQR uses functional terms to keep track of successors whose
existence is implied by such restrictions, while CGLLR relies on a so-called re-
duction step. Second, RQR directly handles qualified existential restrictions (i.e.,
those where the restriction class is not owl:Thing), whereas CGLLR requires the
elimination of such restrictions using an encoding that introduces new “auxil-
iary” properties. We describe both algorithms in Section [3] and further discuss
their differences in Section 3.3l

Both the reduction step and the introduction of auxiliary properties can in-
crease the size of the rewriting. Therefore, we conjectured that RQR will of-
ten produce smaller rewritings than CGLLR. In order to test the practicality
of query rewriting and the efficiency of the different rewriting techniques, we
have implemented RQR in a query rewriting system that we call REQUIEME
(REsolution-based QUery rewrlting for Expressive Models), and compared its
behavior with that of our implementation of CGLLR that we refer to as C. The
comparison uses a benchmark suite containing realistic DL-Liter ontologies and
test queries as well as some artificial ontologies and queries designed to highlight
the differences between the two algorithms. The benchmark suite also included
versions of the ontologies in which qualified existential restrictions have been ex-
plicitly encoded using auxiliary properties, as this allowed us to compare the two
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implementations in cases where RQR’s native handling of qualified existential
restrictions is not advantageous.

Both algorithms are amenable to optimizations that can reduce the size of the
rewritings. One obvious optimization would be to use query subsumption checks
to eliminate redundant conjunctive queries from the rewriting; we discuss this
and other optimization techniques in Section 34l In order to compare optimized
versions of the two algorithms we additionally implemented REQUIEM-SC and
C-SC, both of which first compute the rewriting as in the original version, and
then apply the above-mentioned query subsumption optimization to the result.

Our evaluation showed that, even for ontologies in which qualified existen-
tial restrictions were already encoded, REQUIEM produced significantly smaller
rewritings than C in most cases. In one case, for instance, C exceeded the maxi-
mum allowed run time (600 seconds) after producing more than 42,000 conjunc-
tive queries; in contrast, REQUIEM completed the rewriting in less than half
a second having produced only 624 queries. Moreover, the rewritings produced
by REQUIEM were often similar or identical to those produced by REQUIEM-
SC, something that was less often the case for C and C-SC; using RQR should,
therefore, reduce the need for (potentially costly) query subsumption checking.

2 Ontology-Based Data Access via Query Rewriting

We next describe how to answer queries over an OWL 2 QL ontology and a
database via query rewriting, illustrating the process by means of an example.

Suppose we have a relational database DBj containing a table Professor
with attributes name, department, and telephone; and a table Student with
attributes name, major, address, and tutor. We can use a suitable ontology as
a conceptual schema that describes the structure of the data. For example, we
might use the following ontology Oy to describe DBOH

Teacher C Jteaches (1)
Professor C Teacher (2)
JhasTutor™ C Professor (3)

Axiom () states that teachers teach at least someone, axiom (2] states that
professors are teachers, and axiom (B)) states that the range of the property
hasTutor is Professor.

Given suitable mappings from the classes and properties in the ontology to
data in the database, queries posed in terms of the ontology can be answered
using the database. This has several advantages: on the one hand, queries can
be posed in terms of the conceptual structure of the data rather than its ar-
rangement in the database, and on the other hand, the database provides data
persistence and scalability.

Mappings from the ontology to the database are typically defined using ex-
pressions of the form D — @Qp, where D is a class or property occurring in

4 We use the description logic syntax for the sake of compactness.
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the ontology and @Qp is an SQL query over the database; @ p could, however,
equally well be a SPARQL query that accesses data in an RDF triple store. In
our example, the mapping My between Oy and DBy is defined as follows:

Professor — SELECT Name FROM Professor
hasTutor — SELECT Name, Tutor FROM Student

Queries posed over the ontology are answered in two steps: first, the ontology
is used to rewrite the query into a union of conjunctive queries; and second,
the mappings are used to transform the rewritten query into an SQL query and
evaluate it using an RDBMS. For example, consider the query

Qo(z) < teaches(x,y) (4)

posed over Og. The rewriting Qo, of query @) w.r.t. Oy contains @) and the
following queries:

Qo(z) « Teacher(z) (5)
Qo(x) < Professor(x) (6)
Qo(x) < hasTutor(y, x) (7)

Transforming Qp, into an SQL query sql(Qo,) basically amounts to using M,
to replace each class or property D occurring in a query contained in Qo, with
the corresponding SQL query Q) p, and forming the union of the resulting queries.
Note that Mg does not contain a mapping for every class and property of Oy.
The answer to any query containing an atom for which there is no mapping will
necessarily be empty, and we can therefore discard such queries. Consequently,
queries (@) and (@) can be discarded in our example. As a result, we obtain the
following rewritten SQL query:

sql(Qo,) = SELECT Name FROM Professor UNION
SELECT Tutor FROM Student

This query can now be directly evaluated in the RDBMS to compute the answers
to the original query Qo(x).

In the rest of the paper we focus on the problem of computing the rewriting
Qo of a given query @ w.r.t. an OWL 2 QL ontology O.

3 Query Rewriting Algorithms

In this section we describe the RQR and CGLLR query rewriting algorithms,
discuss the differences between them, and present various optimizations that can
help us reduce the size of the rewritings.

Before presenting the algorithms, we introduce some notation and defini-
tions. We use the well-known notions of constants, variables, function sym-
bols, terms, and atoms of first-order logic. A Horn clause C' is an expression
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of the form Dy «— Dy A... A D, where each D; is an atom. The atom Dy is
called the head, and the set {D,...,D,} is called the body. We require that
all the variables occurring in the head of C occur at least in one of its body
atoms. For instance, the expression teaches(z, f(x)) < Professor(z) is a Horn
clause. The depth of a term ¢ is defined as depth(t) =0 if ¢ is a constant
or a variable, and depth(f(s)) =1+ depth(s) if ¢ is a functional term f(s).
The notion of depth is extended to an atom R(t1,...,t,) in the natural way:
depth(R(t1,...,t,)) = max(depth(¢;)) for 1 < i < n. An atom D occurring in
a Horn clause C is said to be the deepest in C' if depth(D) > depth(D;) for
every atom D; of C. For instance, the atom teaches(z, f(z)) is the deepest in
the previously mentioned example clause.

A congunctive query (CQ) @ posed over an ontology O is a Horn clause whose
head predicate does not occur in O, and whose body predicates are class and
property names occurring in @. For instance, ) is a CQ over the ontology Oy.
A union of conjunctive queries (UCQ) over O is a set of conjunctive queries
over O with the same head up to variable renaming [I]. For instance, the query
Qo, composed of queries [@)—([d) is a UCQ over the ontology Oy. A tuple of
constants a is a certain answer to a UCQ @ over O and a set of instance
data A iff OUAUQ | Qp(d), where Qp is the head predicate of @, and @
is considered to be a set of universally quantified implications with the usual
first-order semantics. The set of all answers to @) over O and A is denoted by
ans(Q, 0 U A). Given a conjunctive query ) and an ontology O, a query Qo is
said to be a rewriting of Q w.r.t. O if ans(Q, O U A) = ans(Qp, A) for every A.

Both algorithms compute the rewriting Qo of a given query @ w.r.t.
a DL-Liter ontology O. DL-Liteg is the basis for OWL 2 QL. Extending the
algorithms to handle the additional features of OWL 2 QL (e.g., datatypes, neg-
ative inclusions) is straightforward; we omit the details for the sake of simplicity.

3.1 CGLLR

The algorithm computes Qo by using the axioms of O as rewrite rules and
applying them to the body atoms of Q. The algorithm is shown in Algorithm [Tl
The partial function ref takes as input an axiom « and an atom D, and returns
an atom ref (D, «) as follows.

— If D= A(z), then we have that (i) if @« = B C A, then ref(D, o) = B(z);
(ii) if « = 3P C A, then ref(D, ) = P(z, ); and (iii) if « = 3P~ C A, then
ref(D,a) = P( ,x).

— If D= P(x, ), then we have that (i) if « = A C 3P, then ref(D, a) = A(x);
(i) if @« =35 C 3P, then ref(D,«a) = S(z, ); and (iii) if « =35~ C 3P,
then ref(D, o) = S( ,x).

— If D= P( ,x), then we have that (i) if « = A C 3P, then ref (D, a) = A(z);
(i) if @ = 3S C 3P, then ref(D, o) = S(z, ); and (iii) if « =35~ C 3P,
then ref(D, o) = S( ,x).

— If D = P(z,y), then we have that (i) if either a = SC Pora=S5"C P,
then ref(D, a) = S(z,y); and (i) if either « = SC P~ ora =S~ C P, then
ref(D,a) = S(y, z).
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Input: Conjunctive query @, DL-Liter ontology O
Qo = {Q}
repeat
foreach query Q' € Qo do
(reformulation) foreach atom D in Q' do
foreach aziom o € O do
if « is applicable to D then
Qo = Qo U{Q'[D/ref(D, a)]};
end
end
end
(reduction) forall atoms D1, D2 in Q' do
if D1 and D2 unify then
ag = MGU(D1,D2);
Qo = Qo U{NQ'0))};
end
end
end
until no query unique up to variable renaming can be added to Qo ;
return Qop;

Algorithm 1. The CGLLR algorithm

Input: Conjunctive query @, DL-Liter ontology O
R = 5(0)U{Q};
repeat
(saturation) forall clauses C1,C> in R do
R = RU resolve(Cy, Cb);
end

until no query unique up to variable renaming can be added to R ;
Qo = {C | C € unfold(ff(R)), and C has the same head predicate as Q};
return Qo;

Algorithm 2. Our resolution-based algorithm

If ref(D, «) is defined for e and D, we say that « is applicable to D. The
expression Q[D/D'] denotes the CQ obtained from @ by replacing the body
atom D with a new atom D’. The function MGU takes as input two atoms and
returns their most general unifier [I]. The function A takes as input a CQ @ and
returns a new CQ obtained by replacing each variable that occurs only once in
Q@ with the symbol “ 7.

Starting with the original query @, CGLLR continues to produce queries
until no new queries can be produced. In the reformulation step the algorithm
rewrites the body atoms of a given query @)’ by using applicable ontology axioms
as rewriting rules, generating a new query for every atom reformulation. Then,
in the reduction step the algorithm produces a new query A(Q'c) for each pair
of body atoms of @’ that unify.
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3.2 RQR

The algorithm first transforms @) and O into clauses and then computes Qo by
using a resolution-based calculus to derive new clauses from the initial set. The
procedure is presented in Algorithm 2] where we show only those parts of the
original algorithm that are relevant to DL-Liteg. The expression Z(Q) denotes
the set of clauses obtained from O according to Table [II The function resolve
takes two clauses C7 and C5, and it returns a set containing every clause Cg
that can be obtained by combining the atoms of C; and C5 according to the
inference templates shown in Table @ A template of the form RP 2 denotes
that, if C; is a clause of the form of P; and Cj is a clause of the form of P, then
resolve(C1, C2) contains all clauses of the form of R that can be constructed from
Cy and Cy; otherwise, resolve(C1, C2) = 0. The function ff takes a set of clauses
N and returns the subset of the function-free clauses in N. The function unfold
takes a set of clauses IV, and returns the set obtained by unfolding every clause
in N; for example, if we have that N = {Qp(x) «— A(x), A(z) «— B(z)}, then
unfold(N) = NU{Qp(x) «— B(x)}, where Qp(z) «— B(z) is the result of un-
folding A(x) <« B(z) into Qp(x) «— A(x). A formal description of the unfolding
step can be found in [9)].

RQR computes Qp in three steps: first, in the clausification step, the algo-
rithm transforms @ and O into a set of clauses =Z(O) U {Q}; second, in the
saturation step, the algorithm continues to produce clauses until no new clauses
can be produced; third, in the unfolding and pruning step, clauses that are not
function free are discarded, the remaining clauses are unfolded, and then clauses
that do not have the same head predicate as ) are also discarded.

3.3 Differences

The algorithms mainly differ in the way they handle existential restrictions.
This difference is twofold: first, while RQR deals with axioms containing ex-
istential quantifiers on the right-hand side by introducing functional terms,
CGLLR does so by restricting the applicability of such axioms and relying
on the reduction step; second, unlike RQR, CGLLR does not handle quali-
fied existential restrictions natively—that is, there is no rewriting rule for ax-
ioms of the form A C 3R.B; instead, the algorithm requires a preliminary step
in which each such axiom occurring in O is replaced with a set of axioms
{AC 3P,,3P C B, P, C R}, where P; is a new atomic property not occurring
in O. We explore these differences and their impact on the size of the rewritings
by means of an example.
Consider an OWL 2 QL ontology O that consists of the following axiom

Professor T Jteaches.Student, (8)
which states that a professor teaches at least some student, and the query

Q1(x) < teaches(z,y) A Student(y). 9)
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Table 1. Translating O into a set of clauses =(O)

DL-Liter clause DL-Liter axiom
B(z) «— A(z) ACB

Jp~C A
y) — P(x,y) PCS,PTCS™
y) < P(y,x) PC S ,P"CS

Note 1. Each axiom of the form A C dR.B is uniquely associated with a function

symbol f.

Table 2. Inference templates for the function resolve

C(z) = B(z) B(f(z)) — A(z)
C(f(z)) — A(z)

B(z) — P(z,y) Pz, f(z)) — A(z)  B(z) < P(z,y) P(f(z),z) — A(z)
B(z) — A(x) B(f(z)) — A(z

B(z) — P(y,z) Ple,f(z) — A(z) B(x) — Py,
B(f(x)) — Alx) B(z)

ANDi(t:) B(f(x 1)) — Ax)
— A(z)o A\ Di(ti)o
f(x)), and B(t) is deepest in its clause.

"U

Qp (i) — P(s,t) A\ Di(t:) Pz, f(2)) — A(z)
Q;)v(u)a — A(z)o AN N\ Di(ts)o

where o = MGU(P( P(z, f(x)), and P(s,t) is deepest in its clause.

t)A/\D() P(f(x),z) — A(z)
A(z)o A\ Di(ti)o

( ),z), and P(s,t) is deepest in its clause.

A\_/
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We first analyze the execution of CGLLR. Note that CGLLR cannot handle
axiom () natively, and it must first be replaced with the following axioms:

Professor T 3R 4. (10)
3R, C Student (11)
Rgu. T teaches (12)

In the first iteration, axiom (I2) is applicable to the atom teaches(z,y) in ().
Similarly, axiom (1)) is applicable to Student(y) in ([@). Therefore, we obtain the
following queries in the reformulation step:

Q1(z) — Rauz(z,y) A Student(y) (13)
Q1(z) «— teaches(z,y) A Rauz( ,y) (14)

In this iteration no query can be obtained in the reduction step. In the next itera-
tion, axiom (I0) is not applicable to the atom Ry (2, y) in (I3) because y occurs
in (I3)) in more than one place. Axiom (I0) cannot be applied to ([I3]) because
CGLLR does not keep track of information about role successors; furthermore,
if we naively allowed existential quantification axioms to be applied, the result-
ing calculus would become unsound. To illustrate this point, suppose that (I0)
were applicable to Rz (2,y) in ([3), and ref(Ryu.(x,y), ([Q)) = Professor(z);
we would then obtain the query

Q1(x) « Professor(z) A Student(y). (15)

Note that the relation between x and y is lost—that is, the fact that the individ-
ual represented by y must be a teaches-successor of the individual represented
by x is not captured by query (IH]).

Although the applicability of (I0) is restricted, axiom (Il is applicable to
Student(y) in ([[3). Similarly, axiom (I2]) is applicable to teaches(z,y) in (I4).
Both reformulations produce the query

Ql(-r) — Rauz(xa y) A Rauw( 7y)- (16)

In the next iteration, no axiom is applicable to any body atom of (I6]), so no
query is added in the reformulation step. In the reduction step, however, the
algorithm produces

Q1(7) « Rouz(z, ) (17)

by unifying the body atoms of ([I6]). In the following iteration, axiom ([I0) is
applicable to the only body atom of (7)), producing

Q1(z) « Professor(z). (18)

Note that without the reduction step, the algorithm would not have produced
query ([I8). It can be easily verified that no more new queries can be produced;

thus, CGLLR returns {(@), (@3), (@), (@6), D), @) }.
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We now analyze the execution of RQR. According to Table [M, axiom (&) is
translated into the following clauses:

teaches(zx, f(z)) <+ Professor(z) (19)
Student(f(z)) < Professor(z) (20)

In the saturation step the algorithm produces

resolve(([@), (I9)) = Q1 (z) « Professor(x) A Student(f(z)) (21)
resolve(([@), 20)) = Q1 (z) « teaches(x, f(z)) A Professor(x) (22)
resolve(([[d), 22)) = Q1(z) < Professor(x) (23)

Note the difference between queries (IH) and (ZI)). Since the function symbol f
is uniquely associated with clause (), unlike query ([[3), query 1)) captures
the fact that the individual represented by f(z) must be a teaches-successor of
the individual represented by x. It can easily be verified that no other clause is
produced in the first step. Clearly, ff(R) = {(@), 23)}. In this case, there is no
unfolding to be done, so RQR returns {(@), @3)}.

As shown in the above example, the introduction of auxiliary properties can
lead to an increase in the size of the rewritings. The reduction step alone, how-
ever, can also lead to larger rewritings. This situation arises especially in the case
where part of the data of the database describes a graph. As a simple example,
consider an OWL 2 QL ontology Os that consists of the axiom

Student C JhasTutor, (24)
which states that a student has at least one tutor, and the query

Q2(z) «hasTutor(x, y) A hasTutor(z, y) A hasTutor(z, w) A hasTutor(x, w).
(25)

When using CGLLR, axiom (24]) is not applicable to query (28, so no query is
produced in the reformulation step. However, every pair of body atoms in query
@3) unify, and it is easy to see that for each query of this form with m body
atoms, CGLLR produces (”21) new queries in the reduction step. Eventually, the
reduction step produces the query

Q2(x) < hasTutor(x, ). (26)

Axiom (24]) is now applicable to query ([26]), and the following query is produced
in the reformulation step:

Q2(x) « Student(x) (27)

Note, however, that several queries needed to be produced in the reduction step
in order to produce query (Z7) in the reformulation step.

An important remark is in order. For every query @’ produced from a query Q
in the reduction step, there is a substitution o such that Qo C @Q’, in which case
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we say that Q subsumes Q'. It is well known that every query that is subsumed
by another can be discarded after the rewriting has been computed without af-
fecting completeness [5]; however, identifying such queries is not straightforward
since CGLLR does not keep track of which queries were produced in the reduc-
tion step. In our example, query (25) subsumes query (26]) by the substitution
o = {z — z,w — y}; therefore, query (28] can be safely discarded from the final
rewriting. In this case, however, note that query (26]) subsumes query (23] as
well; therefore, it is sensible to eliminate query (23] instead since it is larger.
Since both queries subsume each other, we say that they are equivalent. More-
over, since query (26]) is the minimal equivalent subquery of query (23], we say
that query (20]) is a condensation of query (23] [2]. The potential generation of
condensations by the reduction step plays an important role in the optimization
of the rewritings. We discuss this aspect further in the following section.

The use of functional terms makes RQR more goal-oriented, in the sense that
it does not need to derive the “irrelevant” queries produced by the reduction step
of CGLLR in order to be complete. Moreover, RQR handles qualified existential
restrictions natively, whereas CGLLR needs to encode them away by introducing
new properties and axioms.

3.4 Optimizations

As discussed in the introduction, both algorithms are amenable to optimization.
One obvious optimization technique is to check subsumption between pairs of
conjunctive queries and eliminate any query that is subsumed by another. Such
a procedure can be simply (albeit not necessarily optimally) applied a posteriori
to the rewritings produced by RQR and CGLLR.

It is important to note that using the query subsumption optimization with
RQR and CGLLR does not necessarily result in exactly the same rewritings. This
is due to the fact that the CGLLR reduction step may produce condensations.
We illustrate this point with an example. Consider an OWL 2 QL ontology Os
that consists of the following axiom

Jteaches™ C Student, (28)
which states that someone that is taught is a student, and the query
Q3(x) « teaches(z,y) A Student(y). (29)
CGLLR produces a set containing (29) and the following queries:

Q3(x) < teaches(z, y) A teaches( ,y) (30)
Q3(x) < teaches(z, ) (31)

Note that query BI)) was produced in the reduction step from (B0) and it is a
condensation of ([B0). In the query subsumption check we have that query (BI)
subsumes query (29), so the latter is discarded. Note, however, that query (3]
subsumes query ([B0) and vice versa. Therefore, since it is sensible to discard the
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larger query, the condensation (31)) is kept and query (B0) is discarded instead.
It is easy to see that in the end we obtain {@I])}.

When using RQR, axiom (28)) is translated into the following clause:
Student(z) < teaches(y, ) (32)
The algorithm then produces a set containing (Z9) and the following clause:
Q3(x) < teaches(z,y) A teaches(z,y) (33)

Since ([B3]) subsumes (29]), it is easy to see that after the query subsumption check
we obtain {(B3)}. As can be seen, [BI) is slightly smaller than [B3]); it is also a
condensation of ([B3]). In our empirical evaluation (see Section Hl), the optimized
versions of RQR and CGLLR produced the same rewritings modulo the con-
densations produced by CGLLR. Modifying RQR to replace queries with their
condensations before the query subsumption check would be straightforward.

Finally, we briefly describe two other well-known optimizations: forward and
backward subsumption [2]. Both optimizations compare each new clause C pro-
duced in the saturation step with the set of previously generated clauses. In
forward subsumption, C' is discarded if the set of clauses already contains a
clause C’ that subsumes C; in backward subsumption, C’ is removed from the
set of clauses if it is subsumed by C.

Since RQR is based on a resolution calculus, both forward and backward sub-
sumption can be straightforwardly applied without affecting completeness [2].
In the case of CGLLR, however, forward subsumption cannot be (straightfor-
wardly) applied: every query produced in the reduction step is subsumed by
another previously produced query; forward subsumption would thus effectively
eliminate the reduction step, and so compromise completeness. For example, for-
ward subsumption would remove query (26]) in the above example, preventing
the generation of query (21). It is not clear whether backward subsumption can
be applied to CGLLR without affecting completeness.

4 Evaluation

In this section we present an empirical evaluation of our implementations of
the RQR and CGLLR algorithms. RQR is implemented in a rewriting system
that we call REQUIEM, while our CGLLR implementation is called C. We also
implemented optimized versions of the two algorithms that try to reduce the size
of the rewriting using an a posteriori query subsumption check—these are called
REQUIEM-SC and C-SC, respectively. Note that C-SC eliminates queries that
contain auxiliary properties (introduced by the encoding of qualified existential
restrictions) before performing the query subsumption check. Both REQUIEM
and C are available at REQUIEM’s Web site.

The main goal of the evaluation is to compare the algorithms w.r.t. the size of
the rewritings they produce. Simply counting the number of conjunctive queries
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in each rewriting might not provide a fair comparison as the queries themselves
could differ in size; we therefore additionally measured the total number of sym-
bols needed to represent the complete rewriting in the standard datalog notation.
We also measured the time taken for each rewriting procedure. In view of our rel-
atively nalve implementations, however, this may not provide a very meaningful
measure of the likely cost of the rewriting process. We therefore also measured
the number of inferences performed by each algorithm, where by an inference
we mean the derivation of a query. Note that the number of inferences is not
necessarily the same as the number of queries in the final rewriting since an
algorithm may derive the same query more than once.

Tests were performed on a PC running Windows XP with a 2.59 GHz Intel
processor and 1.87 GB of RAM. We used Java 1.6.0 Update 7 with a maxi-
mum heap size of 256 MB. Tests were halted if execution time exceeded 600
seconds.

4.1 Test Ontologies and Queries

The test set mainly consists of DL-Liteg ontologies that were developed in the
context of real applications, along with test queries that are based on canonical
examples of queries used in the corresponding application.

V is an ontology capturing information about European history, and developed
in the EU-funded VICODI pro jectﬁ S is an ontology capturing information about
European Union financial institutions, and developed for ontology-based data
access [10]. U is a DL-Liteg version of LUBMEI—a benchmark ontology developed
at Lehigh University for testing the performance of ontology management and
reasoning systems—that describes the organizational structure of universities. A
is an ontology capturing information about abilities, disabilities, and devices, and
developed to allow ontology-based data access for the South African National
Accessibility Portal [7].

We additionally included two synthetic ontologies in our tests in order to pro-
vide a controlled scenario to help us understand the impact of the reduction step.
P1 and P5 model information about graphs: nodes are represented by individu-
als, and vertices are assertions of the form edge(a,b). The ontology P5 contains
classes representing paths of length 1-5, while P1 contains a class representing
paths of length 1 only.

Finally, for every ontology containing qualified existential restrictions, we cre-
ated an ontology where the relevant axioms have been replaced by applying the
encoding required in CGLLR. We included these ontologies in order to measure
the impact of the encoding and the saturation step separately. These ontologies
are identified with the name of the original ontology and the suffix X. In our
discussion, we refer to these ontologies as the AUX ontologies and we refer to
the others as the original ontologies. All the ontologies and queries are available
at REQUIEM’s Web site.

® http://www.vicodi.org/
Shttp://swat.cse.lehigh.edu/projects/lubm/
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Queries Symbols Inferences Time
O |Q] R c RSC CsC R Cc RSC CSC |R/IRSC C/CSsC R [ RSC csc
1 15 15 15 15 454 454 454 454 14 14 16 1 31 1
2 10 11 10 10 762 812 762 762 9 10 16 1 47 15
V|3 72 72 72 72| 6,525 6,525 6,525 6,525 117 117 31 31 62 47
4| 185 185 185 185 11,911 11,911 11,911 11,911 328 328 62 47 141 110
5 30 150 30 30| 3,761 16,255 3,761 3,761 59 475 31 78 63 110
1 6 6 6 6 158 158 158 158 48 9 15 1 16 1
2| 160 204 2 2| 11,422 13,680 154 66 689 876 78 78 109 141
S [3| 480 1,194 4 4| 56,536 121,674 488 232| 3,130 7,523 438 922 1,062 2875
4| 960 1,632 4 4| 111,092 173,088 468 224| 5,841 10,270 828 1,109 2,171 4,156
5(2,880 11,487 8 8| 466,896 1,602,203 1,320 648| 24,332 87,324| 9,829 80,031 34,681 233,958
1 2 5 2 2 118 286 118 118 26 4 16 1 31 1
2| 148 287 1 1| 10,378 18,496 68 30 307 589 47 62 93 125
U |3] 224 1,260 4 4| 29,376 151,848 516 372 570 4,228 94 531 203 640
411,628 5,364 2 2| 113,270 348,782 124 56| 5,028 18,541 797 4,610 4,093 8,390
5|2,960 9,245 10 10] 279,266 822,279 932 506| 13,085 43,306 3,234 16,219 15,262 29,204
1] 402 783 27 27| 21,933 39,593 901 901 934 1,958 94 157 265 350
2| 103 1,812 50 50| 7,122 116,137 3,783 3,783 308 4,986 47 687 78 719
A 3| 104 4,763 104 104 10,108 413,760 10,108 10,108 461 14,454 78 4,187 93 4,266
4| 492 7,251 224 224| 33,454 461,549 16,069 16,069 1,405 21,377 156 8,000 422 8,250
5| 624 - 624 -| 70,320 - 70,320 -| 2,618 - 328 - 1,031 -
1 2 2 2 2 42 42 42 42 1 1 1 1 1 1
2 2 3 2 2 70 92 70 70 4 2 1 16 16 30
P13 2 7 2 2 98 262 98 98 9 9 1 16 16 30
4 2 16 2 2 126 734 126 126 16 38 1 16 16 30
5 2 33 2 2 154 1,824 154 154 25 129 15 31 16 47
1 6 14 6 6 122 298 122 122 9 13 1 1 1 1
2 10 86 10 10 286 2,814 286 286 75 141 15 15 15 31
P5 |3 13 538 13 13 486 23,740 486 486 428 1,348 94 141 95 142
4 15 3,620 15 15 708 200,696 708 708 2,238 12,471 922 3,546 1,045 3,607
5 16 25,256 16 16 938 1,690,902 938 938| 11,350 113,277| 24,172 265,875 30,000 270,520
1 5 5 5 5 286 286 286 286 39 4 16 1 31 1
2| 240 286 1 1| 16,208 18,496 68 30 510 589 78 78 187 156
UX [3]1,008 1,248 12 12| 125,304 151,848 1,452  1,060| 3,240 4,228 641 532 2,093 2,484
45,000 5,358 5 5| 332,000 348,782 283 131/ 17,188 18,541| 5969 4,719 36,247 38,189
5(8,000 9,220 25 25| 737,000 822,279 2,240  1,220| 37,635 43,306| 19,141 15,844 106,055 108,034
1] 782 783 41 41| 39,527 39,549 1,399  1,385| 1,785 1,958 218 156 766 765
21,781 1,812 1,431 1,431| 114,537 116,137 91,576 91,145| 5073 4,986 1,016 688 5547 5,282
AX |3|4,752 4,763 4,466 4,466| 413,030 413,760 388,457 388,303| 14,629 14,454| 7,375 4,125 49,452 45876
4|7,100 7,251 3,159 3,159| 454,807 461,549 199,604 197,955| 21,137 21,377| 13,032 8,047 72,781 79,377
5 - - - - - - - - - - - - - -
1 14 14 14 14 298 298 298 298 25 13 15 16 16 1
2 77 86 25 25| 2,616 2,814 784 728 182 141 31 15 63 47
P5X|3| 390 530 58 58| 18,574 23,452 2,480 2,326 1,241 1,348 156 141 406 609
41,953 3,476 179 179|120,232 193,608 10,010 9,520| 7,832 12,471| 2375 3,469 9,610 26,438
5[9,766 23,744 718 -| 737,890 1,597,158 50,120 -| 47,100 -| 69,454 249,177 280,381 -

Fig. 1. Results

The number of classes, properties, and axioms are as follows:

V S U A P1P5 UX AX P5X

classes 19418 34 74 2 6 35 74 6

properties 10 12 26 5 1 1 31 31 5
axioms 222 51 127 137 2 10 137 189 18

4.2 Results

Figure [ shows the results of the empirical evaluation. For each ontology and
query, the column “Queries” shows the number of conjunctive queries in the
rewriting, the column “Symbols” shows the number of symbols needed to repre-
sent the rewriting in datalog notation, the column “Inferences” shows the num-
ber of inferences that were performed by each implementation to compute the
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rewritings (note that the number of inferences for REQUIEM and REQUIEM-
SC, and for C and C-SC, is always the same), and the column “Time” shows
the number of milliseconds taken to compute the rewritings.

Comparing REQUIEM to C w.r.t. the original ontologies, it can be seen that
REQUIEM produced smaller rewritings than C in 25 out of 30 cases and equal
sized rewritings in the remaining 5 cases. Moreover, REQUIEM was often faster
and performed fewer inference steps, particularly in non-trivial cases (i.e., where
both implementations took more than 1,000ms). The differences in the size of
the rewritings are often significant: in the fifth queries over U, S, and P5, for
example, the rewritings produced by C contain between two and four times
as many queries (and contain correspondingly larger numbers of symbols). In
the fifth query over A, C had already produced more than 42,000 queries when
it exceeded the 600 second time limit; in contrast, REQUIEM completed the
rewriting in less than 350ms and produced only 624 queries.

When we compare REQUIEM to REQUIEM-SC, we can see that they pro-
duced the same rewritings in 19 out of 30 cases. In some cases, however, the
rewriting produced by REQUIEM was much larger: in the fifth query over S, for
example, REQUIEM’s rewriting contained 2,880 queries compared to only 8 for
REQUIEM-SC. As we might expect given the larger rewritings produced by C,
it produced the same rewritings as C-SC in only 6 out of 30 cases. The differ-
ences in size were also generally larger: in the fifth query over S, for example, C’s
rewriting contained 11,487 queries compared to only 8 for C-SC. The large size
of the rewritings produced by C also mean that performing query subsumption
tests over these rewritings can be costly. In the fifth query over S, for example,
C-SC takes nearly three times as long as C.

Comparing REQUIEM-SC to C-SC, we can see that REQUIEM-SC produced
the same rewritings as C-SC in 21 out of 30 cases, larger rewritings in 8 cases, and
a smaller rewriting in the remaining case (due to the fact that C-SC exceeded
the maximum time of 600 seconds). The differences in size are minimal, and the
number of queries in the rewritings is always the same (with the exception of
the case where C-SC exceeded the time limit). Note that the smaller rewritings
produced by C-SC are due to its generation of condensations (see Section [3)).

If we turn our attention to the AUX ontologies, we can see that REQUIEM
still produced smaller rewritings than C in 12 out of 15 cases, although the
differences were less marked. Moreover, REQUIEM still performed less inferences
than Cin 9 out of 15 cases. In contrast to the results with the original ontologies,
REQUIEM was slower than C in 10 out of 15 cases; the differences, however,
were generally small.

Our analysis suggests that REQUIEM will produce significantly smaller
rewritings than C and will be significantly faster, particularly in cases where the
queries are relatively complex and/or the ontologies contain a relatively large
number of qualified existential restrictions. The size of the rewritings produced
in some cases also means that a query subsumption check may be prohibitively
costly in practice with CGLLR, even when queries containing auxiliary prop-
erties are removed before performing the check. Moreover, the results for the
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AUX ontologies suggest that the reduction step alone has a negative impact on
the size of the rewritings—that is, the introduction of auxiliary properties does
contribute to producing large rewritings, but it is not the only cause.

5 Future Work

We plan to implement an ontology-based data access system using REQUIEM
enhanced with various optimizations (i.e., forward/backward subsumption, query
subsumption, and query condensation); we expect such a system to perform well
both w.r.t. the size of the rewritings and the time needed to compute them. The
practicality of such a system is, however, still open, as our results suggest that
there are cases where the rewritings may be too large to evaluate. In such cases,
we believe that a further optimization that uses the mappings to prune irrele-
vant queries (as described in Section 2)) might produce rewritings of manageable
proportions. We plan to test our system with actual data in order to discover if
this is indeed the case. Finally, we plan to extend the system to support all of
OWL 2 QL, which mainly involves adding support for datatypes.
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