Synthesizing Semantic Web Service
Compositions with jMosel and Golog

Tiziana Margaria®, Daniel Meyer®, Christian Kubczak?, Malte Isberner?,
and Bernhard Steffen?

L Chair Service and Software Engineering, Universitit Potsdam, Germany
{margaria,meyerd}@cs.uni-potsdam.de
2 Chair of Programming Systems, TU Dortmund, Germany
{christ ian.kubczak,malte.isberner, steffen}@cs .tu-dortmund.de

Abstract. In this paper we investigate different technologies to attack
the automatic solution of orchestration problems based on synthesis from
declarative specifications, a semantically enriched description of the ser-
vices, and a collection of services available on a testbed. In addition to
our previously presented tableaux-based synthesis technology, we con-
sider two structurally rather different approaches here: using jMosel, our
tool for Monadic Second-Order Logic on Strings and the high-level pro-
gramming language Golog, that internally makes use of planning tech-
niques. As a common case study we consider the Mediation Scenario
of the Semantic Web Service Challenge, which is a benchmark for pro-
cess orchestration. All three synthesis solutions have been embedded in
the JABC/JETI modeling framework, and used to synthesize the abstract
mediator processes as well as their concrete, running (Web) service coun-
terpart. Using the jJABC as a common frame helps highlighting the es-
sential differences and similarities. It turns out, at least at the level of
complication of the considered case study, all approaches behave quite
similarly, both considering the performance as well as the modeling. We
believe that turning the jJABC framework into experimentation platform
along the lines presented here, will help understanding the application
profiles of the individual synthesis solutions and technologies, answering
questing like when the overhead to achieve compositionality pays of and
where (heuristic) search is the technology of choice.

1 Introduction

Dealing with (Web) services, semantics is gaining terrain as technology for appli-
cation development and integration. However, semantics-based technology is still
highly complicated in usage and implementation, which explains its relatively
slow industrial adoption. It is the goal of the Semantic Web Service Challenge
(SWSC) to overcome this situation by studying concrete case studies, with the
goal of pinpointing the application profiles of the various approaches proposed
so far. The corresponding leading case study is the Mediation Scenario [I], a
business orchestration problem that requires adequate “translation” between
different communication protocols and data models.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 392 2009.
© Springer-Verlag Berlin Heidelberg 2009

Synthesizing Semantic Web Service Compositions with jMosel and Golog 393

Blue (Customer) Moon (Manufacturer)
Web Services Mediator Legacy System Web Services
(provided by workshop organizers) {to be built by participants) (provided by workshop organizers)
Medistor Customer Relationship
Maragenient System
Obtain moons
™| internal customer id [rehGustamer
CustomarObject aperation
ReseltaNet System T
|
PIP3R PO *
Sand PO koWl dgmentORacaim| | Recetve PO endpoint | —) Orler Management System
Greate order using | _ |
intermnal customer id
Customerld - createNewOrder

T Grdarid operation
]

h 4

Orderld, Articleld, Quantity addlineltem

— % Sendline ltemn [

| SubmissionConfirmationDbject operation
RosattaNet PIP3A4 POC
Receive POC - AcknoaladgmentotRacalp -] Send POC e - } ;
L
Y Crderid w| closerder operation
Closs orger —
confemLineltam ConfirmiRefusa Lina

I

operaiion GrderConfimationObject ttam

Fig. 1. The Mediation Scenario of the SWS Challenge

In this scenario, a customer named Blue (Fig. [{left)) submits business or-
ders in format and protocol compliant to the RosettaNet Pip3A4 protocol [2]
to the backend system ofMoon (Fig. Di(right)). Since Moon does not support
RosettaNet the Pip3A4 communication standard, the task of the challenge is to
automatically generate a mediation service that enables Moon’s legacy system
to process the requests submitted by Blue.

This problem has been addressed by several research groups in the past: 5
solutions, 2 of which ours, have been presented and compared in [3]. We first di-
rectly modeled the mediator’s orchestration in the jJABC [A56l7], our framework
for service oriented development and model-driven orchestration, and generated
and published the mediator using our jETI technology. In jJABC, processes are
orchestrations, they are modeled as directed flow graphs called Service Logic
Graphs (SLG), where the nodes, which represent the services, are called Service
Independent Building Blocks (SIBs).

Second, we enhanced the capabilities of the JABC by integrating a synthesis
algorithm based on Semantic Linear Time Logic (SLTL) specifications [§]. Us-
ing this synthesis method, we were indeed able to automatically (re-)produce
an equivalent orchestration [9]. This observation got us interested in using also
other very different process/model synthesis techniques on the same problem,
in order to compare (following the original purpose of the SWS Challenge) dif-
ferent methods and techniques, based on different semantic representations of
declarative knowledge and goals.

394 T. Margaria et al.

Domain model, SLTL

Basic Action W "
Theory) (loose Galcg)

Golog based Synthesis
(by backward chaining)

Config.
\ Universe /

Tableaux-based Synthesis
(by forward proof construction)

M2L(Str) based Synthesis
(by compositional automata construction)

Automata
\ Product /
O Synthesised Process

(formally a Transition System)

Fig. 2. The landscape of synthesis techniques in jJABC

In this paper, we apply two alternative and conceptually very different ap-
proaches to planning to the Mediation Scenario:

— an approach based on monadic second order logic on strings M2L(Str) [10],
which works by compositional automata construction in jMosel [I1], and

— an approach based on Golog [12], a tool that internally uses backward chain-
ing for solving planning/synthesis tasks. This work is based on the well
known situation calculus planner by Reiter.

Fig. 2l provides a conceptual sketch covering the essence the three approaches we
considered in details so far. Our study revealed that despite the huge conceptual
difference these three approaches share quite some similarities. In particular,
they were all able to quite naturally express the original problem in sufficient
detail to automatically synthesize the desired solution to the Mediation problem
(cf. Fig.[6). However there are also similarities at a different level, which became
apparent when modeling the Golog-synthesis process itself as a process using
JABC. To this aim, we implemented the steps described so far as a set of inde-
pendent, reusable building blocks (SIBs). The resulting 7-step synthesis process
is shown in Fig. Bl It is the same process we obtained with jMosel and with
the previous (S)LTL based synthesis methods. Thus this process can be consid-
ered as a pattern for synthesis solutions, which allows one to integrate and/or
combine various synthesis and transformation functionalities like the ones sum-
marized in Fig. 2 to complex heterogeneous solutions. These solutions are then
directly executable inside the JABC, or, as we did in the previous phases of the
Challenge, they can be exported as a Web service.

After presenting our modeling framework jJABC in Section 2] we show how we
can easily plug in different algorithms and knowledge representation formalisms,
namely jMosel, see Section [Bl and Golog, Section @l Subsequently we show how

Synthesizing Semantic Web Service Compositions with jMosel and Golog 395

Plan-jETI - Golog Synthesis - D¢ jab.plugins.synth.gol /jabc/golog-synthesis.xml - JABC V 3.7 - 16.10.2008

File Edit Project SIB Edge craph View Mode Extras Plugins Help
o 2] (@) (3] oy BB
= — WS

(Projects | SIBs Plan-jETI - Golog Synthesis \

BEE
5 B . ‘Plan jETI =

[PlanGologWspbf
E & de.jabc.sib.sws.mediation. helper Error Path Main Path toolset for model SY""'ESJ-S

[0 CheckLineltemStatusMap
0] ConsumeOrderLinettemConfirmation Golog Synthesis
[C] ConsumePip3A4PurchaseOrderRequest error. E“
[C] ConsumeReceiptAcknowledgment O@default* .
[0 ConsumeSearchCustomerResponseType @ oad and parse the activity taxonomy
[ProvideCloseOrderType ParseTs LoadTs
[ProvideHolder = default
[0] ProvideLineltemid ~
[ProvideLineltemType error— e load and parse the type taxonomy
B provideOrderT, << default— (=T,

rovideOrderType
[m] ParseTt LoadTt

haseOrderConfirmation
[m] Prov\deSearchCusmmerTvpe
[PutLineltemStatusMap default
El (2 dejabc.sib.sws.mediation.synthesis L
[C] AddLineltemLoop
[0 ProvideOrderldHolder

e set the golog procedure "performMediation’
to be executed

(O saveltemsNoAndPOR setoal
[saveStartTime default
B (3 de jabc.sib.sws.mediation.ws.sib.jax
[[] CRMServiceV1isearch
() OMServiceV1addLineltem 1 —error D compile an executable golog program
[C] OMserviceVicloseOrder form the type taxonomy and the
[7] OMServiceV1createNewOrder L CompileGdlogTheory activity taxonomy
[T] RNetServiceV1receiveConfirmation -~ default
< I | 7 L
Clear | —
I error e send the compiled golog program to the
interpreter
(GEARI[Basic] APVS [sig icon | > Pmparckcmr{mmvnmuon
OntEDPlugin | LocalChecker | Reference
. ’ default
SIB. Graph 4 Draw
]
Label | w| SetGoal 5 . .)
H error Q" call to vultur: using golog to find
Taxo. be.sib.common.basic.PutExpression 2 a single (shortest) solution
m L] Planolog
textExpression) » —_—
ression: do(performMediation,s0,S) 8 efault
java.lang.Object a
ontextKey) 2
error
retrieve the output of the golog program
EvalualeRem+\e\nvo(alwon
default
A
generate and display an executable
<<——error ¢ xecu
= D a JABC graph from the terminating
L] Il | Display Error Message DisplayGeneratedGraph situation of the golog program
Par.
Value =
Kl I i]
["S/N 5763337343 |1 Cell selected I [[@[[[&] TALT| Developer |100%

Fig. 3. The Golog-based synthesis process modeled in jJABC

easily these at first sight completely different technologies can be operated on
top of the same platform and can be used to obtain the same results, see Sect.

2 Our Modeling Framework

Basic ingredient for the process mediation, e.g. for bridging the gap between
Blue and Moon, are:

— a set of business objects, including the definition of their structure, proper-
ties, and data types,

— a set of services (SIBs) operating on the business objects, including knowl-
edge about relevant properties, and

— domain knowledge, concerning semantic properties of the domain under con-
sideration (typically, information on the data and on how the data can be
manipulated by the services), and behavioral knowledge (often also called

396 T. Margaria et al.

procedural knowledge), that describes abstractly properties (restrictions,
precedences, lose constraints) of the collaboration of such services.

Behavioral knowledge is often present in a domain description, and often the
task to be performed by the orchestration is also already known in its behav-
ioral traits. From the point of view of a user of semantic techniques, all the
available knowledge should be optimally exploited by the techniques of a seman-
tic web framework, in order to ensure optimal precision and efficiency. Thus,
procedural knowledge is in our opinion much more than a way of formulating
domain specific heuristics to make process synthesis computationally feasible: in
real world applications, we need to be able to formulate constraints which must
be satisfied by processes in order to be admissible. For example we may need to
ensure

— general ordering properties (e.g., ensuring that some service is executed be-
fore another)

— abstract liveness properties (e.g., guaranteeing that a certain service is even-
tually executed)

— abstract safety properties (e.g., making sure that certain services are never
executed simultaneously).

However, we do not want to specify the whole processes in a static, fixed way. On
the contrary, we use loose coordination specifications, which leave room for vari-
ability inside the bounds of a declarative specification that includes behavioral
constraints.

In jJABC, we have implemented this adopting as semantic predicates abstrac-
tion concepts from dataflow analysis [I3] in a constructive way, leading to the
domain knowledge representation introduced in [SIT4YT5] and summarized in

Sect. 211

2.1 Modeling Domain Knowledge with Taxonomies

In jJABC’s modeling style, business objects are mapped to abstract semantic
concepts that we call Types, and services, actually the collection of SIBs corre-
sponding to single service operations, are mapped to semantic activities. Both
types and activities are organized in taxonomies.

A taxonomy 7ax = (T,CT, —) is a directed acyclic graph (DAG) where CT
is a set of concrete entities that are grounded to instances of the real world
(as the elements of the A-box of Description Logics), and that are the sinks in
the graph, T is a set of abstract concepts, and — relates concepts and concrete
elements (T, CT) or pairs of concepts (T',T').

In a type taxonomy, as shown in Fig. [for the mediation problem, 7;, =
(Ty, CTy,is a), where CTy is a set of semantic types that directly correspond to
individual business objects, T} is a set of abstract semantic types that represent
groups of business objects, and edges reflect an is a relationship. In our exam-
ple, OrderIDs and Confirmations are in the group Orders. The concrete types

Synthesizing Semantic Web Service Compositions with jMosel and Golog 397

LineTten T OrderIDut Orde ‘Dln th-fnﬂlﬂ UMM mm ArticlalD TimeOut AOR Quantity Iimmlln SaarchSiring
uple i ™ ‘Custameroblect PurbrderCon EustomerID

confReflineTtem addUineTtem
Searc

buildTuple dLinelt:
hCustomer T o irmL

Fig. 5. The Service Taxonomy for the mediation scenario

(the leaves of the taxonomy)are the most concrete semantic entities we want to
use in the synthesis problem - here directly the business objects used as input
and output by the services.

The activity taxonomy 7, = (A,CA,is a) is defined in the same way, as
shown Fig. B C'A is a set of concrete semantic activities, representing individual
SIBs, and abstract activities A represent groups of SIBs which share a common
set of (non-)functional properties.

2.2 Dataflow Facts as Semantic Preconditions/Effects

We now need to formulate knowledge about how the activities operate on the
types. At a technical level, Web services have very complex relations to business
objects. At the semantic level, we abstract these complex relations into three
basic functions, well known from dataflow analysis expressing the preconditions
and effects of services, which are technically stored in the JABC (semantic)
context:

398 T. Margaria et al.

Table 1. The SWS mediation Modules

name input type (uses) output type (gen) description
Mediator Maps RosettaNet messages to the
backend
startService {true} PurOrderReq Receives a purchase order request
message
obtCustomerID PurOrderReq Searchstring Obtains a customer search string
from the req. message
createOrderUCID CustomerObject CustomerID Gets the customer id out of the
customer object
buildTuple OrderID Tuple Builds a tuple from the orderID
and the POR
sendLineltem Tup]e Lineltem Gets a Lineltem incl. orderID, ar-
ticleID and quantity
closeOrderMed SubmConfObj OrderID Closes an order on the mediator
side
confirmLIOperation OrderConfObj PurOrderCon Receives a conf. or ref. of a
Lineltem and sends a conf.
Moon The backend system
searchCustomer SearchString CustomerObject Gets a customer object from the
backend database
createOrder CustomerID OrderID Creates an order
addLineltem Lineltem SumeOHfOb] Submits a line item to the back-
end database
closeOrderMoon OrderID TimeoutOut Closes an order on the backend
side
confRefLineItem Timeout orderConfObj Sends a conf. or ref. of a prev.

— use(+) : CA — P(CT)

subm. Lineltem

in order for the activity a to be executable, values of the set of type use(a)
must be present in the execution context
— gen(:) : CA — P(CT), gen(a) returns the set of types, values of which are
added to the context after invocation of the activity a
— kill(+) : CA — P(CT), kill(a) is the set of types, values of which are removed

form the context if a is invoked

Table [lists in the first column a selection of activities from the mediation
scenario and maps each activity to a set of input/use types (column 2) and a set
of output/gen types (column 3). In this example there are no kill types.

The jMosel approach presented in Section Bl can directly work with this repre-
sentation of the domain knowledge. In Sect. @ we show how to translate it into

situation calculus and Golog.

2.3 Expressing Behavioral Knowledge

The loose coordination specification language we use to express procedural knowl-
edge is Semantic Linear Time Logic (SLTL) [8], a temporal (modal) logic that
includes the taxonomic specifications of types and activities.

Synthesizing Semantic Web Service Compositions with jMosel and Golog 399

Definition 1 (SLTL)
The syntaz of Semantic Linear Time Logic (SLTL) is given in BNF' format by:

D= tt] type(te) | ~® | (B AD) | <ac> B | G(P) | (60U D)

where t. and a. represent type and activity constraints, respectively, formulated

as taxonomy erpressions.

Taxonomy expressions are for this example propositional formulas that use as
propositions the concepts in the taxonomies of Figs. @l and [l and the use, gen,
kill predicates already introduced.

SLTL formulas are interpreted over the set of all legal orchestrations, which
are coordination sequences, i.e. alternating type correct sequences of types and
activitie, which start and end with types. The semantics of SLTL formulas can
now be intuitively defined as follows2:

— type(t.) is satisfied by every coordination sequence whose first element (a
type) satisfies the type constraint ¢..

— Negation — and conjunction A are interpreted in the usual fashion.

— Next-time operator <> :
<a.> @ is satisfied by coordination sequences whose second element (the first
activity) satisfies a. and whose suﬂ%ﬁ satisfies @. In particular, <tt> & is
satisfied by every coordination sequence whose suffix satisfies &.

— Generally operator G:
G(®) requires that @ is satisfied for every suffix satisfies .

— Until operator U:
(P U W) expresses that the property @ holds at all type elements of the se-
quence, until a position is reached where the corresponding suffix satisfies
the property ¥. Note that ¢ U ¥ guarantees that the property ¥ holds even-
tually (strong until).
The frequently occurring formula (true U W) is called Eventually and is writ-
ten F V.

The above definition of suffix may seem complicated at first. However, thinking
in terms of path representations clarifies the situation: a sub path always starts
with a node (type) again. However, users should not worry about these details:
they may simply think in terms of pure activity compositions and should not
care about the types (which are matched correctly by the synthesis algorithm),
unless they explicitly want to specify type constraints.

! During the description of the semantics, types and activities will be called elements
of the orchestration sequence.

2 A formal definition of the semantics can be found online.

3 According to the difference between activity and type components, a suffix of a
coordination sequence is any subsequence which arises from deleting the first 2n
elements (n any natural number).

400 T. Margaria et al.

The introduction of derived operators, like Eventually, supports a modular and
intuitive formulation of complex properties. We support in the jABC meanwhile
a rich collection of frequently occurring behavioral templates, which ease the
declarative formulation of knowledge and goals.

SLTL is a specification language supported by jMosel. In Sect. [we will show
how we link up to Golog in order to apply it to the mediation problem.

3 Solving the Mediation with M2L(Str) in jMosel

We first formally describe the semantics of service invocation with the associated
use, gen and kill sets. At runtime, a service accepts certain inputs and produces
certain outputs according to its WSDL description. Semantically, we describe a
service (or concrete action) as a transformation on the power set of the set of
(concrete) types in the orchestration’s context:

eff(:)(-): CA — (P(CT) — P(CT)),

Accordingly, a service can only be invoked if all elements in use(-) are available
(preconditions), and it produces elements the context according to gen(-), and
invalidates the elements of the context specified in kill(-) (effects), thus

[(T \ kill(a))U gen(a) if use(a) CT
eff(a)(T) = {undef otherwise ’
Incidentally, this is the same abstraction used in Data Flow Analysis to describe
the operational semantics of operations, like assignments, which have precondi-
tions and (side) effects. This is the basis for constructing the structure the jMosel
synthesis uses as the domain specification, the configuration universe, which is
rather straightforward, and therefore omitted here due to lack of space.

3.1 jMosel, M2L and SLTL

The search for such a solution is done using a deterministic finite automaton
semantically equivalent to the given formula. The input symbols the automaton
is fed with are sets of atomic propositions (i.e., types) on one hand and actions
(i.e., services) on the other. Since it is not feasible to consider alternating se-
quences of types and actions, some technical fine-tuning is needed: we now regard
steps, consisting of an action (or init, which is not an action but is used for the
head of the path) and a set of atomic propositions. Thus, instead of alternating
sequences of sets of types and actions, we now consider strings over the step
alphabet Xgpep, = P(CT) x (CAU{init}). For example, the path tg, a1,t1, as, t2
now is written as (to, init)(t1, a1)(t2, az).

There exist several methods to transform an LTL formula into a Biichi au-
tomaton. However, since we are interested in finite sequences of services rather
than infinite words, a Biichi automaton is not quite what we want. One could

Synthesizing Semantic Web Service Compositions with jMosel and Golog 401

modify the existing algorithms for generating Biichi automata in the way that
NFAs or DFAs are constructed; we, however, want to describe a different ap-
proach, namely by using monadic second-order logic on strings, M2L(Str) [10],
and our toolkit for this logic, jMosel [TTI16].

jMosel calculates for a given input formula @ a deterministic finite automaton
A, with L(®) = L(A). A key characteristic of M2L(Str) is that it is compositional:
atomic formulae are transformed into simple basic automata; for a compound
formula, first the automata for its sub formulae are calculated, and then an
automata synthesis operation is applied. For details refer to [I7].

3.2 Mediator Synthesis

After the domain has been modeled by specifying the relevant modules and the
corresponding type and action taxonomies, the mediator synthesis proceeds by
the user

— entering a set of initial types Ty. In our example, we start with a purchase
order request, POR,

— providing the temporal specification formula in SLTL or one of our
dialects,

— specifying the desired kind of solution. For the case study, we selected min-
imality of the solution and the presentation in a format which is directly
executable (rather than as a sequence of alternating types and activities),
i.e. JABC’s SLGs. This results in the same solution as provided via Golog in
the next section (cf. Fig.

Tab. [2] presents the corresponding SLTL formula already together with some
intuitive explanations. The formula itself, which is just a combination of 4 next-
time operators and one eventually operator would easily fit in one line.

Table 2. Explanation of the specification formula used for the jMosel synthesis

Formula element Explanation
<ConsumePip3A4P0OR> The synthesized sequence should start with this service.
<SaveStartTime> A local service for time measurement. Since this is local to

our requirements, the invocation of this service is required
statically by the formula.

F Find a path in the configuration universe, such that the fol-
lowing two services can be invoked (This is where the actual
synthesis action happens).

<SaveItemsNoAndPOR> Again, this is a service local to our requirements, and there-
fore statically requested.

<0MServiceVicloseOrder> In the end, we want the order to be complete and therefore
closed.

tt Operand, required for the preceding unary next operator.

402 T. Margaria et al.
4 The Situation Calculus Solution with Golog

Golog is a high-level programming language based on the situation calculus [12]
that was successfully used to solve Web service composition problems [I8]. Here
we show how to match the problem structure of the mediation scenario with sit-
uation calculus, how we generate Basic Action Theories from the domain knowl-
edge representation of Sect. 2] how we model an abstract mediation process in
Golog, and finally how we synthesize the mediator.

4.1 Intuitive Ontology of the Situation Calculus and Golog

The situation calculus is designed for representing and reasoning about stateful
models, dynamically changing worlds, where changes to the world are due to
performing named actions. Sy is the initial state of the world, prior to any
action. Changes are effected by executing actions in a situation: s’ = do(a, s)
means that situation s’ is obtained by executing the action a in situation s.
For example, do(store(A, B), do(ship(A, B), do(construct(A), Sy))) is a situation
term denoting the sequence composition construct(A)oship(A, B)ostore(A, B).
Intuitively, situations are action execution paths, and denote indirectly states.
Predicates and relations are true in some state and false in others, thus state
variables are introduced by means of relational fluents. For example, the fluent
location(a, b, s) expresses that in the state of the world reached by performing
the action sequence s, object a is located at location b.

Domain axiomatizations in the situation calculus are called Basic Action
Theories and have the form

D=X U Dy U Dyp U Dyna U Dg,.

where X are the foundational axioms for situations, Dss are the successor state
axioms for fluents, Dy, is a set of action precondition axioms for situations, Dynq
is a set of unique names axioms for actions, Dg, is a set of first order sentences,
uniform in Sy. Basic action theories allow us to reason about action and change,
but they offer no way to express a “story” about how certain effects can be
achieved, thus no way of expressing procedural knowledge.

The high-level programming language Golog, built on top of Basic Action
Theories, allows writing high-level non-deterministic procedures which model
such a “story”. Golog, in its essential forndd provides the following language
constructs, originally inspired by Algol and its operational semantics:

Do(qS? s,8") Test actions
Do(61;09,s,8") Sequential composition
Do(61 |02, s,5") Non-deterministic choice of actions
Do((m) (z) s,8") Non-deterministic choice of action arguments
Do(6*,s,s") Non-deterministic iteration.

4 Golog has been extended in various ways to include e.g. concurrency, exogenous
events, and sensing [12].

Synthesizing Semantic Web Service Compositions with jMosel and Golog 403

that “macro expand” into terms in the situation calculus. As usual, constructs
like 7 f and while can be defined in terms of these basic constructs according
to the usual operational semantics. With these constructs, we can write Golog
procedures specifying the story, or the behavioral knowledge, of a domain and of
a solution.

Given a Golog procedure 6, Golog can prove constructively whether it is ex-
ecutable with respect to a given Basic Action Theory D: D = 3s.Do(d, So, s).
Since s is the terminating situation of the Golog program 9§, the proof returns a
sequence of primitive actions starting in the initial situation Sy consistent with
the procedure.

The resulting Basic Action Theory D allows us to determine for every situ-
ation whether a given activity(service) is executable, and what are the effects of
its execution. We now concentrate on the Golog-based process synthesis.

4.2 ‘Loose’ Golog: The :-Operator

In basic Golog, every action needs to be explicitly named in a procedure, and
the only operator that allows chaining service executions is the (immediate)
successor, corresponding to the SLTL operator Next. In order to specify loose
coordinations, that include Eventually and Until, we need operators that allow
replacement by an a priori undetermined number of steps. The underlying mo-
tivation is that those parts of the concrete processes are unspecified and any
sequence that satisfies their boundary conditions is there admissible, building
this way a (semantic) equivalence class.

When restricting ourselves to Eventually, which is sufficient for the considered
case study, this can be achieved using the :-Operator introduced in [18]. This
operator exploits planning/search to achieve the required preconditions of sub-
sequent services by inserting an appropriate sequence of actions. With ‘:” we can
easily specify the mediation task as the Golog procedure performMediation:

proc per formM ediation
consumePip3 A4 PurchaseOrder Request(A, B,C,D,E, F,Q) ;
saveStartTime

saveltemsNoAndPOR(J, K) ;
omServiceV1closeOrderSIB(L, M, N)
endProc.

Stating that the mediation process starts with the service consumePip3A4
PurchaseOrder Request and ends with the service omServiceV1closeOrderSIB.
What happens in between depends on precision of modeling and, in this case,
on Golog’s search strategy for an action sequence, making the entire sequence
executable. The result of the search is a suitable linear, deterministic sequence
of actions/activities (a service composition). The services saveStartTime and
saveltemsNoAndPOR are local services which need to be called in order for

404 T. Margaria et al.

O—s—0) O—s—0

ConsumePip3A4PurchaseQrderRequest SaveStartTime SaveltemsNoAndPOR OMServiceVicloseOrder

default default,

/
(=N g IRUFIN o ISP o ISP g IR g e~ o

ProvideSearchCustomerType CRMServiceV1search ProvideOrderType ~ OMServiceVicreateNewOrder ProvideCloseOrderType ProvideOrderldHolder AddLineltemLoop

Fig. 6. The resulting Mediator process, visualized as a JABC orchestration. Highlighted
in red is the synthesized sequence of actions.

data to be stored on disk for another process (the Mediator part 2, that we
do not address here) to be able to retrieve it. The resulting resulting Mediator
process is shown in Fig.

5 Conclusion and Perspectives

We have presented two approaches to attack the automatic solution of orchestra-
tion problems based on synthesis from declarative specifications, a semantically
enriched description of the services, and a collection of services available on a
testbed. The first approach uses jMosel [I1], our tool for solving Monadic Second-
Order Logic on Strings[19], and the second approach is based on Golog [12], a
programming language combining imperative features with a Prolog flavor. As
a common case study we have considered the Mediation Scenario of the Seman-
tic Web Service Challenge [1I3], with the goal to synthesize abstract mediator
processes, and to describe how the concrete, running (Web) service composition
is computed. As a result, together with the solution we had already described
in [920/21], we have obtained three structurally rather different synthesis solu-
tions (cf. Fig. 2)), all integrated as running solutions in the JABC/JETI modeling
framework [4J5I617].
This could be achieved despite their algorithmic and structural differences:

— our previously exploited method, originally presented in [§], is tableaux-
based. It computes the service composition while constructing a proof tree
in a fashion reminiscent of the approach presented in [22]

— the jMosel-approach uses a Monadic second-order (M2L) logic-based, com-
positional automata construction to infer an automaton description from the
goal description in SLTL, and

— the Prolog flavored Golog approach synthesizes the mediation process via
backward chaining.

There are also some strong similarities:

— All approaches are based on a domain modeling, which essentially consists
of the specification of the available services in term of triples that specify
the input types, an effect description, and an output type. For the Golog
approach, this knowledge is specified within the Situation Calculus in terms

Synthesizing Semantic Web Service Compositions with jMosel and Golog 405

of Basic Action Theories, and in the other two approaches in the so-called
Configuration Universe.

— All approaches synthesize an operational description of the mediator from
a declarative specification of the available procedural knowledge. In Golog,
the declarative description is given in ’loose’ Golog, a variant of Golog, re-
sembling an eventuality operator (cf. [I8]). The synthesis transforms these
loose specifications together with the Basic Action Theories into a concrete
runnable Golog program. In the other two approaches the loose descriptions
are given in SLTL, a logic specifically designed for temporally loose pro-
cess specification. The synthesis then results in executable action/module
sequences. As can be seen in Fig. [as for Golog, the tableaux-based ap-
proach directly exploits the domain model, while the M2L-based approach
‘projects’ the synthesized automaton onto the Configuration universe via
simple product construction.

— From a semantical perspective, all approaches use a variant of (Kripke) Tran-
sitions Systems (KT'S) [23] as their operational model, i.e. kinds of automata,
where the edges are labelled with actions/activities, and where the nodes (im-
plicitly) resemble type information/fluents. The fact that Golog is intuitively
linked here to a tree structure rather than to a graph structure is technically
of minor importance. However, here the fact transpires that Golog is intend
to construct plans (essentially paths in a tree) essentially instance-driven,
rather than to represent potentially all possible plans, as it is possible with
the other approaches considered here.

— All approaches have a computational bottleneck: for the tableaux method
it is the explosion of the proof tree, M2L-synthesis is known to be non-
elementary (the automata construction may explode due to the required
intermediate determination), and also backward chaining is classically known
to be a hard problem. It is our goal to help understanding which bottleneck
strikes when, and where to prefer which (combination of) which technologies.

This similarity/difference spectrum is ideal for an investigation of application
profiles. We are therefore currently investigating when which bottleneck strikes,
and why. Please note that there may be significant differences here between
superficially similar approaches, with drastic effects on the performance depend-
ing on the considered situation. For comparison, consider the situation in Model
Checking, where techniques like (BDD-based) symbolic model checking, bounded
model checking, assume-guarantee techniques, partial order reduction, etc., are
known to cover very different aspects of the so-called state explosion problem.
Even in this well-studied field these effects are still not fully understood.

This is the motivation for us to work on a common platform for experimenta-
tion, where the different techniques can be evaluated, compared, modified and
combined. Technological basis for this is the JABC/JETI modeling and exper-
imentation framework [AJ5I6[7], which has been initiated more than 10 years
ago [I4], and which has shown its power in other contexts, see e.g. our model
learning environment [24]25]. At the moment four approaches have been inte-
grated, and we plan to integrate more within the next year, in particular one

406 T. Margaria et al.

exploiting traditional automata-theoretic methods for translation LTL to Biichi
automata (cf. eg. [20]), one following the idea of Hierarchical Task Networks
(cf. eg. [277]), which exploit given knowledge about task decomposition, and also
the input/output function-focussed approach based on the Structural Synthesis
Program described in [28]. This way we do not only want to be able to fairly
compare the different scenarios in different contexts for their application pro-
files, but also to enlarge the landscape of Fig.[2to a library of powerful synthesis
and planning components which can be combined within jJABC to new complex
domain-specific planning or synthesis solutions. In order to make this possible at
a larger scale, we plan to make the experimentation platform publicly available,
allowing people not only to experiment with the integrated tools, but also to
provide their own tools for others to experiment with. We hope that this will
contribute to a better experimentation-based understanding of the various meth-
ods and techniques, and a culture of systematic application-specific construction
of synthesis solutions.

References

1. Semantic Web Service Challenge (2009), http://www.sws-challenge.org

. RosettaNet standard (2009), http://www.rosettanet.org/

3. Petrie, C., Margaria, T., Lausen, H., Zaremba, M. (eds.): Service-oriented Media-
tion with JABC/JjETI. Springer, Heidelberg (2008)

4. Jorges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-driven devel-
opment with the JABC. In: HVC - IBM Haifa Verification Conference, Haifa, Israel,
IBM, October 23-26, 2006. LNCS. Springer, Heidelberg (2006)

5. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT) 1(2), 9-30 (1997)

6. Margaria, T.. Web services-based tool-integration in the ETI platform. SoSyM,
Int. Journal on Software and System Modelling 4(2), 141-156 (2005)

7. Steffen, B., Margaria, T., Nagel, R.: Remote Integration and Coordination of Ver-
ification Tools in jETI. In: Proc. of ECBS 2005, 12th IEEE Int. Conf. on the En-
gineering of Computer Based Systems, Greenbelt (USA), April 2005, pp. 431-436.
IEEE Computer Society Press, Los Alamitos (2005)

8. Freitag, B., Steffen, B., Margaria, T., Zukowski, U.: An approach to intelligent
software library management. In: Proc. 4th Int. Conf. on Database Systems for
Advanced Applications (DASFAA 1995), National University of Singapore, Singa-
pore (1995)

9. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic Gen-
eration of the SWS-Challenge Mediator with jJABC/ABC. Springer, Heidelberg
(2008)

10. Church, A.: Logic, arithmetic and automata. In: Proc. Int. Congr. Math.,Uppsala,
Almqvist and Wiksells, vol. 1963, pp. 23-35 (1963)

11. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A Stand-Alone Tool
and JABC Plugin for M2L(str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,
pp. 293-298. Springer, Heidelberg (2006)

12. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

[\V]

http://www.sws-challenge.org
http://www.rosettanet.org/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Synthesizing Semantic Web Service Compositions with jMosel and Golog 407

Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115-139 (1993)

Steffen, B., Margaria, T., Braun, V.. The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT) 1(2), 9-30 (1997)

Margaria, T., Steffen, B.: LTL guided planning: Revisiting automatic tool compo-
sition in ETI. In: SEW 2007: Proceedings of the 31st IEEE Software Engineering
Workshop, Washington, DC, USA, pp. 214-226. IEEE Computer Society Press,
Los Alamitos (2007)

Wilhelm, C.T.E., Steffen, T.M.B.: jMosel: A stand-alone tool and jABC plugin
for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 293-298.
Springer, Heidelberg (2006)

Margaria, T.: Fully automatic verification and error detection for parameterized it-
erative sequential circuits. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 258-277. Springer, Heidelberg (1996)

Mecllraith, S., Son, T.: Adapting golog for composition of semantic web services. In:
Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning (KR2002), Toulouse, France, April 22-25, 2002, pp. 482-493 (2002)
Kelb, P., Margaria, T., Mendler, M., Gsottberger, C.: MOSEL: A flexible toolset for
monadic second-order logic. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217,
pp. 183-202. Springer, Heidelberg (1997)

Kubczak, C., Margaria, T., Kaiser, M., Lemcke, J., Knuth, B.: Abductive synthesis
of the mediator scenario with JABC and GEM. Technical Report L.G-2009-01, Stan-
ford University (2009), http://logic.stanford.edu/reports/LG-2009-01.pdf
Lemcke, J., Kaiser, M., Kubczak, C., Margaria, T., Knuth, B.: Advances in solving
the mediator scenario with jJABC and JABC/GEM. Technical Report LG-2009-01,
Stanford University (2009),
http://logic.stanford.edu/reports/LG-2009-01.pdf

Baier, J., Mcllraith, S.: Planning with temporally extended goals using heuristic
search. In: Proc. ICAPS 2006, Cumbria, UK. AAAI, Menlo Park (2006)
Miiller-Olm, M., Schmidt, D.A., Steffen, B.: Model-checking: A tutorial introduc-
tion. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330-354.
Springer, Heidelberg (1999)

Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and
experimentation. In: Proc. of ACM SIGSOFT FMICS 2005, pp. 62-71. ACM Press,
New York (2005)

Margaria, T., Raelt, H., Steen, B., Leucker, M.: The learnlib in FMICS-jETI. In:
Proc. of ICECCS 2007, 12th IEEE Int. Conf. on Engineering of Complex Computer
Systems, July 2007. IEEE Computer Soc. Press, Los Alamitos (2007)

Gastin, P., Oddoux, D.: Fast Itl to Biichi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer,
Heidelberg (2001)

Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for web
service composition using shop2. In: ISWC 2003, vol. 1(4), pp. 377-396 (2003)
Matskin, M., Rao, J.: Value-added web services composition using automatic pro-
gram synthesis. In: Bussler, C.J., Mcllraith, S.A., Orlowska, M.E., Pernici, B.,
Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 213-224. Springer,
Heidelberg (2002)

http://logic.stanford.edu/reports/LG-2009-01.pdf
http://logic.stanford.edu/reports/LG-2009-01.pdf

	Synthesizing Semantic Web Service Compositions with jMosel and Golog
	Introduction
	Our Modeling Framework
	Modeling Domain Knowledge with Taxonomies
	Dataflow Facts as Semantic Preconditions/Effects
	Expressing Behavioral Knowledge

	Solving the Mediation with M2L(Str) in jMosel
	jMosel, M2L and SLTL
	Mediator Synthesis

	The Situation Calculus Solution with Golog
	Intuitive Ontology of the Situation Calculus and Golog
	`Loose' Golog: The :-Operator

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

