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Abstract. We develop the framework for moving domain and geometry under
minimal regularity (of moving boundaries). This question arose in shape con-
trol analysis and non cylindrical PDE analysis. We apply here this setting to the
morphic measure between shape or images. We consider both regular and non
smooth situations and we derive complete shape metric space with characteriza-
tion of geodesic as being solution to Euler fluid-like equation. By the way, this
paper also addresses the variational formulation for solution to the coupled Euler-
transport system involving only condition on the convected terms. The analysis
relies on compactness results which are the parabolic version to the Helly com-
pactness results for the BV embedding in the linear space of integrable functions.
This new compactness result is delicate but supplies to the lack of convexity in
the convection terms so that the vector speed associated with the optimal tube (or
moving domain), here the shape geodesic, should not be curl-free so that the Eu-
ler equation does not reduce to a classical Hamilton-Jacobi one. For topological
optimization this geodesic construction is developed by level set description of
the tube, and numerical algorithms are in the next paper of this book.

1 Introduction to Shape Metrics

The shape analysis arose in the early 70’s from structural mechanics. The problem was
to find a best shape which would minimize the compliance (the work of external forces
in some elasticity modeling). Later this problem extended to optimal control-like situ-
ation in which the criteria to be extremized with respect to a geometrical shape had a
more general form which implied the study of the so called material and shape deriva-
tives for the solution of a partial differential equation with boundary conditions on the
unknown part of boundary [8,12,16]. Very soon the concepts of topology on general
shape families were introduced. The easiest one was the metric induced by the charac-
teristic function of the shape (in this case the shape is just defined up to a zero measure
subset). Besides this the thinner one was the Courant metric, see the book [6], which
consists, very roughly speaking, in minimizing ||T − Id||+ ||T−1− Id|| for each applica-
tion mapping a domain Ω0 onto another Ω1, the minimum being taken over the family
of such invertible mappings T . Indeed this metric is not known to be differentiable and
is very difficult to be computed in this very abstract and non geometrical form. Also
by the class of the regularity imposed to the mappings T in the theory, it derives that
the domains Ωi, i = 0,1 should be homeomorphic to one another and then should have
the same topology. The aim of this work is to relax this metric definition in order to
solve these two difficulties (i.e. give a geometrical interpretation with computational
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algorithms using level set techniques and extend the metric to a larger class of domains
having different topologies) but also and mainly to construct the geodesics. This last
issue turns to have several applications in any kind of large deformation process but
also in image analysis. Through a Fully Eulerian equivalent definition we shall charac-
terize the geodesic tube as being built by solutions to a coupled incompressible Euler
flow-transport equation (in case of given volume constraint); meanwhile we furnish a
full mathematical result for such variational solution to the incompressible Euler flow
which turns to be a new result concerning Euler equation. The new metric we present
here, which in some sense is an extension of the Courant metric, is based on two main
considerations: Shapes (or geometry) are elements of some set, say F , and we con-
sider all connecting tubes in F . Then the metric is built on the shortest such tube which
furnishes the geodesic, solution to some differentiable variational problem. Also we
shall derive complete metric spaces. The concept of geodesic for usual metrics such as
Hausdorff distance, or L1 metric on characteristic functions makes no sense as there is
obviously no hope to derive any local uniqueness for a shortest path. Here also we still
have none such result (nor local stability for the geodesic) but this challenging question
is hopeful as been formulated in term of local uniqueness for flow Euler-like equation to
which we can add any viscosity perturbation. This paper follows [24,23] and the book
[13]. The connecting tube concept arose in moving domain analysis and non cylindrical
PDE study in the 90’s, for example in [3,7,9,12,19,4,2,11,10,14,21,17].

2 Connecting Tubes

We consider the time interval as being I = [0, 1] and D, a bounded domain in RN with
smooth boundary. We consider the set of characteristic functions

C = {ζ = ζ 2 ∈ L1(I ×D)}. (1)

We consider the continuous elements

C 0 = C ∩C0(I,L1(D)). (2)

Being given two measurable subsets Ωi ⊂ D, i = 0,1, we consider the family of con-
necting tubes

T 0(Ω0,Ω1) = {ζ ∈ C 0 s.t. ζ (i) = χΩi , i = 0,1}. (3)

2.1 Moving Domain

For any ζ ∈ T 0(Ω0,Ω1) we consider the set Q = ∪0<t<1{t}×Ωt ⊂ RN+1 such that
ζ = χQ. This set Q is defined up to an N + 1 dimensional zero measure set.

2.2 Generic Framework for Metric

The idea for constructing metrics is to consider in this set the infimum of some norm
for the time derivative term ∂

∂ t ζ . Indeed if such term is zero then ζ is not time de-

pending. The general setting is to consider families of admissible tubes such that ∂
∂ t ζ ∈
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Lp(I,H (D)) for some Banach space H (D) of distributions over D, H (D) ⊂ D ′(D),
and consider the following connecting tubes:

T 0,p
H (Ω0,Ω1) = {ζ ∈ T 0(Ω0,Ω1), s.t.

∂
∂ t

ζ ∈ Lp(I,H (D))}, (4)

and for some p ≥ 1, the metric in the following form:

dp,H (Ω0,Ω1) = Inf ζ∈T
0,p

H (Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||pH (D) dt. (5)

2.3 The Time Lp Regularity of ∂
∂ t ζ Implies ζ ∈ C 0

Let us define

C 0,p
H = {ζ ∈ C s.t.

∂
∂ t

ζ ∈ Lp(I,H (D))}. (6)

Proposition 1. Let p ≥ 1, then C 0,p
H ⊂ C 0.

Proof. Obviously we have

C 0,p
H ⊂W 1,p(I,H (D)) ⊂C0(I,H (D)) ⊂C0(I,D ′(D)). (7)

So that from the following Lemma we get C 0,p
H ⊂ C0(I,L1(D)); then we see that the

continuity property of the tube derives directly from ζ ∈ C (that is ζ = ζ 2) and the
weak regularity of the time derivative measure ∂

∂ t ζ . �	
Lemma 1. Let ζ = ζ 2 ∈ L1(I ×D)∩C0(I,D ′(D)). Then ζ ∈C0(I,L1(D)).

Proof. Notice that

||ζ (t + s)− ζ (t)||L1(D) = ||ζ (t + s)− ζ (t)||2L2(D). (8)

Then it is enough to show that ζ ∈ C0(I,L2(D)). We begin by establishing the weak
L2(D) continuity: for any element f ∈ L2(D) consider

∫
D
(ζ (t + s)(x)− ζ (t)(x)) f (x)dx =

∫
D
(ζ (t + s,x)− ζ (t,x))φ(x)dx

+
∫

D
(ζ (t + s,x)− ζ (t,x))( f (x)−φ(x))dx.

(9)

Let be given ε > 0, by the choice of φ ∈ D ′(D) (using here the density of D ′(D) in
L2(D)), we have

|
∫

D
(ζ (t + s,x)− ζ (t,x))( f (x)−φ(x))dx| ≤

∫
D
| f (x)−φ(x)|dx ≤ ε. (10)

So we derive the continuity for the weak L2(D) topology. To reach the strong topology
it is sufficient now to consider the continuity of the mapping

t →
∫

D
|ζ (t,x)|2dx =

∫
D

ζ (t,x)dx = ((ζ (t),1))L2(D). (11)

�	
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2.4 Metric and Pseudo Metric

We consider a set Ω̄ ⊂ D and the family of all subsets in D which are reachable in finite
time from this Ω̄ by elements ζ , ζ describing the whole set C 0,p

H ; more precisely:

OΩ̄ = {Ω ⊂ D s.t. ∃ζ ∈ C 0,p
H with χΩ = ζ (1), χΩ̄ = ζ (0)}. (12)

Notice that by construction any pair of elements in this family is connected:

∀(Ω0,Ω1) ∈ (OΩ̄ )2, the family T 0,p
H (Ω0,Ω1) is not empty. (13)

Proposition 2. For any p ≥ 1, dp,H is a quasi-metric in the following sense; for any
elements Ωi, i = 0,1,2 in OΩ̄ we have:

i) dp,H (Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,
ii) dp,H (Ω0,Ω1) = dp,H (Ω1,Ω0),

iii) dp,H (Ω0,Ω2) ≤ 2p−1(dp,H (Ω0,Ω1)+ dp,H (Ω1,Ω2)).

For p = 1, d1,H is a metric on OΩ̄ .

Proof. 1a) When χΩ1 = χΩ2 as elements in L1(D), we may choose ζ (t,x) = χΩ0(x)
so that the evolution domain Q is the cylinder Q = I ×Ω0 and ∂

∂ t ζ = 0 realizes the
minimum and leads to the null distance.

1b) Conversely for any ε > 0 there exists some admissible tube ζ ε with ζ ε (i) = χΩi

and realizing the infimum up to ε . Then

||ζ ε (0)− ζ ε(1)||H (D) ≤
∫ 1

0
|| ∂

∂ t
ζ ε ||H dt ≤ (

∫ 1

0
|| ∂

∂ t
ζ ε ||pH dt)1/p ≤ ε1/p. (14)

We conclude χΩ1 = χΩ0 as elements in H (D).
2) The symmetry is obviously realized by reversing the time variable. Indeed if ζ ε re-

alizes the infimum up to ε then we consider ζ̃ ε(t,x) := ζ ε (1−t,x) and
∫ 1

0 || ∂
∂ t ζ̃ ε ||pH dt =∫ 1

0 || ∂
∂ t ζ ε ||pH dt so that the element ζ̃ ε also approaches the infimum up to ε .

3) The triangle property derives from the following obvious generic construction: let
us consider two connecting tubes ζ k,ε ∈ T 0,p

H (D)(Ωk−1,Ωk),k = 1,2 and realizing the

infimum up to ε in the corresponding distances dH (D)(Ωk−1,Ωk).
We introduce the new element ζ̄ ε ∈ T 0,p

H (D)(Ω0,Ω1) piecewisely defined as follows:

∀t ∈ [0, 1/2], ζ̄ ε (t) = ζ 1,ε (2t); ∀t ∈ [1/2, 1], ζ̄ ε (t) = ζ 2,ε(2t −1)
∫ 1

0
|| ∂

∂̄ t
ζ̄ ε ||pH dt =

∫ 1/2

0
|| ∂

∂ t
ζ̄ ε ||pH +

∫ 1

1/2
|| ∂

∂ t
ζ̄ ε ||pH dt.

(15)

Now

∀t ∈ [0, 1/2],
∂
∂ t

ζ̄ ε (t) = 2
∂
∂ t

ζ 1,ε (2t); ∀t ∈ [1/2, 1],
∂
∂ t

ζ̄ ε(t) = 2
∂
∂ t

ζ 2,ε(2t−1). (16)

Then
∫ 1

0
|| ∂

∂̄ t
ζ̄ ε ||pH dt = 2p

∫ 1/2

0
|| ∂

∂ t
ζ 1,ε (2t)||pH dt + 2p

∫ 1

1/2
|| ∂

∂ t
ζ 2,ε(2t −1)||pH dt. (17)
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By respective changes of variables s = 2t and s = 2t −1 we get

∫ 1

0
|| ∂

∂̄ t
ζ̄ ε ||pH dt = 2p−1

∫ 1

0
|| ∂

∂ t
ζ 1,ε(s)||pH ds+ 2p−1

∫ 1

0
|| ∂

∂ t
ζ 2,ε(s)||pH ds. (18)

So that ∀ε > 0 we have:

dp,H (Ω0,Ω2)≤
∫ 1

0
|| ∂

∂̄ t
ζ̄ ε ||pH dt ≤ 2p−1(dp,H (Ω0,Ω1)+dp,H (Ω1,Ω2)+2ε). (19)

�	

2.5 Banach Space of Bounded Measures

We make the choice, as Banach space of measures H (D), of the space of bounded
measure M1(D) and set

p ≥ 1, C p = {ζ ∈ C s.t.
∂
∂ t

ζ ∈ Lp(I,M1(D))} (20)

that is
C p = C ∩Lp(I,BV (D)). (21)

From the previous considerations we get C p ⊂C0(I,L1(D)), so that

p ≥ 1, C p = {ζ ∈ C 0 s.t.
∂
∂ t

ζ ∈ Lp(I,M1(D))}. (22)

The set of connecting tubes is then:

T p(Ω0,Ω1) = {ζ ∈ C p s.t. ζ (i) = χΩi , i = 0,1}. (23)

Corollary 1. Let p ≥ 1, then

dp(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||p

M1(D)dt (24)

is a quasi metric. When p = 1, d1 is a metric.

2.6 Smooth Domains

When a tube ζ = χQ is smooth, Q = ∪0<t<1{t}× Ωt , with lateral boundary Σ =
∪0<t<1{t}× ∂Ωt being a Ck manifold in I ×D ⊂ RN+1, with the integer k ≥ 1, there
exists a vector field V ∈C0(Ī,Ck(D,RN)) with < V (t,x),n∂D >= 0 such that Ωt is built
by the flow mapping of V , that is Ωt = Tt(V )(Ω0).

For example, when k = 2 the oriented distance function bΩt = dΩt − dΩ c
t
∈ C2(U )

where U is some tubular neighborhood of the boundary ∂Ωt , and we may choose
any extension of ∇bΩt (x)v(t)opt(x) as speed vector V (t,x), where the normal field is
nt(x) = ∇bΩt (x), x ∈Γt = ∂Ωt , the projection pt onto Γt being defined in U by pt(y) =
y−bΩt(y)∇bΩt (y) (we recall that ∇bΩt opt(y) = ∇bΩt (y) for any y ∈ U ).
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In the smooth situation the tube characteristic function ζ verifies the classical con-
vection problem (in weak sense):

ζ 2 = ζ ∈ L1(I ×D),
∂
∂ t

ζ + ∇ζ .V = 0, ζ (0) = χΩ0 . (25)

Then, without any restriction, we consider smooth domains generated from Ω0 by the
flow mapping Tt(V ) of smooth vector fields V (t,x), V ∈ Ek with:

Ek := {V ∈C0(Ī,Ck(D̄,RN)) s.t. ∀t ∈ Ī, 〈V (t),n∂D〉 = 0}. (26)

The connecting condition is then: Ω1 = T1(V )(Ω0), where Tt(V ) is the flow mapping
of V at time t ∈ [0, 1]. We set Ωt := Tt(V )(Ω0) and ζ (t, .) = χΩt is an admissible con-
necting tube, moreover we have:

|| ∂
∂ t

ζ (t)||M1(D) =
∫

∂Ωt

| 〈V (t,x)),nt(x)〉 |dΓt(x) (27)

and the metric would turn to be

dk,p(Ω0,Ω1) = InfV∈Vk(Ω0,Ω1)

∫ 1

0
(
∫

∂Ωt(V )
| 〈V (t,x),nt(x)〉 |dΓt(x))pdt (28)

where Vk(Ω0,Ω1), defined below, stands for the family of connecting vector fields in
Ek, k ≥ 1. As the time regularity required for the classical flow analysis is just time
continuity (in the very definition of Ek) this connecting family turns to be stable through
the generic construction of connecting vector field V̄ similar to the point 3 in the proof
of Proposition 2.

Proposition 3. Let k ≥ 1 and Ω̄ be open domain in D ⊂ RN whose boundary Γ̄ is a Ck

manifold. We consider the family of smooth domains

Ok = {Ω ⊂ D s.t. ∃V ∈ Ek, Ω = T1(V )(Ω̄ )}. (29)

For any pair of elements Ωi, i = 0,1 in this family, the set of connecting fields

Vk := {V ∈ Ek s.t. T1(V )(Ω0) = Ω1} (30)

is never empty. Equipped with dp,k , the family Ok is a p-quasi-metric space (and a
metric space when p = 1).

An important point here is that in this family Ok, k ≥ 1, all domains are homeomorphic
to the domains Ω̄ so that we cannot evaluate distance between domains with different
topologies, even when they are smooth. In order to escape from that classical difficulty
we shall develop two classes of issues. The first one is based on time piecewise reg-
ularity of domains leading to a good modeling for classical topological changes such
as holes collapse or holes creation (at a given time t0), and topological separations.
The second one is based on completing different approach relying on the fully eulerian
description of tubes with non smooth vector fields V .
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2.6.1 The Piecewise Smooth Situation
In some applications we shall consider the situation in which the time interval can be
decomposed in a finite number of time intervals of smoothness for the lateral bound-
aries: we consider tubes such that there exists an integer K (tube dependent) and time
partitions tk such that

I = ∪1≤k≤K Īk, Ik =]tk−1, tk[. (31)

We assume that for t ∈ Ik the lateral boundary Σk of the set Qk = ∪t∈Ik{t}×Ωt, Σk =
∪t∈Ik {t}× ∂Ωt , is a C1 manifold in RN+1. We consider the unit normal field νk to Σk,
out going to Qk on Σk. It can be uniquely written in the form

∀t ∈ Ik,∀x ∈ Γk, νk(t,x) =
1√

1 + vk(t,x)2
(−vk(t,x),nt(x)) ∈ Rt ×RN

x . (32)

The term vk(t, .) is called the normal speed of the moving boundary Γt . Obviously we
have

∀t ∈ Ik,∀φ ∈ D(D),
〈

∂
∂ t

ζ , φ
〉

=
∫

Γt

vk(t,x)φ(x)dΓk(x). (33)

2.6.2 Behavior of the Normal Speed at t = ti
To discuss the global regularity of ∂

∂ t ζ we must choose the regularity of v at the junction
times tk. Consider〈

ζ ,− ∂
∂ t

Φ
〉

Lp(I,L2(D))×Lq(I)
=

∫ 1

0

∫
Ωt

− ∂
∂ t

Φ(t,x)dtdx

= Σk=1,...,K

∫ tk

tk−1

∫
Ωt

− ∂
∂ t

Φ(t,x)dtdx

(34)

But

∀t ∈ Ik,
∂
∂ t

∫
Ωt

Φ(t,x)dtdx =
∫

Γ k
t

Φ(t,x)vk(t,x)dΓ k
t (x)+

∫
Ωt

∂
∂ t

Φ(t,x)dx. (35)

So that assume that vk ∈ L1(Σk) and as ζ ∈C0(I,L1(D)) we have

∫ tk−ε

tk−1+ε

∫
Ωt

∂
∂ t

Φ(t,x)dtdx =
∫ tk−ε

tk−1+ε

∫
Γt

|vk(t,x)|dΓk(x)dt

+
∫

D
(ζ (tk−1 + ε,x)Φ(tk−1 + ε,x)− ζ (tk − ε,x)Φ(tk − ε,x))dx

→ε→0

∫ tk

tk−1

∫
Γt

|vk(t,x)|dΓk(x)dt +
∫

D
(ζ (tk−1,x)Φ(tk−1,x)− ζ (tk,x))Φ(tk,x))dx

(36)

Finally we get ∀Φ ∈ D(I×D),〈
ζ ,

∂
∂ t

Φ
〉

= limε→0Σ1≤k≤K

∫ tk−ε

tk−1+ε

∫
D

ζ (t,x)Φ(t,x)dx

=
∫ 1

0

∫
∂Ωt

v(t,x)Φ(t,x)dΓt (x)dx

(37)
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This expression continuously extends for any Φ ∈ C0
c (I ×D) (with compact support)

and we get

|| ∂
∂ t

ζ (t)||L1(I,M1(D)) =
∫ 1

0

∫
Γt

|v(t,x)|dΓt(x), (38)

and we have ∫ 1

0
|| ∂

∂ t
ζ (t)||p

M1(D) dt =
∫ 1

0
(
∫

Γt

|v(t,x)|dΓt(x))p dt. (39)

2.6.3 “Piecewise Metric”
Proposition 4. Let Ω̄ be a smooth subset in D , k ≥ 1, p ≥ 1. We consider the family
Opwk(Ω̄) of all subsets connected to Ω̄ by piecewise Ck tubes in the previous sense and
verifying the following qualification condition:

∫ 1

0

∫
Γt

|v(t,x)|dΓt(x)dt < ∞. (40)

Then equipped with

δ p
pwk(Ω0,Ω1) = Inf ζ∈T p

pwk(Ω0,Ω1)

∫ 1

0
(
∫

Γt

|v(t,x)|dΓt(x))p dt, (41)

the family O p
pwk(Ω̄) is a p-quasi-metric space. For p = 1, the family O1

pwk(Ω̄ ) equipped

with δ 1
pwk, is a metric space.

Notice that a sufficient condition for deriving the condition (40) is that the lateral surface
Σ would have a finite H n−1 Hausdorff measure (that is to say that the tube Q has a finite
perimeter in I ×D). Indeed we have:

PI×D(Q) =
∫ 1

0

∫
Γt

√
1 + v2dΓt(x)dt ≥

∫ 1

0

∫
Γt

|v|dΓt(x)dt. (42)

2.6.4 Level Set Formulation
Let Ψ (t,x) ∈C1(Ī × D̄) and consider

∀t ∈ I,Ωt = {x ∈ D s.t. Ψ(t,x) > 0}, Γt = {x ∈ D s.t. Ψ(t,x) = 0}. (43)

An important case is when the function has the following form

Ψ (t,x) = Φ(x)− t then Ωt = {x ∈ D s.t. Φ(x) > t}. (44)

In this very situation, from Sard’s theorem we know that for almost every t in I the
manifold Γt is of class C1 which does not insure the tube associated to Ψ to be pwk
(even for k = 1).

In the general setting the qualification condition (40) would write

∫ 1

0

∫
Γt

(
| ∂

∂ tΨ |
||∇xΨ || )(t,x)dΓt(x) < ∞. (45)
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We shall restrict our study to the pwk level set tubes, i.e. functions Π(t,x) such that the
generated tubes verify the previous pw1 condition: ∃tk,t0 = 0 < t1 < ... < tK = 1 such
that on each open interval Ik =]tk−1, tK [,

∃αk(.) ∈C0(Ik) s.t. ∀x ∈ Γt , ||∇xΨ(t,x)|| ≥ αk(t) > 0. (46)

In this class the previous piecewise tubes analysis applies and we get an associated
metric in terms of level sets. In the proof of the following result the only main point is
to verify that in the generic construction for the triangle axiom (point 3 in the proof of
Proposition 2) the connecting element ζ̄ ε piecewisely defined is still in the class. Indeed
ζ̄ ε is associated to the function

Ψ̄ ε(t,x) =

{
Ψ1,ε(2t,x), if 0 < t < 1/2,

Ψ2,ε(2t −1,x), if 1/2 < t < 1.
(47)

Obviously this element Ψ̄ ε verifies the two conditions (45) and (46) if the element
ζ i,ε , i = 0,1 does.

Proposition 5. Let Ω̄ ⊂ D be a C1 domain. We consider the family

Ppw1 = {Ψ ∈C1(Ī × D̄), s.t. ∃tk, 1 ≤ k ≤ KΨ , s.t.

Σk = {(t,x)|t ∈ Ik,Ψ (t,x) = 0}
is a C1 manifold in RN+1 and Ψ verifying (45), (46)}.

(48)

We also consider the family generated by this class of piecewise C1 (pw1) functions:

OLS = {Ω = {x ∈ D|Ψ(1,x) > 0},Ψ ∈ Ppw1}. (49)

Obviously two elements Ωi, i = 0,1 in this family are connected by tube in the form of
(47) and we denote

TLS(Ω0,Ω1) = {Ψ ∈ Ppw1 s.t. Ωi = {x ∈ D |Ψ (i,x) > 0}}. (50)

We set

δLS(Ω0,Ω1) = InfΨ∈TLS(Ω0,Ω1)

∫ 1

0

∫
Ψ(t)−1(0)

| ∂
∂ t

Ψ(t,x)| ||∇xΨ(t,x)||−1 dΓt(x)dt.

(51)
Then equipped with δLS the family OLS is a metric space.

2.6.5 Submetrics
In the level set setting it is easy to describe some connecting elements. Assume that
Ωi = {x ∈ D |Φi(x) > 0}, i = 0,1. Then let

Ψ(t,x) = ρ(t)Φ1(x)+ (1−ρ(t))Φ0(x), with ρ ∈C1(Ī), ρ(i) = i, i = 0,1, (52)

and we could consider the “submetric” associated to these connections, for different
admissible such functions ρ .
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2.6.6 Level Set Metric Associated to Subspace
In the definition (48) of the set of “potential” functions Ψ we can limit to a given
subspace of functions in the following way: let E be a closed subspace in C1(Ī× D̄), we
consider

PpwE = Ppw1 ∩E (53)

As PpwE ⊂ Ppw1 we get the similar inclusions OLSE ⊂ OSL, TLSE(Ω0,Ω1) ⊂ TLS

(Ω0,Ω1) and the family OLSE is equipped with the metric δLSE ≤ δLS.
In the specific situation where the Banach space is of finite dimension we consider

the Galerkin-like construction. Let E1, .....EM be M given elements in C1(D̄) and con-
sider

E = {e(t,x) = Σ1≤m≤Mλm(t)Em(x) |λ ∈C1(I)M}. (54)

When the elements Em(x) are chosen as polynomial functions the surfaces Γt are alge-
braic surfaces (or curves) in D and it is an open question to characterize conditions on
the coefficients λ in order that the tube satisfies (45) and (46). Nevertheless in applica-
tions it seems difficult to violate them.

3 Complete Metric: Existence of Geodesic

We address now the question concerning the infima in the previous metrics (or pseudo
metrics) we described in the previous sections. Let ζ n be a minimizing sequence in
(24). The element ∂

∂ t ζ n remains bounded in Lp(I,M1(D)). Then when p > 1, there

exists a subsequence, still denoted ∂
∂ t ζ n and weakly converging to an element ω ∈

Lp(I,M1(D)). The difficulty is now to get ω in the form ω = ∂
∂ t ζ ∗ for some admissible

ζ ∗. As ζ n ∈ C 0, it remains bounded as an element of C in Lr(I ×D), and this for any
1 ≤ r ≤ ∞. Let us consider a subsequence ζ n weakly convergent to some element ρ . By
continuity of the derivative in weak topologies we derive that ω = ∂

∂ t ρ but a priori the
element ρ is not a characteristic function. Indeed we shall have ρ ∈ C , that is ρ2 = ρ , if
and only if ρn strongly converges to ρ in L1(I×D). Nevertheless, this strong L1(I×D)
convergence would not imply the limiting element ρ to be in C 0. Now, if this element
is not time continuous the connection makes no sense and it could not be a candidate
for geodesic.

3.1 Compacity Arguments and Complete Metric

3.1.1 Surface Tension-Like Term
We shall propose now several changes in the metric (or p-quasi-metric) to derive this
strong convergence. First of all let us denote that if we complete in (24) the metric by
the following, with σ > 0 (a surface tension term)

d(Ω0,Ω1) = Inf ζ∈T (Ω0,Ω1)Lσ (ζ ) (55)

with

Lσ =
∫ 1

0
|| ∂

∂ t
ζ ||M1(D) dt + σ

∫ 1

0
||∇xζ (t)||M1(D,RN) dt, (56)

then we could derive, for any smooth minimizing sequence, ζ n(t,x) = χQn , the tubes
with bounded perimeter in I ×D as we have.
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3.1.2 Boundedness of the Perimeter in I×D ⊂ RN+1

Proposition 6. Assume the evolution domain Q to be smooth, then

PI×D(Q) ≤
∫ 1

0
|| ∂

∂ t
ζ ||M1(D) dt +

∫ 1

0
||∇xζ (t)||M1(D,RN) dt . (57)

Proof

PI×D(Q) =
∫

Σ
dΣ =

∫ 1

0

∫
Γt

√
1 + v2 dΓt(x)dt

PI×D(Q) ≤
∫ 1

0

∫
Γt

(1 + |v|)dΓt(x)dt =
∫ 1

0
(PD(Ωt)+

∫
Γt

|v|dΓt)dt,

(58)

but

PD(Ωt) = ||∇ζ (t)||M1(D,RN),

∫
Γt

|v|dΓt(x) = || ∂
∂ t

ζ ||M1(D). (59)

So that (57) is true when the domain is smooth. �	

3.1.3 Metric on the Closure of Smooth Tubes Would Fail
We could hope that (57), by some density arguments, extends for all tubes ζ ∈ L1

(I,BV (D))∩W 1,1(I,M1(D)) (which is an open question) or define the metric as fol-
lows. Introducing the family of smooth tubes, say C ∞ (elements ζ = χQ with lateral
boundary being a C∞ manifold in I×D ⊂ RN+1), set

d∞
σ (Ω0,Ω1) = Inf ζ∈C ∞ Lσ (ζ ). (60)

Any minimizing sequence, from (57) would remain bounded in BV (I ×D) and then
there shall exist a subsequence strongly converging in L1(I ×D) so that the limiting
element will be ζ ∈ C with

||ζ ||BV (I×D) ≤ limin fn→∞ ||ζn||BV(I×D), (61)

and by similar weak l.s.c. arguments on each term of Lσ we would see that the limit-
ing element ζ ∈ C would be a minimizer of Lσ on some closure of C ∞. Nevertheless
this element would not belong to C 0, and being not continuous in time the connection
property ζ ∈ T (Ω0,Ω1) could be lost and this candidate for metric would fail, while
having a minimizer. Finally we understand that even if the inequality (57) extends to a
more general family of tubes it would not help for deriving metric with geodesic.

An important point here is that any expression in the form of

d̃σ (Ω0,Ω1) = Inf ζ∈T Lσ (ζ ) (62)

would fail to be a metric because it violates the first metric axiom. Indeed the new
perimeter term σ

∫ 1
0 PD(Ωt)dt cannot be zero.
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3.2 Compactness Results

We have seen that the compactness result deriving from the boundedness of Lσ , i.e.
boundedness in the Banach space

B1 = L1(I,BV (D))∩W 1,1(I,M1(D)) ⊂C(I,M1(D)) (63)

is not enough.

Proposition 7. Consider ζn bounded in L1(I,BV (D)), together with ∂
∂ t ζn bounded in

Lp(I,M1(D)) for some p > 1. Then there exists a subsequence, still denoted ζn, and
an element ζ ∈ L1(I,BV (D))∩W 1,1(I,M1(D)) ⊂ C0(I,M1(D)) such that ζn strongly
converges to ζ in L1(I,L1(D)) with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying ||ζ ||L1(I,BV (D)) ≤
limin f ||ζn||L1(I,BV (D)) and || ∂

∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂
∂ t ζn||Lp(I,M1(D)).

Continuity ζ ∈W 1,1(I,M1(D)) implies ζ ∈C0(I,L1(D)). Moreover ζ (t,x)= ζ 2(t,x),
a.e.(t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN ) is s.c.i. (64)

Proof. See [24,13]. �	
Also a similar compacity result can be derived with p = 1, leading to a metric, but
assuming some uniform integrability for the || ∂

∂ t ζ ||M1(D) term.

Proposition 8. Consider ζn bounded in L1(I,BV (D)) together with ∂
∂ t ζn bounded in

L1(I,M1(D)), and assume there exists an element θ ∈ L1(I) such that

a.e. t ∈ I, || ∂
∂ t

ζn ||M1(D) ≤ θ (t). (65)

Then there exists a subsequence, still denoted ζn, and an element ζ ∈ L1(I,BV (D))∩
W 1,1(I, M1(D)) ⊂ C0(I,M1(D)) such that ζn strongly converges to ζ in L1(I,L1(D))
with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying ||ζ ||L1(I,BV (D)) ≤ limin f ||ζn||L1(I,BV (D)) and

|| ∂
∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂

∂ t ζn||Lp(I,M1(D)).

Continuity ζ ∈W 1,1(I,M1(D)) implies ζ ∈C0(I,L1(D)). Moreover ζ (t,x)= ζ 2(t,x),
a.e. (t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN) is s.c.i. (66)

Proof. See [21,13]. �	

3.3 Use of Compactness

The idea is to consider the following expression for the shape metric defined by (24):

d̄ p(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||M1(D)dt + ”

∫ 1

0
|p′ζ (t)|p dt”. (67)
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Indeed the last term is not finite in general as it would imply p(t) to be time continuous
which is known to be false (the perimeter is l.s.c. only and may “jump down” as in
the celebrate “Camembert entamé” example: take a circular cheese Camembert with
radius R and subtract a radial triangular part with angle α , the perimeter is p(α) and
limin fα→0 p(α) = (2π + 2)R > p(0) = 2πR).

We relax this term by introducing (see [23]) the “time capacity” term

θ p(ζ ) = Inf μ∈K p(ζ )

∫ 1

0
|μ ′(t)|p dt, (68)

with the closed convex set

K p(ζ ) = {μ ∈W 1,p(I) s.t. ||∇xζ (t)||M1(D,RN) ≤ μ(t) a.e. t ∈ I}. (69)

Then the metric is

d̄ p(Ω0,Ω1) := Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||M1(D)dt + θ p(ζ ). (70)

3.4 Complete Quasi-Metric by Level Set Formulation

Let p > 1 and Ωi, i = 1,2 be two arbitrary measurable subsets in D. Let

K(Ω1,Ω2) = {φ ∈ L2(I,H1(D))∩W 1,1(I,L2(D)),
∂
∂ t

φ ∈ Lp(I,L2(D)),

Ω1 = {Φ(0, .) > 0}, Ω2 = {Φ(1, .) > 0}}.
(71)

Notice that K(Ω1,Ω2) ⊂ C0(Ī,L2(D)). We set

dLS,p(Ω1,Ω2) := Inf φ∈K(Ω1,Ω2)

∫ 1

0
(α ||φ(t)||2H1(D) + || ∂

∂ t
φ(t)||p

L2(D))dt. (72)

Proposition 9. Let 1 < p ≤ 2 . Equipped with dLS,p , the family of measurable subsets
in D is a complete quasi-metric space.

4 Fully Eulerian Metric de

For non smooth vector fields, being given the element Ω0 in D the problem (25) may
have no solution or several solutions (depending on the weak regularity of the speed
vector field V ). As soon as V satisfies the minimal regularity V ∈ V p where

p ≥ 1, V p = {V ∈ Lp(I ×D,RN), divV ∈ Lp(I×D),

〈V,n∂D〉 = 0 in W−1,p(∂D)}, (73)

the following classical convection problem

ζ ∈ L1(I ×D),
∂
∂ t

ζ + ∇ζ .V = 0, ζ (0) = χΩ0 (74)
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possesses solution (the proof is classically done by the Galerkin method when V ∈
L2(I ×D) and (divV )+ ∈ L∞(I,L2(D)), see [20], and there is no uniqueness result for
the solution, which a priori is not an element in C , nor in C 0). The element ζ is not
a characteristic function but is time continuous, ζ ∈ C0([0,1],H−1/2(D)). Indeed we
consider weak solutions to problems (25) and (74), in the following sense:

∀φ ∈C∞(Ī × D̄) s.t. φ(1, .) = 0,∫ 1

0

∫
D

ζ (− ∂
∂ t

φ −div(φ V ))dxdt =
∫

D
χΩ0φ(0,x)dx.

(75)

The time derivative, for any solution to (74) (then to (25)) verifies:

∂
∂ t

ζ = div(ζV )− ζ divV ∈ Lp(I,W−1,p(D)), (76)

so that
ζ ∈W 1,p(I,W−1,p(D)) ⊂C0(Ī,W−1,p(D)). (77)

Notice that weak solutions to (74) can also be obtained by the following technique,
without any L∞ requirement on the divergence:

Proposition 10. Let p > 1 and V ∈ V p defined in (73), let Vn ∈ V p ∩C∞(Ī × D̄,RN))
such that Vn → V strongly in V p. Consider the element ζn(t) = χΩ0oTt(Vn)−1 ∈ C 0 ,
a unique solution to the characteristic convection problem (25). There exists a sub-
sequence, still denoted ζn which weakly converges in Lp(I ×D) to an element ρ ∈
Lp(I ×D)∩W 1,1(I,W−1,p(D)) ⊂ C0(Ī,W−1,p(D)) , a solution to the convection prob-
lem (74) or (75).

Proof. We pass to the limit in the weak form (75). �	
The concept of distance between the two sets Ωi, i = 0,1 is associated to the “shortest
path”, that is now introduced through the Euler description using the product space
approach which is described in [23] and [24]. Let us consider the eulerian connecting
tubes defined as set of couples (ζ ,V ) solving the convection equation:

T p
e (Ω0,Ω1) = {(ζ ,V ) ∈ C ×V p solving (25) with ζ (i) = χΩi , i = 0,1}. (78)

4.1 Eulerian Metrics

Let

de
p(Ω0,Ω1) := Inf (ζ ,V )∈T p(Ω0,Ω1)

∫ 1

0
(||V (t)||p

Lp(D,RN) + |divV(t)|pLp(D))dt, (79)

and

d̄ p
e (Ω0,Ω1) := Inf (ζ ,V )∈T p

e (Ω0,Ω1)

∫ 1

0

∫
D
(|V |p +(divV)p)dxdt + θ p(ζ ). (80)
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Proposition 11. For p ≥ 1, de
p is a quasi-metric in the following sense:

i) de
p(Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,

ii) de
p(Ω0,Ω1) = de

p(Ω1,Ω0),
iii) de

p(Ω0,Ω2) ≤ 2p−1(de
p(Ω0,Ω1)+ de

p(Ω1,Ω2)).

Moreover, equipped with d̄e
p the family Oe

Ω̄ is a complete quasi-metric space and for
p = 1, equipped with de

1, it is a complete metric space.

4.2 BV Regularity of the Field V

When the speed vector field V verifies some BV properties, V ∈ L2(I,BV (D)N)
([1,23,24]), there is a unique tube associated to V , then we do have an application
V → ζV and with such regularity on V we can revisit the complete metric d being
completely delivered of the non differential perimeter and curvature terms that we were
obliged to introduce in order to apply the compacity theorems. From the tube analysis
we consider several interesting choices for the space regularity of the speed vector field
(together with its divergence field). Let

E 1,1 = {V ∈ L1(I×D,RN) s.t. divV ∈ L1(D),V.nD ∈W−1,1(∂D)}, (81)

and let E be a closed subspace in BV (D)∩E 1,1 such that any element V ∈ E verifies
the required assumptions. A first example is, when working with prescribed volume for
the moving domain

E0 = {V ∈ BV (D,RN)∩E 1,1, s.t. divV = 0 a.e. (t,x) ∈ I×D} (82)

V be a divergence-free vector field with divV = 0, V ∈ L1(I,E0), where E = BV (D,RN)
or any closed subspace (for example E = {V ∈ H1

0 (D,RN), s.t. divV = 0}). An obvious
metric is to consider the set

V (Ω1,Ω2) = {V ∈ E 1,1 s.t. V, divV ∈ Lp(I,E0), s.t. ζ0 = χΩ1 ,ζ (1) = χΩ2}

δE0(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
||V (t)||E0 dt.

(83)

As V is divergence-free the previous boundedness assumption on the divergence is ver-
ified and to each V a tube ζV is associated through the convection. Then we get:

Proposition 12. Let E be any subspace of BV (D,RN)∩E 1,1 such that any element V
satisfies assumptions of Theorem 2.12 of [24], for example E = E0. Then equipped with
δE, the family OE

Ω0
is a metric space.

p > 1,dE0(Ω1,Ω2) = InfV∈V (Ω1,Ω2)||V ||Lp(I,E0) + || ∂
∂ t

V ||L1(I,M1(D,RN)). (84)

Proposition 13. Let E be any subspace of BV(D,RN)∩E 1,1, such that any element V
whose divergence satisfies assumptions of Theorem 2.12 of [24]. Then equipped with
dE the family OE

Ω0
is a complete quasi-metric space.
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4.2.1 Geodesic Characterization via Transverse Field Z
In that setting we are concerned with smooth vector fields Z(s,t,x) ∈ RN such that
Z(s,0,x) = Z(s,1,x) = 0 so that the extremities (for t = 0, t = 1) of the perturbed
tube Qs := Ts(Z(s))(Q) are preserved. The parameter s appears here as a perturba-
tion parameter. Indeed the family of connecting tubes T p

e (Ω0,Ω1) is not a linear
space nor equipped with any manifold structure. Nevertheless we can describe some
tangential space T(ζ ,V )T

p
e (Ω0,Ω1) at any element (tube) (ζ ,V ): if (ζ ,V ) ∈ T then

ζoTs(Z(t))−1,V s) ∈T where [ d
dsV s]s−0 = Zt +[Z,V ]. The previous study for the trans-

verse field [18,13,11] implies that for given such a vector field Z, with divxZ(s,t,x) = 0
we get the admissible perturbation of the field V in the form V + sW (s,t,x), with

W (s,t,x) =
∂
∂ t

Z(s, t,x)+ [Z, V ] . (85)

More precisely, define the Lipschitz-continuous connecting set:

V 1,∞(Ω1,Ω2) = {V ∈ L1(I,W 1,∞)∩E 1,1, s.t. ζV ∈ T̄ (Ω1,Ω2)} (86)

and the set of smooth transverse vector fields:

Z = {Z(t,x) ∈C∞
comp(I ×D,RN)}. (87)

Notice that such Z verifies Z(0, .) = Z(1, .) = 0 on D.

Proposition 14. Let V ∈ V (Ω1,Ω2) and Z(t,x) ∈ Z . The transformation T =
Ts(Z)oTt(V ) maps Ωt(V ) onto Ω s

t := Ts(Z)(Ωt (V )) so that

∀s, ∀Z, V s(t,x) =
∂
∂ t

T oT −1

= (
∂
∂ t

Ts(Z(t))+ DTs(Z(t)).V (t))oTs(Z(t))−1 ∈ V 1,∞(Ω1,Ω2).
(88)

Lemma 2
∂
∂ s

V s(t,x)|s=0 =
∂
∂ t

Z(t)+ [Z(t), V (t)]. (89)

Corollary 2. Consider a functional J (V ) = j(ζV ) and let V̄ be a minimizing element
of J on V (Ω1,Ω2). Then we have

∀Z ∈ Z ,
∂
∂ s

J (V̄ s)s=0 = J′(V̄ ; (
∂
∂ s

V s)s=0) = J ′(V̄ ;
∂
∂ t

Z(t)+ [Z(t), V (t)]) ≥ 0.

(90)

That variational principle extends to vector field V ∈ E for which the flow mapping
Tt(V ) is poorly defined. The element ζV ∈ H c is uniquely defined. For any Z ∈ Z the
perturbed ζ s

V := ζV oTs(Z)−1 ∈ T̄ (Ω1,Ω2); on the other hand the following result is
easily verified.

Proposition 15. ζ s
V = ζV s with

V s(t, .) := −DT−1
s (−Z(t)).(V (t)oTs(Z(t))−1)− ∂

∂ t
Ts(−Z(t)) (91)
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In other words:

∂
∂ t

ζ + ∇ζ .V = 0 implies
∂
∂ t

(ζoTs(Z(t))−1)+ ∇(ζoTs(Z(t))−1).V s = 0. (92)

It can also be verified that the expression (89) for the derivative of the field still holds
true so that the variational principle (90) is valid for any functional J minimized over
the lipschitzian connecting family V 1,∞(Ω1,Ω2). And more generally, without assum-
ing V in E we have:

Proposition 16. Let (ζ ,V ) ∈ T p,q(Ω1,Ω2), then for all s > 0 and Z ∈ Z we have:

(ζoTs(Z)−1, V s) ∈ T p,q(Ω1,Ω2). (93)

In order to get a differentiable metric, we could consider

d̃(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
(||V (t)||H1

0 ∩E0
+ || ∂

∂ t
V ||L2(D))dt. (94)

Equipped with d̃, OΩ0 would be a complete metric space but d̃ fails to be a metric
because of the triangle axiom. The advantage is that now the associated functional is
differentiable with repect to V , then we can apply the previous variational principle
with transverse vector field Z. Let V̄ be a minimizer in V (Ω1,Ω2) for d̃(Ω1,Ω2). Then
∀Z ∈ Z we have:

∫ 1

0
{||V(t)||−1 〈V (t),Zt +[Z,V ]〉+ |V ′(t)|−1((V ′(t)(Zt + Z,V )′))}dt = 0, (95)

where 〈,〉 is the H1
0 (D,RN) inner product while ((,)) is the L2(D,RN) one. In order

to recover a differentiable complete metric, we introduce again the constraint on the
perimeter as in the beginning and set

δH1(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
||V (t)||H1

0 ∩E0
dt. (96)

The optimality condition is: ∀Z ∈ Z

s.t.
∫ 1

0

∫
Γt

H(t)〈Z(t),nt〉dΓt dt = 0,

∫ 1

0
||V (t)||−1 〈V (t),Zt +[Z,V ]〉dt = 0. (97)

4.2.2 Euler Equation for Geodesics

∃c(t), P s.t.
∂
∂ t

(||V (t)||p−2V (t))+ ||V(t)||p−2(DV (t).V + D∗V.V (t))

= ∇P + cχΓt divΓt (nt)nt .

(98)
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That is,

(p−2)||V ||p−4((V,
∂
∂ t

V ))+ ||V(t)||p−2 (
∂
∂ t

V + DV(t).V + D∗V.V(t))

= c χΓt divΓt (nt)nt ,
(99)

which can be written as (with V̄ = ||V ||−1 V , Π = P−1/2|V |2):

divV = 0,

∂
∂ t

V +(p−2)((
∂
∂ t

V, V̄ ))V̄ = DV.V = ∇Π + c(t)||V ||2−p χΓt divΓt (nt)nt .
(100)

5 Variational Formulation for Euler Flow

As an application of the previous results we give a variational formulation for Euler
incompressible flow with tube boundary condition. We consider two non miscible fluids
and the tube describes the densities distribution. For shortness in this section we assume
p = 2 and we consider the quadratic situation with divergence-free vector fields. Then
we consider the Hilbert space

H = {V ∈ L2(I ×D,RN) s.t. divV = 0, V.nD = 0}. (101)

We consider any Banach space E1 ⊂ L1(D,RN) with continuous and compact inclusion
mapping.

Examples are E1 = BV (D,RN) or E1 = W ε,p(D,RN), for ε < 1/p, 1 ≤ p < ∞, which
is, for p = 2, the Hilbert space E1 = Hε(D,RN), for ε < 1/2.

The set of tubes under consideration is then

T = {(ζ ,V ) ∈ L2(I×D)×H, s.t. ζ = ζ 2,

∇ζ ∈ L1(I,E1), ζt + ∇ζ .V = 0, ζ (τ) = χΩ1}.
(102)

Notice that the convection equation implies that as ζt = div(−ζ V ), then we get:

ζ ∈C0(I,W−1,1(D,RN)). (103)

Proposition 17. The set T of tubes is non empty.

5.1 Tube-Variational Principle

We introduce the optimal control view point: the state equation will be the convection
equation (102) while we shall minimize a “Tube-Energy” cost functional governed by
this equation. The regularizing term is a surface tension-like term. As in the previous
sections this term will be needed in order to make use of the previous parabolic com-
pactness of tubes. Indeed we shall introduce a kind of “density” perimeter θh associated
with L1(I,Hε (D)) norm of the tube ζ , which turns to be differentiable under smooth
transverse fields perturbations ζs.
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5.1.1 Given Initial Domain Ω0 ⊂ D
Being given α > 0, β > 0, we consider the following Tube-Energy functional:

E (ζ ,V ) = 1/2
∫ τ

0

∫
D
(α ζ (t,x)+ β ) |V (t,x)|2dxdt + σ

∫ τ

0
||ζ (t)||E1 dt

−
∫ τ

0

∫
D

V0(x).V (t,x)dxdt.
(104)

Theorem 1. The functional E reaches its minimum on the set T of tubes.

Proof. We consider a minimizing sequence (ζn,Vn) ∈ T . There exist subsequences
such that Vn ⇀ V , weakly in L2(I×D) and ζn → ζ strongly in L1(I×D). Effectively as
(ζn)t = div(−ζn Vn ), we have:

||ζn||L1(I,E1) ≤ M1, ||(ζn)t ||L2(I ,W−1,1(D,RN)) ≤ M2. (105)

The conclusion derives from the compacity result. From this strong L1 convergence we
derive that ζ 2 = ζ . We consider the weak formulation for the convection problem (102):

∀ψ ∈C1(I× D̄, RN), ψ(0, .) = 0,∫ τ

0

∫
D

ζn(−ψt −∇ψ .Vn)dxdt = −
∫

Ω1

ψ(0,x)dx,
(106)

in which we can pass to the limit and conclude that (ζ ,V ) ∈ T . Moreover, the element
(ζ ,V ) is classically a minimizer as the three terms are weakly lower semi- continuous,
respectively for each weak topology. �	

5.2 Euler Equation Solved by the Minimizer

In order to analyze the necessary conditions associated with any minimizer of E over
the set T we introduce transverse transformations of the tube.

5.2.1 Transverse Field
Let us consider a perturbation parameter s ≥ 0 and any smooth horizontal non au-
tonomous vector field over RN+1 (s being the evolution parameter for a dynamic in
RN+1)

Z (s, t,x) = (0, z(s, t,x)) ∈ Rr × RN , (107)

such that Z (s, 0,x) = 0 .
For any element (ζ ,V ) ∈ T we consider the perturbed tube (ζ s, V s), where:

ζ s(t,x) := ζoTs(Z t)(x))−1

V s(t,x) = (D(Ts(Z t)−1)−1.(V (t)oTs(Z t)−1 − ∂
∂ t

(Ts(Z t)−1)).
(108)

Indeed we can show

Proposition 18. ∀(ζ ,V ) ∈ T , ∀Z , the previously defined elements (ζ s,V s) ∈ T .
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5.2.2 Transverse Derivative
Assume that divxZ t = 0, then:∫

D
(αζ s(t,x)+ β )|V s(t,x)|2 dx =

∫
D
(αζ (t,x)+ β )|V s(t)oTs(Z t)(x)|2 dx (109)

So that the optimality of the element (ζ ,V ) writes:

1/s(E (ζ s, V soTs)−E (ζ ,V )) ≥ 0. (110)

Now the following quotient has a strong limit in L2(I ×D):

V soTs −V
s

=
d
ds

[V soTs(Z t)]s=0

=
d
ds

[(D(Ts(Z t)−1)−1.(V (t)− ∂
∂ t

(Ts(Z t)−1)oTs(Z t))]s=0

=
d
ds

[(D(Ts(Z t)oTs(Z t)−1.(V (t)− ∂
∂ t

(Ts(Z t)−1)oTs(Z t))]s=0

=
∂
∂ t

Z(t)+ DZ(t).V(t) ∈ L2(I ×D,RN),

(111)

where we always denote Z(t)(x) = Z(t,x) := Z t(0,x) (that is at s = 0). Indeed we know
that if V was smoother, say V ∈ L2(H1(Ω)), we would have:

∂
∂ s

[V s]s=0 = Zt +[Z(t),V (t)] := HV .Z, (112)

where the Lie bracket is [Z,V ] = DZ.V −DV.Z, so we would get the previous expression
for the derivative of V soTs(Z t), as (V soTs)s = (V s)s + DV s.DZ(t).

5.3 Necessary Condition

5.3.1 Quadratic Term of E
The quadratic term may be decomposed as follows:∫ τ

0

∫
D
((αζ s + β )|V s|2 − (αζ + β )|V |2)/sdxdt

=
∫ τ

0

∫
D
((αζ + β )(|V soTs|2 −|V |2)/sdxdt

=
∫ τ

0

∫
D
((αζ + β )(V soTs +V)(V soTs −V)/sdxdt

→ 2
∫ τ

0

∫
D
((αζ + β )V.(

∂
∂ t

Z(t)+ DZ(t).V(t))dxdt

= −2

〈
∂
∂ t

((αζ + β )V )+ ”D((αζ + β )V).V”,Z

〉
D ′×D

+
∫

D
(αχΩτ + β )V(τ).Z(τ)dx−

∫
D
(αχΩ0 + β )V(0).Z(0)dx,

(113)

where
”D((αζ + β )V).Vi” = ∂ j((αζ + β )ViVj) ∈W−1,1(D). (114)

In fact we shall consider Z such that Z(τ, .) = 0 over D.



164 J.-P. Zolésio

5.3.2 The Linear Term
Let V0 be any given element in RN . We have:

∫ τ

0

∫
D

V0.(V s(t,x)−V (t,x))/sdxdt

=
∫ τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V (t,x))/sdxdt

+
∫ τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V(t,x))/sdxdt

→
∫ τ

0

∫
D

V0.(Zt(t,x)+ DZ(t,x).V (t,x))dxdt

=
∫ τ

0

∂
∂ t

(
∫

D
V0.Z(t,x)dx)dt =

∫
D

V0.Z(τ,x)dx−
∫

D
V0.Z(0,x)dx.

(115)

5.3.3 “Perimeter” Term in E
Assume formally that the minimizer element ζ is smooth enough, so that with the choice
E1 = BV (D,RN) we have the surface tension term in the classical form:

σ
∫ τ

0
||∇ζ ||M1(D,RN)dt = σ

∫ τ

0
PD(Ωt)dt. (116)

We would obtain as derivative with respect to s:

σ
∫ τ

0

∫
Γt

ΔbΩt 〈Z(t),nt〉dΓt dt. (117)

In the interesting case where E1 =W ε,p(D) we introduce the term, for any given “small”
h > 0:

θh(ζ ) :=
∫ τ

0
(
∫

D×D
ρh(||x− y||) |ζ (x)− ζ (y)|p

||x− y||N+ε p dxdy)dt, (118)

where ρh is any smooth positive function such that ρ(z) = 0 for |z| ≥ 2h, and ρ(z) = 1
for |z| ≤ h.

As a result we have

Lemma 3
∫ τ

0
||ζ (t)||W ε,p(D) dt ≤ τ(meas(D)+

1
hN+ε p meas(D)2)+ θh(ζ ). (119)

So that it is enough to choose the surface tension term in the form σ θh(ζ ). This term
turns to be always differentiable with respect to the transverse perturbations as follows:

θh(ζoTs(Z )−1)

=
∫ τ

0

∫
D×D

ρh(||Ts(Z )(x)−Ts(Z )(y)||) |ζ (x)− ζ (y)|p
||Ts(Z )(x)−Ts(Z )(y)||N+ε p dxdydt

(120)
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So that, for a.e. t in I we have (with θh(ζ ) =
∫ τ

0 θ (ζ (t))dt )

∂
∂ s

θh(ζ s(t))p
s=0

=
∫

D×D
ρh(||x− y||) |ζ (x)− ζ (y)|p

||x− y||N+ε p+2 〈x− y,Z(t,x)−Z(t,y)〉dxdy

+
∫

D×D
ρ ′

h(||x− y||) |ζ (x)− ζ (y)|p
||x− y||N+ε p 〈x− y,Z(t,x)−Z(t,y)〉dxdy

(121)

As ||x− y|| ≤ h in the previous integrals, we have:

Z(t,x)−Z(t,y) = DZ(t,x + δ (t)(y− x)).(y− x). (122)

There exists a measure μh(Γ (t) supported by

Δh(Σ) = ∪0<t<τ{t}× (∪x∈∂Ωt B(x,h)), (123)

such that

< μh, Z >=
∂
∂ s

θh(ζ s(t))p
s=0. (124)

In some sense when h → 0 the measure converges to the mean curvature of the moving
boundary Γt .

6 Euler-Convection Problem

We have

Theorem 2. Let V0 be any given element in RN. Then any minimizer (ζ ,V ) to the func-
tional E over the family of tubes T solves the following problem:

∂
∂ t

ζ + ∇ζ .V = 0, ζ (0) = χΩ0 , ζ (τ) = χΩ1 , (125)

∃Π s.t.
∂
∂ t

((αζ + β )V ) + D((αζ + β )V).V + ∇Π = μh. (126)

Moreover we have
V (0) = (V0 + ∇θ )/(αζ (0)+ β ). (127)
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