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Abstract. Current techniques for the formal modeling analysis of DoS
attacks do not adequately deal with amplification attacks that may tar-
get a complex distributed system as a whole rather than a specific
server. Such threats have emerged for important applications such as
the VoIP Session Initiation Protocol (SIP). We demonstrate a model-
checking technique for finding amplification threats using a strategy we
call measure checking that checks for a quantitative assessment of at-
tacker impact using term rewriting. We illustrate the effectiveness of
this technique with a study of SIP. In particular, we show how to auto-
matically find known attacks and verify that proposed patches for these
attacks achieve their aim. Beyond this, we demonstrate a new amplifica-
tion attack based on the compromise of one or more SIP proxies. We show
how to address this threat with a protocol change and formally analyze
the effectiveness of the new protocol against amplification attacks.

1 Introduction

Relatively speaking, formal modeling and analysis of protocols with respect to
their availability properties—in particular the analyses of vulnerabilities and/or
defense measures with respect to Denial of Service (DoS) attacks—is a subject
considerably less developed than formal analysis of other security properties such
as secrecy and authentication. Part of the challenge is that availability properties
are intimately related to performance, and therefore have an inescapable quanti-
tative nature that does not have an obvious formal model or analysis technique.

In spite of these challenges, a number of formal approaches [18,16,1]
[24,17,10,11,2,4,5], have indeed been proposed and shown effective in analyz-
ing various kinds of DoS attacks and defenses. However, none of these works
addresses directly the formal modeling of amplification attacks, in which an at-
tacker is able to convert a given level of resources into a larger level by enlisting
the aid of other nodes, often on a network wide basis. A characteristic example
of such a strategy is a smurf attack, in which LAN broadcast addresses enable a
single packet to be ‘amplified’ into a packet from each of the hosts on the LAN.
Methods like the Cost-Based Framework [18] and its successors [16,1] cannot
be straight-forwardly applied to this type of global attack. Indeed, at any given
point in an amplification attack, the cost inflicted on a specific targeted server
may not be significantly higher than that incurred by the attacker. What is new
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in this kind of attack is that the cost may be spread out to an entire networked
system, possibly including the objects that mediate the network communication.

Vulnerabilities to this kind of attack have become more common as increas-
ingly complex distributed systems are being deployed, ones that may rely on
resource limits for the system as a whole rather than just for specific servers.
A good illustration of this trend is the discovery of DoS vulnerabilities for the
Session Initiation Protocol (SIP) that sets up Voice over IP (VoIP) telephony
sessions; such vulnerabilities have been noted in efforts by IETF [14] and in the
academic literature [11]. VoIP is a broad term describing a set of technologies
enabling audio communication, similar to a telephone conversation, but over
a packet-switched IP network, instead of a circuit-based network. Call set-up
similar to circuit-switching is done by SIP proxies that assure that calls find
their destination and bulk communications are handled by the communicating
VoIP clients. DoS attacks on this system are able to effectively turn SIP proxies
against one another with exploding messaging amplifications. With the growing
reliance of telephony on VoIP internationally, such attacks must be viewed as
a major systemic threat so efforts are being made to design protocols that are
resilient to amplification attacks.

The aim of this paper is to develop and illustrate a new approach to the formal
analysis of amplification attacks based on model checking. Since model checking
computes the truth value of some property such as an invariant or a temporal
logic formula, at first sight it might not seem easily applicable to the analysis of
the quantitative properties involved in DoS attacks in general and amplification
attacks in particular. The key observation in this regard is that one can define
various quantitative measures, including measures on the global state of an entire
system and not just on the local states of a given attacker or targeted server
in that system. Then we can use various comparisons between such measures,
or between a measure and a chosen threshold, as the Boolean-valued property
that we model-check. In particular, we can characterize an amplification attack
by means of states where some measure comparisons hold true. We call this
technique measure checking.

Our main focus is on demonstrating the usefulness in practice of measure
checking. We validate the effectiveness of measure checking for analyzing ampli-
fication attacks in two studies. In the first study we show how measure checking
can discover a known but serious amplification attack on the SIP protocol. We
then show that the IETF RFC5393 revisions for SIP are effective in eliminating
this threat. These are model-checking studies, so the first part proves a risk for
a representative set of initial configurations, and the second proves that risk is
eliminated for that set. This does not prove that RFC5393 is always effective for
any configuration, but such model-checking can be an effective tool to find flaws.
In the second study we entertain the possibility that one or more SIP proxies
are compromised. Typical security analysis techniques usually do include some
type of study of what happens if, say, a session key is compromised, so such an
investigation of defense-in-depth is of value. Moreover, the compromise of SIP
proxies is somewhat likely given the nature of how these proxies are emerging
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in practice, so such a concern is real. We use measure checking to find a new
amplification attack that succeeds even for SIP augmented with the RFC5393
protections if a SIP proxy is compromised. It is not obvious how to address this
insider threat, but we describe a technique that burdens attackers significantly
at plausible cost to valid nodes. We again use measure checking to show that
this technique is effective (for a non-trivial collection of configurations).

The paper is organized as follows. Section 2 gives some background on the SIP
protocol and a short introduction to rewriting logic with particular emphasis on
its use to model and analyze network protocols. Section 3 describes amplification
attacks and the formal analysis framework for finding amplification attacks using
measure checking. It shows that the original SIP protocol is vulnerable to am-
plification attacks, whereas SIP patched with RFC5393 is not. Section 4 shows
that an amplification attack is still possible under the assumption of an insider
proxy. Section 5 describes a new defense mechanism that we propose and gives
an analytical bound on the amplification that an attacker can achieve under the
modified protocol. It also gives a formal analysis that confirms the analytical
bound. Section 6 gives a brief overview of related work on formal modeling and
analysis of DoS. Section 7 concludes with a discussion of future directions.

2 Background

In this section we present the required background. We start with an overview
of the SIP protocol and continue with a brief explanation of how rewriting logic
and its Maude implementation are used to model and analyze the SIP protocol.

Session Initiation Protocol. Voice over IP (VoIP) consists of a set of proto-
cols and related tools that deliver voice (and sometimes other media) over the
Internet. There are different protocol suites, such as Skype, that support this
functionality. The open protocol-suite by IETF is what we refer to as the VoIP
protocol in this document.

The protocol suite consists of various protocols such as the SIP protocol
used for initiating sessions between two users, the Session Description Proto-
col (SDP) used for exchanging session parameters, the Real-Time Transport
Protocol (RTP) used for transfer of data once the session is established, and
others. In this document we focus on the Session Initiation Protocol.

SIP is used for establishing a session between two parties who support VoIP.
The session setup functionality in SIP is handled by various architectural com-
ponents. User-Agent Clients (UAC) and User-Agent Servers (UAS) are the
hardware or software components that initiate and respond to the end users
requests respectively. A Proxy within a given domain handles the requests on
behalf of user-agents belonging to that domain. It may require authentication
from the client before it forwards any such requests. A User-Agent will typi-
cally register itself with a Registrar within its domain, and the agents actual
IP addresses are stored with a Location Server. Note that these architecture
components are logical in nature and in reality one or more of these components
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Fig. 1. SIP Protocol: Call setup when alice@abc.com invites bob@xyz.com

may be merged into a single piece of software or hardware. For instance, the
proxy server usually performs the job of a registrar/location server.

One particular run of the SIP protocol is given in Figure 1 where the user
Alice (at domain abc.com) is attempting to invite another user Bob (at domain
xyz.com). Here, the client initiating the protocol, i.e., the UAC corresponding
to alice@abc.com, sends a SIP Invite message addressed to Bob’s logical SIP
address bob@xyz.com (Step 1). The SIP invite message from Alice will be ad-
dressed to its proxy, which in turn forwards it to the proxy corresponding to the
domain xyz.com (Step 2). The proxy at xyz.com tries to resolve Bob’s actual
IP address from it’s location database (Step 3) and forwards the invite there
(Step 4). Once the software server on the receiver, i.e., Bob’s UAS, receives and
accepts this message, the two parties can start exchanging voice-data using other
media-transmission protocols such as RTP (Step 5).

Note that we have not shown some protocol messages for the scenario such
as acknowledgement messages from the proxies (ACK, OK, TRYING) which
inform the UAC when it is waiting for the response from Bob’s UAS. Also,
the outbound SIP proxy at domain abc.com may ask Alice for authentication
(REAUTH) before it agrees to forward the Invite request on its behalf (Step 2).

Besides locating the actual address corresponding to a SIP address, proxies
also perform various other functions. For instance, they also handle authentica-
tion, registration of the users, accounting the transactions and redirecting call
invites to other locations (to support mobility of users).

A feature of particular importance for our analysis is the forking of invite
messages. This feature allows proxies to forward a single invite to an address, say
sip:help@domain.org, to multiple addresses. In effect this allows calls placed
to one particular address to be handled by any one of the various users. This
feature makes SIP vulnerable to various forms of amplification attacks known
since [13], and as we further explain in this paper.
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Protocol Analysis in Rewriting Logic and Maude. Rewriting logic [19]
can model very naturally network protocols and, more generally, distributed sys-
tems [20]. A network protocol P is specified as a rewrite theory P=(ΣP , EP , RP),
where (ΣP , EP) is an equational theory, with typed function symbols ΣP and
equations EP that specify the set of states of P as an algebraic data type, and
RP is a set of rewrite rules that specify the protocol’s concurrent transitions.
The rewrite theory P then provides both a mathematical model of the protocol
(its initial model [19]), and an executable semantics for it by term rewriting,
which can be used for both simulation and model checking.

We can illustrate all this by explaining how the SIP protocol is specified
as a rewrite theory SIP = (ΣSIP , ESIP , RSIP ). A protocol state is modeled
as a configuration, that is, a multiset of objects and messages built up by an
empty-syntax (juxtaposition) union operator : Conf Conf −→ Conf , where
Conf is the type of configurations, and where the multiset union operator is
associative, commutative, and has the empty multiset ∅ as its identity element.
Therefore, ESIP contains the equations (x y) z = x (y z), x y = y x, and x ∅ = x.
Instead, the rules RSIP describe SIP’s protocol transitions. For example, the
acceptance of a call invitation by the addressee user is modeled by the rule

user(addr , addrSet) invite(addr ′, addr) −→ user(add , addrSet addr ′)

where the caller’s address addr ′ is added to the set of addresses in the callee’s
state. Note that rewriting with RSIP takes place modulo the equations ESIP ,
i.e., modulo the associativity, commutativity and identity axioms for .

The executability of rewriting logic specifications, such as the one described
above for SIP, is supported by the Maude rewriting logic language [6]. Further-
more, Maude also supports model checking formal analysis, both for verifying
reachability properties using its breadth first search command (search), and for
verifying linear temporal logic properties [6].

Since our analysis of SIP amplification attacks uses breadth first search, we
give a short summary of this type of model checking. As we show in this paper,
the search command can be used for analyzing various quantitative measures
on a selected set of system states specified in some way, e.g., by a predicate, or by
selecting only terminating states with the =>! search mode. The measures can be
performed on the selected states or on selected objects (e.g., an attacker) within
such states. We can then use the search command to compare different measures
on the selected states. For example, we can verify whether in any terminating
state a measure M1 is greater than a measure M2 by giving the command

search init =>! X:Conf such that M1(X:Conf) > M2(X:Conf) .

Since breadth first search explores all reachable states, it is a semidecision pro-
cedure for finding states with the specified property in the infinite-state case,
and becomes a decision procedure for finite-state systems.

3 Finding SIP Amplification Attack Vulnerabilities

In this section we first describe the kind of attacks that we are interested in, called
amplification attacks. We then present our formal model of SIP. We describe how



Model-Checking DoS Amplification for VoIP Session Initiation 395

we find the known attack for the SIP protocol version given in the RFC 3261 [12]
in our formal model. We also specify and analyze the version of SIP with the
patch according to the IETF standard [14], which we call SIP+5393, and find it
to be safe by itself, i.e., the patch works as desired in our model.

Amplification Attack Description. A common form of DoS attacks is to
ensure that the server spends a lot of its time (or other resources) servicing re-
quests from the attacker. This makes it difficult for the server to handle requests
from legitimate clients. The attacker can achieve this in different ways. Firstly,
it can simply bombard the server with a large number of requests (a flooding
DoS attack). Secondly, if the protocol allows it, the attacker can send requests
that take disproportionately large amount of time for the server to process (com-
pared to the effort spent by the attacker). These costly actions might include,
for instance, generation of cryptographic keys.

Some analysis of this form can be done by using the Cost-Based Framework
by Meadows [18]. In a cost-based analysis, every action (acceptance of a mes-
sage, generation of a key, sending of a message, etc.) of either server or user is
associated with a cost. The protocol is then considered secure with regards to a
DoS attack if, at every accepting event in a run of the protocol, the cost of the
server is within some factor of the cost of the attacker. In general, we want the
cost of the server to be less than the cost of the attacker, with some threshold
given by a tolerance relation in the framework.

In this work, we want to focus on a slightly different form of DoS attack.
Instead of observing whether the protocol allows the server to have a higher
cost (as compared to an attacker or user), we analyze if the protocol allows
a configuration where with minimal starting cost the attacker can achieve a
multiplying effort from the system in general. More specifically, we analyze if
we can get a configuration where the number of messages on the network can
amplify to essentially an arbitrary large number, starting from a very small
number of messages, without requiring further work by the attacker.

It is obvious that, for such configurations, if we looked at any given protocol
step, the cost of one server is not necessarily much more than the cost of the at-
tacker (unless we associate a very large cost with sending a message, which would
be impractical). Therefore this type of amplification attack will not be straight-
forwardly detected in general using the cost-based framework. We describe later
in this section how to detect such an attack.

Note that this type of attack of course implies that the total cost of all honest
proxy servers together (by, say, using the number of messages sent and received
as the measure) is much larger than that of the attacker, which in the best case
only needs to send some very few initial messages to create what could best be
described as a perpetual motion machine for the proxy servers to deal with.

Formal Analysis. Now we describe our formal analysis framework for the
SIP part of the VoIP protocol. We focus on amplification attacks, as explained
in the prior paragraphs. We develop a formal model of the SIP protocol in the
rewriting-logic based engine Maude. It models the sending and receiving of invite
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messages between proxies and users on a global shared channel as sketched in
Section 2. Each proxy or user belongs to a domain, and either consumes the
invite (presumably starting actual communication), or forwards the invite to
another participant, or forks the invite to multiple recipients.

We use our model of the SIP protocol to analyze its behavior not just for
one hand-picked starting state, but for a whole family of starting states. This
family of starting states depends on three parameters: the number of proxies,
the number of users, and the number of forking redirects that we consider. We
define rewrite rules in our model that, depending on those parameters, non-
deterministically create different initial configurations by adding users to proxies
and connecting them. Each connection here states that a message for user u
is to be forwarded, or forked, to the list of users u1, . . . , un, given by their
respective domain and user name. Using breadth-first search model checking
we then examine all possible initial configurations and the runs of the protocol
starting from them. Note that we make sure to create as few isomorphic initial
configurations as possible. An example of isomorphic initial configurations is
with 2 domains, one case where the first domain has 2 users and the second
domain has 1 user, and the other case where the first domain has 1 user and the
second domain has 2 users. These are substantially the same, but would both be
generated by a naive exhaustive state space generation. Note that each initial
configuration represents a model of a number of proxies and users participating
in the SIP protocol with the connections as specified. There is only one initial
invite message on the network, and the network is modeled as a shared channel.

We apply our measure checking by means of breadth-first search in Maude,
which explores all possibilities under the given non-determinism for the gener-
ation of initial configurations. Actually, the same command then also searches
through all possible interactions of each model with the one given initial message.
This of course requires enough memory in the system running the experiment,
but we have had no issues with that as the attacks are reachable for fairly small
numbers of proxies and users already.

Amplification Attack on the Original SIP Protocol. Measure checking
breadth-first search finds the well-known amplification attack ([13]) of the SIP
protocol in our model of SIP, based on RFC3261 [12]. The reason this attack
is feasible is the availability of forking proxies, see Section 2. A forking proxy
forwards an invite message it receives to more than one other proxy or user. If
that invite comes back to this proxy in some way, e.g., through a loop, then it
will be forked again. On each iteration of the loop at least one extra message will
be generated. This results in an amplification attack by the extra messages and
furthermore creates additional work for the proxies that are part of the loop.

We create the initial state space configuration with exactly one invite message
to start as part of the search command. We are searching for states in which a
number of messages exceeding a defined threshold (the simplest form of a mea-
sure) is on the network, where all the messages are in response to the one initial
message. In that case we are interested in the initial configuration for which this
is possible. That initial configuration shows how to set up the connections and
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Fig. 2. SIP amplification attack configuration with 3 users and 2 domains

forking for users allowing the amplification attack to unfold. In our model we
find the configuration that was already suggested in Section 2 for the attack.

We used the threshold of 50 messages related to the original one for the goal
of the search, but it is obvious in this model that if 50 such messages can be
created, an arbitrary number of messages could be created by further execution.
As expected, the amplification attack is easily found in the model, for just 2
proxies and 3 users with forking to at most 2 other participants at each proxy.
One configuration that can cause this attack is shown in Figure 2.

The search command that lets Maude find this attack in our model is:

search in SIP :

createEnvironment(2,3,2) protocolSteps(100) =>!

X:Config such that amplification(50,X:Config).

The initial configuration is created by invoking createEnvironmentwith 2 prox-
ies, 3 users and allowing forking of at most 2 for each forwarding entry, and one
initial invite message. We also limit the total number of steps of the protocol to
be executed to 100, by protocolSteps. We search for those final states, (speci-
fied with =>!), which we can do because we limit the total number of steps, in
which there are at least 50 extra messages, which the predicate amplification
tests, given that final configuration and the number of messages to check for.

Analysis of SIP+5393. We have also formally analyzed the effect of the
proposed patch to the SIP protocol as described in IETF RFC5393 [14] by
adapting our model of the original SIP protocol to accommodate the changes
suggested by the patch and calling the result SIP+5393. The patch adds a so-
called via field to each message, which keeps track of which proxies have been
visited by this message so far. When a proxy receives a given message that has
its own identifier in that via field already (and it is further recognized that no
other parameter of the message has changed), it will drop the message.

We do not model the max breadth suggestion of SIP+5393, since that feature
only spreads the attack out over time, but does not reduce the actual traffic that
is being generated. It gives observers, like system administrators, more time to
detect and stop the attack in ways that are not part of the protocol specification.
As such, it is not central to whether an amplification attack is possible or not.
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We find that there is no attack for the SIP+5393 protocol directly, and show
that below. However, with an intruder, namely a single malicious proxy, a similar
attack exists again, as shown in Section 4.

No Amplification Attack in SIP+5393. With the changes for SIP+5393
included in the model we can run the exact same search command that finds
the attack for the original version, to see if it is still possible. In the SIP+5393
version of the protocol that attack is no longer found for the same parameters.
We also investigated what happens when different parameters are changed, in
particular allowing for more proxies and users, which gives more possibilities for
the attacker. Our analyses showed that the attack is not possible even after those
parameter changes. Looking at the attack in the old model, it is indeed quite
clear that that attack is infeasible in the new model of the patched version.

4 A New Insider Threat

Amplification Attack with Intruder. It is important to note that for the
IETF loop patch described and modeled as SIP+5393 to work, it is implicitly
assumed that all SIP proxies are trusted to behave according to the protocol. In
practice, most of the SIP-based VoIP solutions that are currently available as-
sume fairly high levels of trust on intermediate proxies. This is primarily because
of the fact that providing end-to-end security for SIP signaling, while maintain-
ing simplicity and efficiency of the protocol, can be a very challenging task by
the very nature of the protocol [22]. In particular, the protocol expects interme-
diate proxies to process SIP messages by accessing their headers and updating
them (e.g., appending values to the via field). Therefore, means for protecting
the integrity and confidentiality of SIP messages, like S/MIME as suggested in
SIP [12], cannot be used to lift or relax trust assumptions on SIP proxies.

While these trust assumptions can be reasonable for proxy servers that are un-
der direct control of the VoIP service provider, it is unfortunately too optimistic
for a user or a service provider to assume that all SIP proxies are trustworthy.
In fact, the possibility of a single malicious proxy along a SIP signaling path is
actually quite practical, as an attacker can easily run his or her own proxy server
from any given machine. Furthermore, an attacker can ensure that he/she keeps
receiving the SIP messages by using the Record-Route option which points to its
own address. A Record-Route option is usually inserted by a proxy to ensure that
it is kept in the signaling path (typically to enable accounting). This malicious
proxy can then remove all contents of the via field whenever a message passes
through it, which, as we explain below, may re-introduce the same amplification
attack as for the original protocol.

Definition (Intruder). An intruder is a malicious user that registers itself
possibly at multiple proxies and sets up its forwarding preferences so as to create
a forking loop, along which it assumes control of a forwarding proxy (referred to
as the malicious proxy) that is capable of manipulating values of the via fields
of incoming invite messages.



Model-Checking DoS Amplification for VoIP Session Initiation 399

To see that the malicious proxy is not going to get overloaded by this DoS attack
itself, it is important to notice that only a very small percentage of the messages
created needs to go through it. The malicious proxy essentially needs to be on a
single loop, which at each step creates extra messages that are not part of the loop
the malicious proxy is in. The fraction of the network traffic which impacts that
one machine depends on the length of that loop and the amount of forking along
it. Effectively, the attacker can increase its bandwidth by a factor of around 60,
which is the maximum allowed forking.

Formal Analysis of the Insider Threat. We have further extended the
model for the patched protocol SIP+5393 with the possibility of an intruder.
Specifically, we extend the model with a malicious proxy capable of dropping
the via fields of invite messages. With this extension, we can show that an
amplification attack entirely similar to the original one in Section 3 can be found
by running the same search command for SIP+5393 but now with one intruder.

search in SIP+5393+Intruder :

createEnvironment(2,3,2) protocolSteps(100) withIntruder =>!

X:Config such that amplification(50,X:Config).

The intruder is non-deterministically associated with one proxy in the configura-
tion using the operator withIntruder to enable the search command to explore
all possible intruder assignments. The resulting attack is still of the form de-
picted in Figure 2, but now the intruder pays a small price on every loop. Thus,
this is not an attack of the form of a perpetual motion machine and instead
requires the attacker to do some work, but it still gives the attacker an amplifi-
cation attack on the honest participants of the protocol with a lot of leverage in
the form of a large multiplication factor for its capabilities.

5 A Tit-for-Tat Defense in Depth Mechanism

To harden the SIP protocol against the insider threat presented and analyzed
in Section 4, we propose a slight modification of the SIP protocol with the
IETF patch, denoted SIP+5393+t4t, that alleviates such a malicious proxy
amplification-based DoS attack. The idea is to force such an intruder to ex-
pend a cost proportional to the number of messages generated and processed as
a result of forking. The gain by the attacker should indeed be significantly lower
than the 60-fold advantage in cost it can achieve over honest participants as
noted in Section 4. Specifically, the proposed modification allows a message am-
plification attack to be mounted by an insider I only if I is willing to spend some
message generation and processing effort that is at best (for the attacker) four
times smaller than the total effort forced by the attacker on all honest parties.

SIP+5393+t4t Description. The proposed modification to the protocol is
as follows. When a forking proxy P receives an invite message m that is to be
forked to k nodes, the following steps are taken:
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1. P sends a verification message to Q, the originating proxy of m.
2. If Q does not recognize the session of m, Q replies back to P with an “invalid

session” response, which causes P to drop m.
3. Otherwise, if Q recognizes the session of m, Q sequentially performs k re-

authentications with the user node in its domain that initiated m. For each
one of the k re-authentication requests,
(a) the user is simply re-authenticated according to the protocol.
(b) If the re-authentication request succeeds, Q sends to P a success message,

then P forwards a single copy of m to one of its remaining destinations.
(c) Otherwise, if the re-authentication request is unsuccessful, a failure mes-

sage is sent to P , which causes P to drop m altogether.

By the time P receives all k successful re-authentication responses from Q, P
will have completed the process of forking the message m.

This modified protocol does not require any changes on the part of the end
user device, which is potentially a phone hand set which cannot be updated
easily, but only on the part of the proxies, which have to be changed anyway.
We now define the cost of participating in the protocol.

Definition (Cost). The cost of engaging in a protocol is the total number of
messages sent and received (processed) as a result of running the protocol.

Note that in the prior sections we did not need to consider the original invite
sender in any detail, since all its cost was a single message. However, with the
change to SIP proposed here, the initial sender needs to pay a cost whenever
forking happens, in the form of the re-authentication messages. The attacker is
the one setting up all the redirects and forks, and the one sending the initial
message. Thus, it is reasonable to associate the costs of both the initial invite
sender and the intruder-controlled proxy to the attacker.

Note, also, that when calculating the message-processing cost a naive cost
calculation would associate a large cost when a single invite message is simply
passed along a long chain of SIP proxies without forking (i.e., redirected from
one proxy to the next) and consumed or discarded at the end. Clearly, this is
not an amplification attack as we have described it. This does not create a DoS
attack either on the network or on a given server as, at any given time, there is
only one invite message in the system. We ensure that we do not consider such
configurations as leading to an amplification attack by specifying the invariant
(amplification) to include a measure on the number of active messages in the
system. In the case of the scenario above, where a long chain of proxies simply
forward the message to the next one, the number of active messages in the system
at any given time will only be 1.

The multiplication factor the attacker can gain is the quotient of the cost of
the legitimate participants of the protocol and the attacker’s cost. As we shall see
below, our modified version of the SIP protocol bounds, by a factor of at most
four, the leverage that is available to the attacker for an amplification attack.

Amplification Bound. We now compute a bound on the proportional cost of
amplification to legitimate proxies (or the environment) compared to the cost
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incurred by the intruder, where the cost measure is as defined above (the cost
of dropping values of the via field is assumed to be negligible and is included
in the cost of forwarding a message). Let I be the intruder initiating the invite
message m. We first note that the signaling path for m can, in general, be a
graph with one or more cycles (at least one of which was carefully planned by
I). The intruder proxy can be virtually anywhere within the graph as long as
it lies on one of these loops. However, for I to maximize the effectiveness of
his/her attack, I would need to minimize the amount of effort exerted by the
intruder proxy. In particular, the originating (domain) proxy or a forking proxy
are not the optimal choices for I. This is because the forking proxy not just
forwards one message, but forks multiple messages and thus has a much higher
cost associated with it than just that of forwarding messages. For the originating
(domain) proxy it is even worse, as any forking with factor k will require it do k
re-authentication steps with the user (which an intruder could just ignore doing)
but also requires k successful re-authentication messages to the forking proxy
(which even the intruder has to do), while the cost to the forking proxy is to
receive k successful re-authentication messages and then forks k messages.

Theorem 1 (Tit-for-Tat Defense). Using SIP+5393+t4t, and in the pres-
ence of an intruder, the cost of engaging in the protocol for legitimate proxies is
at most four times the cost for the intruder.

Proof. Suppose n is the total number of forking proxies along the signaling path
of m. Suppose also that the average forking factor for m is k. Obviously, the
worst case occurs when all n forking proxies are located on the signaling cycle
created by I.

In every iteration of the loop, each of the n proxies in the signaling loop
receives a message and replies back to the originating proxy, adding cost 2n to
the forking proxies and adding cost n to the originating proxy. For each one
of n messages the originating proxy sends k re-authentication messages to the
originating user (adding cost nk). The originating user receives and replies with
re-authentication responses (adding cost 2nk to the originating user). For each
one of these re-authentication responses, the originating proxy forwards its reply
to the forking proxies (adding cost 2nk) and the forking proxies in turn forward
the invite to the intended destination users (adding cost 2nk for receiving and
sending the messages).

To summarize, the costs of processing m for the environment env (forking
and originating proxies) and the attacker att (user I) are:

cost(env) = 2n + 2nk+ (received and sent by forking proxies)
n + 2nk + nk (received and sent by originating proxy)

= 3n + 5nk
cost(att) = 2nk

Thus, we have

cost(env )
cost(att)

=
3n + 5nk

2nk
=

1.5
k

+ 2.5 ≤ 4 for any k ≥ 1.
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Formal Analysis. To verify correctness of SIP+5393+t4t, we extended the
formal model we have developed so far by specifying the new behaviors for SIP
proxies. With this modification, we can now verify for our running example of
Section 4 by measure checking that in the presence of an intruder, the cost
of an attempted amplification attack will always respect the bound given by
Theorem 1 for SIP+5393 patched with our tit-for-tat defense mechanism.

search in SIP+5393+Intruder+t4t :

protocolSteps(100) createEnvironment(2, 4, 3)

withIntruder environmentCost(0) attackerCost(0)

=>! X:Config environmentCost(N:Nat) attackerCost(M:Nat)

such that amplification(50, X:Config) /\ N:Nat > 4 * M:Nat .

The operators environmentCost and attackerCost record, respectively, the
costs for legitimate proxies and for the intruder. The query checks for a state
where the attacker cost is less than a quarter of that for the environment, and
fails for all the parametrically generated initial configurations, as expected.

6 Related Work

There have been several attempts to formally characterize DoS attacks in the
literature. One of the early and influential such attempts was Meadows’s frame-
work [18]. Her framework implements a generic, cost-based approach in which
actions in a protocol are identified and assigned costs, for example computa-
tional costs, that can then be combined and compared to the costs incurred by
an attacker as a result of participating in the protocol. A DoS attack is then
characterized by having legitimate participants expend more effort than a given
threshold, specified by a tolerance relation in the framework. Meadows’s work
has later inspired other cost-based approaches to analysis of DoS, including some
process-algebraic techniques such as information-flow based static analysis [16],
and dynamic analysis using behavioral equivalence [1]. Another approach to an-
alyze DoS defense is the game-based analysis proposed in [17]. Here the authors
analyzed a modified version of a key-exchange protocol (JFKr) using client-
puzzles, where the interaction between the attacker and the server is modeled as
a two-player strategic game. The protocol is verified for fairness towards clients
and the attacker with respect to their solving of the client-puzzles. A systematic
study of various vulnerabilities in the VoIP stack, including amplification- and
reflection-based DoS attacks, and the formal analysis of some of them were pre-
sented in [11]. Other formal approaches and extensions to deal with DoS attacks
and defense mechanisms have also been developed in, e.g., [24,10].

Another approach is the use of general term rewriting formalisms, such as
rewriting logic, which is the method we employ in this work. In addition to
analysis of traditional security properties of protocols, e.g. the work in [7,9,8],
rewriting techniques have been successfully applied to the analysis of availabil-
ity properties against DoS threats. Examples of this in the literature include the
analysis of TCP SYN floods-based DoS attacks [2], and verification of some of
the properties of the adaptive selective verification (ASV) protocol against DoS
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attacks [4], both within the shared channel model. One interesting feature of the
analyses of DoS vulnerabilities in [2,4], also shared by a similar rewriting-logic
based analysis of QoS requirements in [15], is the use of statistical model check-
ing [21,23] in conjunction with a quantitative temporal logic like QuaTEx [3] to
analyze quantitative, performance-related aspects of DoS attacks and defenses.
Furthermore, a modular approach using generic cookie wrappers, also based on
rewriting logic, was given in [5] for DoS protection specification in communica-
tion protocols while preserving their safety properties.

7 Discussion and Conclusions

We have presented a new model checking technique, called measure checking,
to analyze amplification attacks on network protocols. The technique is based
on the idea of defining cost measures not only on individual objects, such as
an attacker or a targeted server, but also on the entire network system. Model
checking then analyzes whether certain measure comparisons characterizing an
amplification attack are possible or not. Our technique is entirely general and
can be used within many different formal frameworks and with different model
checking tools. We have illustrated its effectiveness in detail for the case of the
SIP protocol of the VoIP protocol suite using rewriting logic and Maude as
our formal modeling framework and tool. Specifically, we have shown that our
technique can: (i) find the original amplification attack on SIP, (ii) verify the
effectiveness of the SIP+5393 patch against it, (iii) find a new amplification
attack on SIP+5393 in the presence of a malicious proxy, and (iv) verify the
effectiveness of a new tit-for-tat defense mechanism against this insider attack.

We view our new DoS analysis technique as complementary to the statistical
model checking approach in [2,4]. Indeed, both are based on a rewriting logic
model of a protocol. It may in fact be useful to combine both types of analysis
on a network protocol model. For example, statistical model checking can be
used to explore in greater depth the impact of DoS attacks and defenses on
performance measures such as latency. Furthermore, statistical model checking
is easily parallelizable, and is therefore more scalable, so that it can be used
to search for a wider range of attack scenarios than those that can be feasibly
explored with standard model checking techniques.

Note, that the technique presented in this work is specific for analyzing ampli-
fication attacks and similar attacks characterizable by cost measure comparisons.
However, it is not a general method to analyze all DoS attacks possible. For in-
stance, the attacker might simply send a large number of packets that take up
all available output buffers within a proxy. The attacker could launch reflection
attacks by spoofing the source IP address of the intended victim to a large num-
ber of proxies (thereby causing the proxies to reply back to the victim in large
numbers). There are also DoS attacks possible by either spoofing a connection
termination messages or by inserting spurious via fields. See [11] for a discussion
on some of these attacks in the VoIP protocol.
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There are several directions in which this work can be extended. Our plan
is to use SIP and VoIP as a testing ground for new extensions of our tech-
niques. One interesting possibility is to develop new techniques to formally char-
acterize other kinds of DoS attacks such as reflection attacks and smurf attacks
and verify them on SIP, which has been known to be vulnerable to such at-
tacks [11]. Moreover, it would be interesting to evaluate the effectiveness and
practicality of the intruder model assumed in our analysis by deploying (per-
haps a modified version of) the SIP protocol on an appropriate test-bed using
some open-source, standards-compliant implementation of the protocol, such as
sipX (http://www.sipfoundry.org/sipX).
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