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1 IBM Zurich Research Laboratory, Switzerland
smo@zurich.ibm.com

2 Dep. of Computer Science, University of Verona, Italy
luca.vigano@univr.it

Abstract. Channels are an abstraction of the many concrete techniques
to enforce particular properties of message transmissions such as encryp-
tion. We consider here three basic kinds of channels—authentic, confiden-
tial, and secure—where agents may be identified by pseudonyms rather
than by their real names. We define the meaning of channels as assump-
tions, i.e. when a protocol relies on channels with particular properties
for the transmission of some of its messages. We also define the meaning
of channels as goals, i.e. when a protocol aims at establishing a particular
kind of channel. This gives rise to an interesting question: given that we
have verified that a protocol P2 provides its goals under the assumption
of a particular kind of channel, can we then replace the assumed channel
with an arbitrary protocol P1 that provides such a channel? In general,
the answer is negative, while we prove that under certain restrictions
such a compositionality result is possible.

1 Introduction

Context. In recent years, a number of works have appeared that provide formal
definitions of the notion of channel and how different kinds of channels can be
employed in security protocols and web services as a means of securing the com-
munication. These works range from the definition of a calculus for reasoning
about what channels can be created from existing ones [23] to the investigation
of a lattice of different channel types [15]. In this paper, we consider three basic
kinds of channels: authentic, confidential, and secure. We use an intuitive nota-
tion from [23], where a secure end-point of a channel is marked by a bullet with
the following informal meaning (defined precisely below):

– A •→B : M represents an authentic channel from A to B. This means that
B can rely on that fact that A has sent the message M and meant it for B.

– A→•B : M represents a confidential channel. This means that A can rely
on that fact that only B can receive the message M .

– A •→•B : M represents a secure channel, i.e. a channel that is both authentic
and confidential.

While [23] uses the bullet notation to reason about the existence of channels, we
use it to specify message transmission in security protocols and web services in
two ways. First, we may use channels as assumptions, i.e. when a protocol relies
on channels with particular properties for the transmission of some of its messages.
Second, the protocol may have the goal of establishing a particular kind of channel.
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Contributions. First, for channels as assumptions, we define two models: the
Ideal Channel Model ICM describes the ideal functionality of a channel, and the
Cryptographic Channel Model CCM describes the implementation of channels
by cryptographic means. We relate these two models by showing that attacks in
either model can be simulated in the other. On the theoretical side, relating ideal
functionality and cryptographic implementation gives us insight in the meaning
of channels as assumptions. On the practical side, it allows us to use the models
interchangeably in analysis tools, which may have different preferences.

Second, we formally define the meaning of channels as goals. Specifying the
use of channels both as assumptions and goals gives rise to an interesting ques-
tion: given that we have verified that a protocol P2 provides its goals under the
assumption of a particular kind of channel, can we then replace the assumed
channel with an arbitrary protocol P1 that provides such a channel? In general,
the answer is negative, while we prove that under certain restrictions such a
compositionality result is possible.

On the theoretical side, this proof has revealed several subtle properties of
channels that had not been recognized before, so we contribute to a clearer
picture of channels and protocol goals. The most relevant issue is the following
one. We discovered that the standard authentication goals that are widely used
in formal protocol verification are too weak for our compositionality result, as
we illustrate with a simple example protocol. We propose a strictly stronger
authentication goal that, to our knowledge, has never been considered before
and that is sufficient for compositionality.

On the practical side, such a compositionality result is vital for the verification
of larger systems. For example, when using an application protocol on top of a
protocol for establishing a secure channel such as TLS, one may try to verify
this as one large protocol, but this has several drawbacks in terms of complexity
and reuseability. With our approach, one can instead verify each of the two
protocols in isolation and reuse the verification results of either protocol when
employing them in a different composition, i.e. when using the channel protocol
for a different application, and when running the application protocol over a
different channel protocol.

Third, we formulate all the above channel models and theorems so that an
agent may be identified not by its real name but by some pseudonym, which is
usually related to an unauthenticated public-key; see, e.g., [7,14,18,20]. In the
case of authentic channels, this concept has often been referred to as sender
invariance: the receiver can be sure that several messages come from the same
source, whose true identity is not known or not guaranteed. Analogously, one
may consider receiver invariance.

The most common example of a pseudoynmous secure channel is TLS with-
out client authentication: while the real name of the client is not authenticated
(or not even mentioned), the established channel is secure but only relative to an
unauthenticated agent. We show how to model this channel like a normal secure
channel with a pseudonym instead of the agent’s real name. Such a channel is suffi-
cient for a number of applications, e.g. a login protocol where the unauthenticated
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client sends a username and password to the server; this authentication turns the
pseudonymous secure channel into a standard secure channel.

We proceed as follows. In § 2, we briefly describe the formal specification
languages that we use. In § 3, we specify channels as assumptions and define
and show equivalent the ICM and the CCM. In § 4, we specify channels as
goals. In § 5, we consider compositional reasoning. In § 6, we discuss related
work and draw conclusions. Proofs and further details can be found in [26].

2 The Formal Specification Languages AnB• and IF

The definitions and results we present in this paper deal with the notion of secure
pseudonymous channels in general, as employed in, or provided by, security pro-
tocols and web services. In this section, we give a brief overview of the AVISPA
Intermediate Format IF that we use as a basis for our formalization. First, how-
ever, we introduce an extension of the language AnB [25], a formal language
based on Alice and Bob notation for specifying security protocols, which we
augment here with the bullet notation of [23] to easily specify secure channels as
assumptions and goals; we call this extension AnB•. For lack of space, we omit
several details of AnB• and IF, and of the translation from AnB• to IF, which
can be found in [26].

AnB•. Fig. 1 shows the AnB• specification of two example protocols that we
use as running examples, where we omitted the declaration of types and ini-
tial knowledge for brevity. The protocol P (on the left) is the Diffie-Hellman
key-exchange over authentic channels (as assumptions) plus a payload message
symmetrically encrypted with the agreed key exp(exp(g,X), Y ), where we use
{| · |}· to denote symmetric encryption. Below the horizontal line, we have the
goal that the payload message is transmitted securely. We may rephrase this
protocol and (intended) goal as follows: Diffie-Hellman allows us to obtain a
secure channel out of authentic channels. We have a similar setup in TLS, for
instance, but we have selected this example for brevity.

Pseudonymous channels are like standard channels with the only exception
that one of the secured endpoints is logically tied to a pseudonym instead of a
real name. In general, we write [A]ψ to denote the identity of an agent A that
is not identified by its real name A but by some pseudonym ψ, e.g. we write
[A]ψ •→B : M for an authentic channel. We also allow that the specification of
ψ is omitted, and write only [A] •→B, when the role uses only one pseudonym
in the entire session (which is the case for most protocols). We use a similar
notation for the other kinds of pseudonymous channels.

The protocol P ′ on the right of Fig. 1 is a variant of P where the message
from A is on an insecure channel, thus A’s half-key is not authenticated. We
have here a weaker goal: a secure channel where A cannot be authenticated and
is identified by a pseudonym. Again, we have a similar situation in the case of
TLS without client authentication: we get a secure channel but the client is not
authenticated. As follows from our compositionality result, such a pseudonymous
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A •→ B : exp(g ,X )

B •→ A : exp(g ,Y )

A → B : {|Payload |}exp(exp(g,X ),Y )

A •→• B : Payload

A → B : exp(g ,X )

B •→ A : exp(g ,Y )

A → B : {|Payload |}exp(exp(g,X ),Y )

[A] •→• B : Payload

Fig. 1. Example protocols in AnB• (excerpts): P (left) and the variant P ′

secure channel between an unauthenticated client and an authenticated server
is sufficient to run, for instance, a password-based login protocol on it, such as

[A] •→• B : A, password(A)

[A] •→• B : Payload ′

A •→• B : Payload ′

where Payload′ is now on a standard secure channel (assuming that the password
of A is sufficient to authenticate her to the server B). We will continue our
running examples below, giving concrete IF transition rules.

The Intermediate Format IF. An IF specification P = (I, R,G) consists of
an initial state I, a set R of rules that induces a transition relation on states, and
a set G of attack rules (i.e. goals) that specify which states count as attack states.
A protocol is safe when no attack state is reachable from I using the transition
relation. An IF state is a set of ground facts, separated by dots (“.”), such as
iknows(m), which expresses that the intruder knowsm, or stateA(A,m1, . . . ,mn),
which characterizes the local state of an honest agent during the protocol exe-
cution by the messages A,m1, . . . ,mn. The constant A identifies the role of that
agent, and, by convention, the first message A is the name of the agent. Note
that state numbers are also messages and usually follow the agent name in state
predicates (cf., e.g., (1) below). We will later introduce further kinds of facts.

The transition system defined by an IF specification consists of only ground
states: the initial state is ground and transitions cannot introduce variables. We
consider here IF transition rules of the form:

L | cond =[V ]⇒ R

where L and R are sets of facts, cond is a set of conditions of the form not(f)
and s �= t for a fact f and terms s and t, and V is a list of variables that do not
occur in L or cond ; moreover, R may only contain variables that also occur in
L or V . The semantics of this rule is defined by the state transitions it allows:
we can get from a state S to a state S′ with this rule iff there is a substitution
σ of all variables of L and V such that Lσ ⊆ S, S′ = (S \ Lσ) ∪ Rσ, and V σ
are fresh constants (that do not appear in S); moreover, for all substitutions τ
of the remaining variables that appear only in cond , the conditions are satisfied,
i.e. fστ /∈ S for each not(f) ∈ cond , and sστ �≈ tστ for each s �= t ∈ cond .
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The transition rules of honest agents specify how agents reply to messages
they receive. For instance, the second transition of A for our example protocol
P of Fig. 1 looks as follows when using insecure channels:

stateA(A, 1, B, g, X).iknows(GY ) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload)

(1)

By convention, all identifiers that start with an upper-case letter are variables,
the others are functions. This rule describes the behavior of an agent A, playing
role A, in step 1 of the protocol execution: A has sent to agentB the first message
of the protocol exp(g,X) and is waiting for the answer that corresponds to the
exp(g, Y ) step of the protocol. We adopt here an optimization for the case of
insecure channels: we identify intruder and network for insecure channels (that
are controlled by the intruder, see [24] for a soundness proof). Effectively, this
means that the incoming message that A is waiting for is represented by an
iknows(·) fact (i.e. some value that the intruder chooses from his knowledge),
and similarly the outgoing message is added directly to the intruder knowledge.
Note that the left-hand side iknows(·) fact does not need to be repeated on the
right-hand side as we define iknows(·) facts to be persistent. Since A cannot check
that the value she receives is indeed of the form exp(g, Y ) as the protocol says,
she now accepts any value GY and will thus generate the full Diffie-Hellman
key as exp(GY , X) and use it to symmetrically encrypt the Payload . Here, the
Payload is modeled as a fresh nonce as a kind of place-holder; as we will see in
§ 5, there is actually a non-trivial verification problem attached to this.

We can describe the behavior of the intruder using similar rules; for this paper,
we need the following deduction rules:

iknows(M).iknows(K) ⇒ iknows({M}K)
iknows({M}K).iknows(inv(K)) ⇒ iknows(M)

iknows({M}inv(K)) ⇒ iknows(M)
iknows(M).iknows(K) ⇒ iknows({|M |}K)

iknows({|M |}K).iknows(K) ⇒ iknows(M)

The first rule describes both asymmetric encryption and signing (when K is a
private signing key). The second rule expresses that the intruder can decrypt
an encrypted message when he knows the corresponding private key (denoted
by inv(·)), and the third rule expresses that one can always obtain the text of a
digital signature (the verification of signatures is expressed in transition rules of
honest agents using pattern matching). The last two rules describe symmetric
encryption and decryption, respectively.

We may have further similar rules for intruder deduction. As is standard,
we assume that a subset of all function symbols are public, such as encryption,
concatenation, public-key tables, etc. The intruder can use these symbols to form
new messages, namely, for each public symbol f of arity n, we have the rule:

iknows(M1). · · · .iknows(Mn) ⇒ iknows(f(M1, . . . ,Mn)) .
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We assume that all constants that represent agent names and public keys
are public symbols (of arity 0). We may also consider algebraic properties such
as exp(exp(g,X), Y ) ≈ exp(g, Y ), X) that we need for the Diffie-Hellman key
exchange. While we allow for algebraic properties in general, for the results we
are interested in here we assume that the symbols {·}·, {|· |}·, and ·, · (for pairing)
that we use in our model do not have algebraic properties.

We consider here a Dolev-Yao-style intruder model, in which the intruder
controls the network as explained above, including that he can send messages
under an arbitrary identity. Moreover, he may act, under his real name, as a
normal agent in protocol runs. We generalize this slightly and allow the intruder
to have more than one “real name”, i.e. he may have several names that he
controls, in the sense that he has the necessary long-term keys to actually work
under a particular name. This reflects a large number of situations, like an honest
agent who has been compromised and whose long-term keys have been learned by
the intruder, or when there are several dishonest agents who all collaborate. This
worst case of a collaboration of all dishonest agents is simply modeled by one
intruder who acts under different identities. To that end, we use the fact symbol
dishonest(A) that holds true for every dishonest agents A (from the initial state
on). We can also allow for IF rules that model the compromise of an agent A by
giving the intruder all knowledge of A and adding the fact dishonest(A). We will
use this also for pseudonyms freshly created by the intruder for pseudonymous
channels. More specifically, to ensure that the intruder can generate himself new
pseudonyms at any time and can send and receive messages with these new
pseudonyms, we use the predicate dishonest(·) in the rule:

=[ψ]⇒ iknows(ψ).iknows(inv(ψ)).dishonest(ψ) .

This includes inv(ψ), which we need for the CCM, where pseudonyms are simply
public keys (as, e.g., in PBK). Creating a new pseudonym thus means generating
a key pair (ψ, inv(ψ)).

Attack states are formalized in IF by means of the attack rules in G, which
are rules without a right-hand side: a state at which an attack rule L | cond can
fire is thus an attack state.

3 Channels as Assumptions

We now define two formal models for channels as assumptions, summarized in
Table 1: the ideal channel model ICM describes the properties of a channel in an
ideal way using IF facts, while the cryptographic channel model CCM employs
cryptography to achieve the same properties on the basis of insecure channels.
We will also show that the CCM implements the ICM in a certain sense.

3.1 The Ideal Channel Model ICM

We introduce new facts athChA,B(M), cnfChB(M) and secChA,B(M) to express
that an incoming or outgoing message is transmitted on a particular kind of
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Table 1. Channels as assumptions in the ICM and the CCM

Channel AnB• ICM CCM

Insecure A → B : M iknows(M) iknows(M)
Authentic A •→B : M athChA,B(M) iknows({atag, B, M}inv(ak(A)))
Confidential A→•B : M cnfChB(M) iknows({ctag, M}ck(B))
Secure A •→•B : M secChA,B(M) iknows({{stag, B, M}inv(ak(A))}ck(B))

channel where A and B can be either real names or pseudonyms and M is the
transmitted message. We refer to these three facts as ICM facts or channel facts.
In contrast to the insecure channels, the authentic and secure channels also have
sender and receiver names, and the confidential channels only the receiver names,
as this information is relevant for their definition. Also, like for the iknows(·) facts,
we define the athChA,B(M), cnfChB(M) and secChA,B(M) facts as persistent.
Thus, once a message is sent on any of these channels, it “stays there” and can be
received an arbitrary number of times by any receiver. Therefore, these channels
do not include a freshness guarantee or protection against replay; we discuss
such a channel variant in [26]. Finally, we require that the channel facts do not
occur in the initial state or the goals. Then, for instance, the second transition
of A for our example protocol P of Fig. 1 looks as follows (cf. (1)):

stateA(A, 1, B, g, X).athChB,A(GY ) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload)

(2)

A thus processes the incoming message only if there is a message on an authentic
channel such that B and A match the respective values in the local state of A.
Due to persistence, the left-hand side fact athChB,A(GY ) is not removed by
applying this rule.

With this, we have already defined part of the properties of the channels
implicitly, namely the behavior of honest agents for channels: they can send
and receive messages as described by the transition rules. In particular, since we
have defined channel facts to be persistent, an agent can receive a single message
on such a channel any number of times. What is left to define is the intruder
behavior. This is defined by the rules in Fig. 2 that define the abilities of the
intruder on these channels and thus their ideal functionality:

(3) He can send messages on an authentic channel only under the name of a
dishonest agent A to any agent B.

(4) He can receive any message on an authentic channel.
(5) He can send messages on a confidential channel to any agent B.
(6) He can receive messages on a confidential channel only when they are ad-

dressed to a dishonest agent B.
(7) He can send messages on a secure channel to any agent B but only under

the name of a dishonest agent A.
(8) He can receive messages on a secure channel whenever the messages are

addressed to a dishonest agent B.

Note that all occurrences of “only” in these explanations are due to the fact that
we do not describe further rules for the intruder that deal with the channels.
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iknows(B).iknows(M).dishonest(A) ⇒ athChA,B(M) (3)

athChA,B(M) ⇒ iknows(M) (4)

iknows(B).iknows(M) ⇒ cnfChB(M) (5)

cnfChB(M).dishonest(B) ⇒ iknows(M) (6)

iknows(B).iknows(M).dishonest(A) ⇒ secChA,B(M) (7)

secChA,B(M).dishonest(B) ⇒ iknows(M) (8)

Fig. 2. The intruder rules for the ICM

3.2 The Cryptographic Channel Model CCM

We have now defined channels in an abstract way by their ideal behavior. This
behavior can be realized in a number of different ways, including non-electronic
implementations, such as sealed envelopes or a face-to-face meetings of friends.
The CCM that we present now is one possible cryptographic realization based on
asymmetric cryptography. We first consider the case of agents identified by their
real names. For this model, we introduce new symbols atag, ctag, stag, ak and
ck. Here, atag, ctag, and stag are tags to distinguish the channel types, while ak
and ck are tables of public keys, for signing and encrypting, respectively. Thus,
ak(A) and ck(A) are the public keys of agent A, and inv(ak(A)) and inv(ck(A))
are the corresponding private keys. We refer to all these keys and tags as CCM
material. We assume that every agent, including the intruder, knows initially
both keytables ak and ck and its own private keys. Thus the additional initial
intruder knowledge of the CCM is

{ak, ck, atag, ctag, stag}
⋃

dishonest(A)

inv(ak(A))
⋃

dishonest(A)

inv(ck(A)) . (9)

For the rules of honest agents, we express incoming and outgoing messages as
described in Table 1. For instance, the second transition of A for our example of
Fig. 1 looks as follows (cf. (1) and (2) in the ICM):

stateA(A, 1, B, g, X).iknows({atag, A,GY }inv(ak(B))) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload)

A thus processes the incoming message only if it correctly encodes an authentic
message from B for A according to the CCM definition.

Observe that for the authentic and secure channels, we include the name of
the intended recipient in the signed part of the message. This inclusion ensures
that a message cannot be redirected to a different receiver. To see that, consider
the alternative encoding of a secure channel (and similarly for the authentic
channel) that does not include the name: {{stag,M}inv(ak(A))}ck(B). If B is dis-
honest, he can decrypt the outer encryption to obtain {stag,M}inv(ak(A)) and
re-encrypt it for any other agent C, i.e. {{stag,M}inv(ak(A))}ck(C). This message
would erroneously appear as one from A for C. Such a mistake was indeed often a
source of problems in security protocols, e.g. [10]. Such attacks are prevented by
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our construction to include the receiver name in the signed part of the message.
For an authentic channel, this corresponds to our previous observation that the
channel should also include the authentic transmission of the intended receiver
name. This also ensures that a secure channel combines the properties of an
authentic and a confidential channel.

To integrate pseudonymous agents into the CCM, i.e. to implement crypto-
graphically pseudonyms that can serve as a basis for secure channels, we employ
the popular idea (see e.g. [7]) of using a public key (or a hash of a public key)
as a pseudonym and define ownership of such a pseudonym by knowledge of the
corresponding private key. Thus, every agent, including the intruder, can cre-
ate any number of pseudonyms, and, assuming private keys are never revealed,
the “theft” of pseudonyms is impossible. The encoding of the different channel
types is now the same as in the case of real names, except that instead of the
keys ak(A) and ck(A) related to the real name, we directly use the pseudonym.
For instance, sending a message M on a confidential channel to an agent under
pseudonym ψ is simply encoded by {ctag,M}ψ.

3.3 Relating the Two Channel Models

We now show that we can simulate in a certain sense every behavior of the ICM
also in the CCM. This means that it is safe to verify protocols in the CCM since
every attack in the ICM has a counter-part in the CCM. A simulation in the
other direction is possible under some further assumptions related to typing.
The two directions of the simulation together show that the two models are in
some sense equivalent, in particular that the cryptographic channels correctly
implement ideal channels. This result guarantees that we do not have any false
positives with respect to the ICM, i.e. attacks that only work in the CCM.

It should be intuitively clear what we mean when we talk about, for instance,
an ICM protocol specification and the corresponding CCM specification or corre-
sponding states in such models. However, to formally prove anything about such
corresponding specifications, we need to define the notions:

Definition 1. Consider two IF specifications P1 = (I, R1, G) and P2 = (I ′, R2,
G), where I is an initial state that contains no ICM channel facts and no CCM
material, I ′ is I augmented with the knowledge of (9), G is a set of goals that
does not refer to ICM channel facts and CCM material, and R1 and R2 are
sets of rules for honest agents where

– the rules of R1 contain no CCM material,
– the rules of R2 contain no ICM channel facts,
– and f(R1) = R2 for a translation function f that replaces every ICM chan-

nel fact that occurs in the rules of R1 with the corresponding intruder knowl-
edge of the CCM .

We then say that P1 is an ICM specification and P2 is a CCM specification,
and that P1 and P2 correspond to each other. We define an equivalence relation
∼ for states Si: we have S1 ∼ S2 iff
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– S1 and S2 contain the same facts besides ICM facts and iknows(·) facts,
– the intruder knowledge in S1 and S2 is the same when removing all messages

that contain CCM material, and
– the channel facts and intruder knowledge of crypto-encodings are equivalent

in both states modulo the mapping in Table 1.

Theorem 1. Consider an ICM specification and the corresponding CCM speci-
fication, both employing real names and/or pseudonyms. For a reachable state S1

of the ICM specification, there is a reachable state S2 of the CCM specification
such that S1 ∼ S2.

As we remarked, the proofs of all our theorems can be found in [26]. To estab-
lish the converse direction, we need two additional assumptions (which are are
sufficient for Theorem 2 but not necessary). First, we need a typed model, where
every message term has a unique type. There are several atomic types such as
nonce, publickey , etc., and we have type constructors for the cryptographic op-
erations, e.g. {atag, B,M}inv(ak(A)) is of type {tag, agent , τ}privatekey if M is of
type τ .

The messages that an honest agent expects according to the protocol are
described by a pattern (i.e. a message with variables) and this pattern has a
unique type. This does not ensure, however, that the agent accepts only correctly
typed messages, i.e. the intruder can send ill-typed messages. For many protocols
one can ensure, e.g. by a tagging scheme, that every ill-typed attack can be
simulated by a well-typed one [19], so one can focus on well-typed attacks without
loss of generality. We will not prescribe any particular mechanism here, but
simply assume a well-typed attack.

The second assumption is that a message can be fully analyzed by an honest
receiver in the sense that its message pattern contains only variables of an atomic
type. This means for instance, that we exclude (in the following theorem) pro-
tocols like Kerberos where A sends to B a message encrypted with a shared key
KAC between A and C, where B does not know KAC and so B cannot decrypt
that part of a message. Therefore, the message pattern of B would contain a
variable of type {| · |}· which is not atomic. When all its messages can be fully
analyzed by honest receivers, then we say that a protocol specification is with
full receiver decryption.

Theorem 2. Consider an ICM specification and the corresponding CCM specifi-
cation, both employing real names and/or pseudonyms and both with full receiver
decryption, and consider a well-typed attack on the CCM specification that leads
to the attack state S2. Then there is a reachable attack state S1 of the ICM
specification such that S1 ∼ S2.

Theorems 1 and 2 relate the ICM and the CCM by showing that attacks in
either model can be simulated in the other. On the theoretical side, relating
ideal functionality and cryptographic implementation gives us insight in the
meaning of channels as assumptions. On the practical side, it allows us to use
both models interchangeably in protocol analysis tools that may have different
preferences.
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4 Channels as Goals

We now specify goals of a protocol using the different kinds of channels. Intu-
itively, this means that the protocol should ensure the authentic, confidential,
or secure transmission of the respective message. These definitions are close to
standard ones of security protocols, e.g. [5,21,24].

In order to formulate the goals in a protocol-independent way, we use a set
of auxiliary events of the protocol execution as an interface between the con-
crete protocol and the general goals. The use of such auxiliary events is common
to IF and several other approaches (e.g. Casper [22]). In addition to the stan-
dard auxiliary events witness(·) and request(·) of IF, we consider here the events
whisper(·) and hear(·). These auxiliary events express information about hon-
est agents’ assumptions or intentions when executing a protocol: they provide
a language over which we then define protocol properties and they are, in gen-
eral, added to the protocol description by the protocol modeler at specification
time. The intruder can neither generate auxiliary events nor modify those events
generated by honest agents.

For simplicity, we assume for a goal of the form

A channel B : M

that M is atomic and freshly generated by A during the protocol in a uniquely
determined rule rA. Similarly, we assume that there is a uniquely determined
rule rB where the message M is learned by B. (If there is no such rule where B
learns the message, then the goal is not meaningful.) This allows for protocols
where M is not directly sent from A to B, and for protocols where B receives a
message that contains M as a subterm, but from which B cannot learn M yet.

For the goal A •→B : M , we add the fact witness(A,B, P,M) to the right-
hand side of rA and the fact request(A,B, P,M) to the right-hand side of rB ;
here, P is an identifier for the protocol.1 For the goal A→•B : M , we add the
fact whisper(B,P,M) to the right-hand side of rA and the fact hear(B,P,M) to
the right-hand side of rB . For the goal A •→•B : M , we add both the facts of
authentic and confidential channels to rA and rB , respectively.

Intuitively, the additional facts for rA express the intention of A to send M to
B on the respective kind of channel, and the fact for rB expresses that B believes
to have received M (from A in a request(·) fact for an authentic channel, and
from an unspecified agent in a hear(·) fact for a confidential channel) on the
respective kind of channel.

When the goal is a confidential or secure channel, then M must be confiden-
tial from its creation on; otherwise there can be trivial attacks. This excludes
1 One may consider a variant where the P is replaced by a unique identifier for the

protocol variable M so to distinguish implicitly several channels from A to B. (In
fact, this is standard in authentication goals, distinguishing the interpretation of
data.) This identifier has then to be included in the ICM and CCM as well to achieve
the compositionality result below. We have chosen not to bind an interpretation to
the messages sent on the channels in this paper but note that the results are similar,
mutatis mutandum.
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request(A,B, P, M) | not(witness(A, B, P, M)).not(dishonest(A)) (10)

request(A, B, P, M).dishonest(A) | not(iknows(M)) (11)

whisper(B, P, M).iknows(M) | not(dishonest(B)) (12)

hear(B, P, M) | not(whisper(B, P, M)).not(iknows(M)) (13)

Fig. 3. Attack states for defining channels as goals

some protocols (as insecure), namely those that first disclose M to an unauthen-
ticated agent, and consider M as a secret only after authenticating that agent.
Such protocols are however not suitable for implementing confidential or secure
channels anyway, while they may be fine for, e.g., a key exchange.

We can now define attacks in a protocol-independent way based on the attack
states in Fig. 3. The rules (12) and (10) reflect the standard definition of secrecy
and authentication goals (non-injective agreement in the terminology of [21]; we
consider the injective variant in [26]). For authentic messages, a violation occurs
when an honest agentB — B must be honest since the intruder never creates any
request(·) facts — accepts a message as coming from an honest agent A but A has
never said it. That is, request(A,B, P,M) holds but neither witness(A,B, P,M)
nor dishonest(A) hold. For confidential messages, a violation occurs when M was
sent by an honest agent A — since whisper(·) is never generated by the intruder
— for an honest agent B and the intruder knows M . Note that with respect to
the standard definitions of goals, we have generalized the notion of the intruder
name to arbitrary identities controlled by the intruder (in accordance to what
we said about the intruder model in § 3.1).

Additionally, we have the two goals (11) and (13) that are usually not con-
sidered in protocol verification, and that we found missing when proving the
compositionality result in § 5. These concern the cases when an intruder is the
sender of an authentic or confidential message. In these cases, the intruder can
of course send whatever he likes, but we consider it as an attack if the intruder is
able to convince an agent that he authentically or confidentially said a particular
message when in fact he does not know this message. To illustrate this, consider
the simple protocol

A→ B : {M}k(B), {h(M)}inv(k(A))

with the goal A •→B : M . A dishonest i can intercept such a message and send
to B the modified message {M}k(B), {h(M)}inv(k(i)), thereby acting as if he had
said M , even though he does not know it. For the classical authentication goals,
this is not a violation, but our attack rule (11) matches with this situation.
We count this as a flaw since sending a message that one does not know on an
authentic channel is not a possible behavior of the ideal channel model.

5 Compositional Reasoning for Channels

We now show that, under certain conditions, a protocol providing a particular
channel as goal can be used to implement a channel that another protocol assumes
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(in the ICM). This composition problem is related to many other problems, such
as running several protocols in parallel. There is a variety of literature on this, of-
fering different sets of sufficient conditions for such a parallel composition, such as
using disjoint key-spaces or tagging for the protocol, e.g. [2,11,16,17]. The idea is
to disambiguate the interpretation of messages when several protocols use similar
message formats, i.e. when there is the danger that (a part of) a message can be
interpreted in several different ways. We do not want to commit to particular such
composition arguments nor to dive into the complex argumentations behind this.

In fact, in this paper we focus on one particular aspect of compositionality,
namely composing protocols assuming channels with protocols realizing them.
Thus, we “blank out” other compositionality problems and instead provide an
abstract notion of horizontal and vertical composability that does not require a
particular composition argument. We then prove that the implementation of a
channel by a protocol providing that channel is possible for any protocols that
satisfy our composability notion.

We first consider the horizontal composition of protocols, running different
protocols in parallel (as it is standard, see, for instance, [2,11,16,17]), in contrast
to using one protocol over a channel provided by another.

Definition 2. Let Π be a set of protocols and P be a protocol. We denote with
Par (P ) the system that results from an unbounded number of parallel executions
of P , and with ‖P∈Π Par(P ) the system that results from running an unbounded
number of parallel executions of the protocols of Π. We call Π horizontally com-
posable if an attack against ‖P∈Π Par (P ) implies an attack against Par (P ) for
some P ∈ Π. (Here, an attack against ‖P∈Π Par (P ) means that the goal of
some P ∈ Π is violated.)

Trivially, a set of protocols is horizontally composable iff any of them has an
attack. To see that this definition is indeed useful, consider a set of protocols for
which their individual correctness is not obvious, but may be established by some
automated method (which may fail on the composition of the protocols due to the
complexity of the resulting problem). The compositionality may however follow
from a static argument about the construction of the protocols, such as the use
of encryption with keys from disjoint key-spaces. Such an argument in general
does not tell us anything about the correctness of the individual protocols, but
rather, if they are correct, then so is also their composition.

For our result for reasoning about channels, we need at least that the “lower-
level” protocols that implement the different channels are horizontally compos-
able. But we need a further assumption, since we want to use one protocol to
implement channels for another. For the rest of this section, we consider only
protocol specifications P1 and P2 that are given in AnB• notation and where
only one transmission over an authentic, confidential, or secure channel in P2 is
replaced by P1. A definition on the IF level would be technically complicated
(although intuitively clear) and we avoid it here. Multiple uses of channels can
be achieved by applying our compositionality theorem several times (given that
the protocols are suitable for multiple composition).
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Definition 3. Let P1 be a protocol that provides a channel A′ •→B′ : M ′ as a
goal, and P2 be a protocol that assumes a channel A •→B : M for some protocol
message M . Let M ′ in P1 be freshly generated by A′, and let all protocol variables
of P1 and P2 be disjoint. We denote by P2[P1] the following modification of P2:

– Replace the line A •→B : M with the protocol P1σ under the substitution
σ = [A′ �→ A,B′ �→ B,M ′ �→M ].

– Augment the initial knowledge of A in P2 with the initial knowledge of A′

in P1 under σ and the same for B. Also add the specification of the initial
knowledge of all other participants of P1 (if there are any) to P2.

We use the same notation for compositions for confidential and secure channels,
where we additionally require that the term M in P2 contains a nonce that A
freshly generates and that does not occur elsewhere in the protocol.

The inclusion of a fresh nonce in the message M of P2 for confidential and secure
channels is needed since otherwise we may get trivial attacks (with respect to
P1) if a confidential or secure channel is used for a message that the intruder
already knows (for instance an agent name); since the nonce is fresh, the intruder
cannot already knowM in its entirety. Note that in our model a message is either
known or not known to the intruder, but indistinguishability is not considered.
The simple inclusion of some unpredictable element in the payload message
implies that the intruder cannot a priori know it.

We now define the vertical composition of protocols P1 and P2. Intuitively, it
means that P1 and P2 are composable in the previous, horizontal sense, when
using arbitrary messages from P2 in place of the payload-nonce in P1.

Definition 4. Let P1 and P2 be as in Definition 3. For every honest agent A
and every agent B, let MA,B denote the set of concrete payload messages (i.e.
instances of M) that A sends in any run of P2 to agent B.2 Let P ∗

1 be the variant
of protocol P1 where in each run each honest agent A chooses the payload message
M ′ arbitrarily from MA,B instead of a freshly generated value. We say that P2

is vertically composable with P1, if P ∗
1 and P2 are horizontally composable.

With this, we have set out two challenging problems: a verification problem and
a horizontal composition problem where one of the protocols, P ∗

1 , uses payload
messages from an, in general, infinite universe. We do not consider how to solve
these problems here, and merely propose that under some reasonable assump-
tions these problems can be solved. In particular, we need to ensure that the
messages and submessages of the protocols cannot be confused and that the
behavior of P ∗

1 is independent from the concrete payload message, e.g. by using
tagging. Under certain conditions, we may then verify P1 with a fresh constant
as a “black-box payload message” instead of P ∗

1 .

Theorem 3. Consider protocols P1, P ∗
1 , and P2 as in Definition 4 where end-

points may be pseudonymous, and let P1 and P2 be vertically and horizontally
2 Assuming that the fresh data included in payload messages is taken from pairwise

disjoint sets XA,B (which is not a restriction) then also the MA,B are disjoint.
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composable. If there is no attack against P1, P ∗
1 , and P2, then there is no attack

against P2[P1].

Example 1. As a simple illustration of the application and strength of this result,
let us return to our running example and consider an attack that results from
protocol composition; this attack is relatively trivial but it suffices to illustrate
the main points. Consider as P2 our example protocol P of Fig. 1 and let us
implement the first authentic channel by the protocol P1 below on the left. The
composition P2[P1] is shown on the right.

A′ → B ′ : {B ′,M ′}inv(pk(A′))

A′ •→ B ′ : M ′

A → B : {B , exp(g ,X )}inv(pk(A))

B •→ A : exp(g ,Y )

A → B : {|Payload |}exp(exp(g,X ),Y )

A •→• B : Payload

The set of values for the payload M = exp(g,X) from A to B is MA,B = {gx |
x ∈ XA,B} where XA,B is a countable set of exponents used by A for B such
that Xa,b ∩ Xa′,b′ = ∅ unless a = a′ and b = b′. We sketch a proof that P ∗

1

and P2 are horizontally composable. Recall that this does not require that P ∗
1

or P2 themselves are correct, but that their combination cannot give an attack
against either protocol that would not have worked similarly on that protocol in
isolation. First, observe that the signed messages of P ∗

1 are not helpful to attack
P2 (because P2 does not deal with signatures and the intruder may instead use
any other message as well). Second, the content of the signed messages in P ∗

1 are
the half-keys from P2, i.e. the intruder can learn each such message in a suitable
run of P2. Vice-versa, P2 is not helpful to attack P ∗

1 , since P2 does not deal
with signatures, so he can only introduce message parts from P2 that he signed
himself (under any dishonest identity) and since he must know such messages,
this cannot give an attack against P ∗

1 .
Consider the following variant P ′

2:

A → B : {B , G}inv(pk(A))

A •→ B : exp(G,X )

B •→ A : exp(G,Y )

A → B : {|Payload |}exp(exp(G,X ),Y )

A •→• B : Payload

This is a variant of the Diffie-Hellman key exchange, which we intentionally
designed so that it breaks when composing it with P1. In the additional first
message, A authentically transmits a basis G that she chooses for the key ex-
change. While P ′

2 is also correct in isolation, running P ′
2 and P ∗

1 in parallel leads
to an attack since the first message of P ′

2 has the same format as the message of
P ∗

1 ; namely, when an agent a sends the first message of P ′
2

a → b : {b, g}inv(pk(a))
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it may be falsely interpreted by b as P1, leading to the event request(a, b, p1, g)
for which no corresponding witness fact exists (since a did not mean it as P1).
Thus, there is a trivial authentication attack.

6 Related Work and Conclusions

We conclude by discussing relevant related works and pointing to directions for
future research, in addition to those that we already mentioned above.

In [23], Maurer and Schmid introduce the • notation to give a calculus for
reasoning about what new (authentic, confidential, secure) channels can be built
from given ones, but the notation is never directly used for transmitting mes-
sages (although the informal arguments consider concrete message transmis-
sions). Since they do not formally define their channels, it is hard to tell from
the way they intuitively explain and use the notation how their understanding
of channels relates to ours, but it seems to be closest to the fresh variants of
the channels that we discuss in [26], where we formalize the extension of the
channels considered here to prevent the replay of messages.

Dilloway and Lowe [15] consider the specification of secure channels, used as
assumptions, in a formal/black-box cryptographic model. They define several
channel types similar to our standard channel types with real names, but they
include also some weaker types of channels that we did not consider because the
respective stronger channels come at little extra cost (like including the intended
recipient on an authentic channel).

Like [15], Armando et al. in [4] characterize channels as assumptions by re-
stricting the traces that are allowed for the different channel types, in contrast to
our “constructive” approach of describing explicitly what agents can do. While
they do not consider all the channel types in their work, they can model resilient
channels by excluding traces where sent messages are never received.

In [1], Abadi et al. give a general recipe for constructing secure channels, al-
beit with a notion different from all the above works: their goal is to construct
a channel such that a distributed system based on this channel should be in-
distinguishable for an attacker from a system that uses internal communication
instead. This is a much stronger notion of channels than ours, and one that is
more closely related to the system that uses them. It is, of course, more expen-
sive to achieve this notion. For instance, all messages are repeatedly sent over
the channel to avoid that an intruder blocking some messages of the channel can
detect a difference in the behavior of the system. [8] considers a similar approach.

Much effort has been devoted to protocol composition in the formal verifi-
cation area, e.g. [2,11,12,13,16,17]. As we remarked, different sets of sufficient
conditions (such as using disjoint key-spaces or tagging for the protocol) have
been formalized for the horizontal compositionality problem that results from
running several protocols in parallel. A particular challenge arises when the com-
posed protocols are not unrelated (and one has to merely prevent interactions)
but are rather related sub-protocols of a larger system as in [16,17]. While we
have considered a different kind of problem with our vertical composition result,
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i.e. running one protocol “on top of another”, the problems and assumptions we
rely on are related. For Theorem 3, in particular, we have assumed the verifica-
tion of P ∗

1 , i.e. the transmission protocol inserting an arbitrary payload message
(from a certain set). We are currently investigating how this can be done without
considering the concrete payloads in the verification of P1; the hope is that we
can employ meta-arguments based on some structural properties of the protocols
similar to said compositionality results.

There are two frameworks for the secure composition of cryptographic primi-
tives and protocols: Universal Composability [9] and Reactive Simulatability [6].
Both stem from the cryptographic world, and are based on the notion that the
implementation of an ideal system is secure if no computationally limited at-
tacker with appropriate interfaces to both the ideal system and the implementa-
tion can distinguish them. The view of cryptography through indistinguishability
from an ideal system is not directly feasible for the automated verification of se-
curity protocols. All the arguments in this paper are within a black-box cryptog-
raphy world and have not been related to cryptographic soundness. Even though
for many applications such models are indeed cryptographically sound [27], the
transition from a cryptographic model to a black-box model in general implies
the exclusion of (realistic) attacks. The simulation proofs between black-box
cryptography models (as in all our theorems) show that we do not loose further
attacks by considering simpler verification problems or models that are better
suited for a particular verification technique. Thus, once committed to a black-
box model, we can safely simplify the automated verification by exploiting our
theorems. Besides this, the simulation also gives us insights in the properties of
our formal models and we plan to investigate the relation of such results in the
formal world with the cryptographic world as future work.
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25. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: Proc. Ares

2009; Full version: T. Rep. RZ3709, IBM Zurich Research Lab (2008),
http://domino.research.ibm.com/library/cyberdig.nsf
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