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Abstract. A new algorithm is presented for the automatic segmentation
and classification of brain tissue from 3D MR scans. It uses discrimina-
tive Random Decision Forest classification and takes into account partial
volume effects. This is combined with correction of intensities for the
MR bias field, in conjunction with a learned model of spatial context,
to achieve accurate voxel-wise classification. Our quantitative validation,
carried out on existing labelled datasets, demonstrates improved results
over the state of the art, especially for the cerebro-spinal fluid class which
is the most difficult to label accurately.

1 Introduction

This paper introduces a new, supervised technique for the classification of 3D
MR scans of the brain. The ultimate goal is to assign a class label to each brain
voxel from the following set: white matter, grey matter and cerebro-spinal fluid.
Such automatic analysis is of practical interest to many clinical applications
related to early detection and treatment of schizophrenia [1], epilepsy [2] and
Alzheimer’s [3]. Automatic segmentation of brain tissue is a challenging prob-
lem, owing to acquisition noise, non-uniformities in the MR magnetic field, the
complex anatomy of the brain, limited resolution and partial volume effects.

In order to address these problems we propose an algorithm in three steps:
1) bias field correction using polynomials of optimal degree; 2) learned models
for automatic tissue classification/segmentation; and 3) partial volume estima-
tion. Model training accounts for much of the accuracy of our technique, and is
utilized as much as possible, not only in the segmentation process, but also dur-
ing bias field correction and partial volume estimation. The tissue classification
step is achieved via randomized decision trees [4,5], an efficient, state-of-the-art
discriminative classification technique.

Previous Work. The substantial existing literature on this topic may be
roughly grouped into the following four different sets:

Clustering algorithms. Representative work in this area includes the use of
K-means [6], mean-shift [7], and expectation-maximization (EM) [8,9,10]. Their
limitation is that the cluster geometry and the number of clusters have to be known,
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where parametric forms such as Gaussian or Gaussian mixtures are commonly
assumed but without taking into consideration existing domain knowledge.

Atlas-based approaches. Segmentation is reduced to a template matching prob-
lem, where labels are transferred from a prelabeled atlas to the subject volume
via registration techniques [2,3,11]. However, registration itself is challenging,
especially for the human cortex due to the high variability of the cortical shape
and the location of sulci and gyri across individuals.

Deformable models. Relying on curve propagation, deformable models minimize
a certain energy associated with the curve to partition the image domain, like
active contours [12] and level sets [13,14]. Those techniques typically suffer from
problems with initialization and local minima.

Supervised learning. Surprisingly, supervised learning has received relatively lit-
tle attention in brain tissue segmentation. In [2] the intensity distribution of
each class at every location is modeled as a Gaussian, with spatial information
encoded globally via a probabilistic atlas and locally via an anisotropic non-
stationary Markov random field. This Gaussian assumption, however, is restric-
tive to inter-subject variability and image distortions. The work in [15] learns
a multi-class discriminative appearance model by a probabilistic boosting tree
together with a generative active shape model for each subcortical structure. It
works well for regular subcortical structures, but is not suitable for the brain
tissue segmentation task which involves highly convoluted cortical surfaces.

2 Discriminative Brain Tissue Segmentation

Given the observed MR brain volume I : Ω ⊂ R
3 �→ R

+ our goal is to assign to
each voxel a class label from the following set: white matter (WM), gray matter
(GM), and cerebro-spinal fluid (CSF). This task is formulated as a maximum-a-
posteriori (MAP) classification problem, whose output is the label map L� :
Ω �→ {CSF, GM, WM} such that

L� = argmax
L

log P (L|I) = arg max
L

log P (I|L) + log P (L). (1)

Under the simplistic but common assumption that voxel intensities are mutually
independent given their labels, the data likelihood in (1) can be rewritten as

log P (I|L) =
∑

x∈Ω

log P (I(x)|L(x)). (2)

The label prior in (1) can be decomposed into two terms in the Markov Random
Field framework, i.e.

log P (L) =
∑

x∈Ω

log U(L(x)) +
∑

x,y

V (L(x), L(y)), (3)

where U is the unary location prior, and V imposes spatial smoothness between
neighboring labels (not considered yet). The following sections describe details
of how to model P (I(x)|L(x)) as well as U(L(x)). We start by looking at the
likelihood P (I(x)|L(x)) and how it is affected by the magnetic bias field.
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2.1 Bias Field Correction

Owing to the bias field induced by the MR scanner, the observed intensity of
voxels is a corrupted version of the true intensity of the underlying tissue. In
order to model the likelihood P (I(x)|L(x)), we need to recover the true intensity
of each voxel by estimating the bias field and correcting for it.

Let Ī denote the true intensity, b the bias field, and n the random noise. Here
a multiplicative bias with i.i.d. Gaussian noise is assumed, i.e., I(x) = b(x) ·
Ī(x) + n(x). This MR image formation model has been used frequently [16,17]
as it is simple and known to be consistent with the inhomogeneous sensitivity of
the reception coil. Since the bias field is smoothly varying in space, we adopt a
low-order polynomial model: b(x) = λ ·Γ n(x), where λ is the coefficient vector,
n ∈ {0, 1, 2, . . .} is the order of polynomial, and Γ n is the base polynomial
vector. For example, Γ 1(x) = (x, y, 1)T , Γ 2(x) = (x2, xy, x, y2, y, 1)T . As MR
acquisition is done sequentially, it is reasonable to assume that λ is different
slice by slice. Thus, our bias model holds for every individual slice and Γ n is
applied to (x, y) only (not to the third dimension).

On the other hand, we can assume that the true intensity of each voxel depends
only on the underlying tissue label Ī(x) = μL(x), where μ ∈ {μCSF, μGM, μWM} is the
tissue intensity for label L(x), and have uniform values throughout the volume.
Given the values of n, I and Γ n, if L were known then iterative least squares
fitting could be applied to determine the optimal solution of λ for each slice and
μCSF, μGM, μWM for every volume. In practice, however, a ground-truth labeling
for L is not available but probabilistic tissue labeling may be used to tackle
the problem. Let qCSF(x), qGM(x), qWM(x) denote the probabilities of the voxel x
belonging to each tissue. The expected value of the true intensity in this case is
a weighted sum of all tissue intensities and our intensity model changes to

Ī(x) =
∑

L∈{CSF,GM,WM}
qL(x)μL. (4)

The same iterative fitting procedure can be applied as before. The optimal de-
gree of the polynomial is obtained on the validation set by performing model
selection using T-tests for successive degrees (n = 0, · · · , 4). The Jaccard index
JAC(L, S) = |L∩S| / |L∪S| is used to measure the accuracy of the output label
map L given the manual segmentation S. We obtain P values on WM and GM less
than 5% between n and n − 1 when n ≤ 3, and greater than 5% when n > 3. P
values on CSF are always greater than 5% indicating no statistically significant
difference between degrees. This is because dark CSF regions are insensitive to
multiplicative bias. Thus we choose n = 3 for accuracy.

2.2 Maximum a Posteriori (MAP) Classification

In brain MR images, the (bias-corrected) intensity of a given tissue is approxi-
mately uniform, and the spatial assignment of different tissues is constrained by
the underlying anatomy. Thus, it makes sense to use both intensity and location
features as the basis of our tissue models. In the Bayesian formalism (1) we use
intensity as a likelihood and location as a prior (see Fig. 1).



Discriminative, Semantic Segmentation of Brain Tissue 561

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Intensity Value

Pr
ob

ab
ilit

y 
De

ns
ity

 

 

CSF

testing
training w bias
training w/o bias

WM

GM

Fig. 1. MAP Classification Model: (left) Tissue intensity likelihood. The improved
alignment of the training/testing distributions is an indication of the benefit of bias
field correction (best viewed in color). (right) Probabilistic atlas example. (a) reference
brain segmentation; (b-d) CSF/GM/WM probability maps.

Our intensity models are multi-modal and non-parametric since they take the
form of simple histograms. This overcomes the unimodal limitations of single
Gaussian [11,17] and the inefficiencies of EM-based Gaussian mixtures [8,9,10],
without loss of accuracy. Location information is also exploited by constructing
a probabilistic atlas from our own training set. We randomly select a reference
volume from the training set, and then affinely register all other volumes to the
chosen one. The atlas is obtained by averaging and Gaussian smoothing the label
maps of the registered brain volumes. Our model so far has incorporated intensity
information and location prior. Next we show how to incorporate further features
such as gradient, texture, and context in our discriminative framework.

2.3 Tissue Classification via Random Decision Forests

A random decision forest [4] is a collection of T deterministic decision trees which
differ from each other due to random repartitions of training data. This is known
to aid generalization accuracy — intuitively, where one tree fails the others do
well. Furthermore, a decision forest provides posterior probabilities for labels, as
opposed to hard labellings, by pooling votes across the population of trees.

Training. During training, each point x is associated with a known class label
L(x) = { GM, WM, CSF }, and is pushed through each of the trees starting at the
root. Each tree node applies a binary test of the form: f(x; θ) > τ and sends the
data to one of its two child nodes accordingly. f(·) is a function characterized by
its parameters θ and applied to the voxel x. τ is a threshold. For now it suffices
to say that f computes certain visual features on the point at hand. At training
time the parameters θ, τ of each node and the tree structure are all optimized
by minimizing the data information gain. Randomness in the trees arises from
noise being injected in the selection of the optimal node parameters. During
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Fig. 2. Decision forests filters and results: (left) A shape filter used to provide
context for the point x is computed from the feature box shown. (middle-right)
Classification error — total (black), GM (blue), and WM (green) — as a function of the
tree depth and the number of trees in the forest (best viewed in color).

training the leaf nodes update and store the empirical distributions over classes
Plt(x) (L(x) = c), where lt indexes the leaf node in the tth tree.

Testing. During testing each point x is pushed through each tree until it reaches a
leaf node. The same input point x will end up in different leaf nodes, with different
posterior probabilities. The output of the forest, for the point x is defined simply
as the mean of all such posteriors: P (L(x) = c) =

∑T
t=1 Plt(x) (L(x) = c) / T.

Now, a Maximum Likelihood classification for each voxel is obtained as: c� =
argmaxc P (L(x) = c). Spatial prior could now be incorporated as before (1) but
a more effective approach is described below.

Context-rich visual features. Here we use “shape filters” similar to the ones used
in [5]; but applied to the 3D volume and without the need for “textonization”.
Fig. 2(left) illustrates these concepts on a 2D slice. For each voxel x a feature box
F of random size and shape is selected at a random displacement from x. The
size of the feature box is selected between 1 and 30 voxels. The feature response is
then defined as f(x; F ) =

∑
q∈F Ci(q) where Ci indicates different “channels”.

In particular, here we make use of the following five image channels: the raw
intensities C1(x) = I(x), the image gradient C2(x) = |∇I(x)|, the atlas-based
probabilities C3(x) = P (L(x)), the intensity likelihood C4(x) = P (I(x)|L(x))
from the trained histograms, and the label posterior C5(x) = P (L(x)|I(x))
output of the MAP classifier from Sect. 2.2. The ability of our features to look
at a large distance from the center pixel x yields context-rich information. As
illustrated in Fig. 2(middle-right), increasing the tree depth or the forest size
tends to decrease the decision forest classification error.

2.4 Modeling Partial Volume Effects

The limited image resolution causes many voxels to contain material from multi-
ple tissues, which is the main reason of misclassification. The goal of this section
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is to locate such partial voxels Ωm ⊂ Ω in the image, as well as estimating the
mixing fraction α : Ωm �→ [0, 1].

Modeling mixed tissue classes. Here we assume that partial voxels contain at
most two different tissue types and we adopt a mixture model to capture the
mixing effect as follows: I(x) = α(x)I1 + (1 − α(x))I2 , where I1, I2 are the
underlying tissue intensities and α the mixing factor. When considering par-
tial volume effects, the tissue classification problem is modified by extending
the set of class labels to the following: { CSF, GM, WM, CSF/GM, GM/WM } (the
transition CSF/WM is ignored here as it occurs rarely in practice [17]). Since par-
tial voxels usually occur at tissue boundaries, we identify them by labelling the
voxels at each side of the boundaries as partial. Then we learn the models for
the CSF/GM and GM/WM mixtures directly, via the same method described before
for pure tissue modeling. This technique proves to work better than modeling
the mixed tissues by mixing the models of the pure tissues (see Fig. 4d,e for
comparison).

Mixing fraction estimation. Using the models described above we can now assign
one of the five class labels to each voxel. Then, we estimate the mixing fraction
α by maximum-likelihood: α�(x) = arg maxα∈[0,1] log P (I(x)|α). Since we con-
servatively consider both sides of the tissue boundaries to be partial voxels, the
built partial volume classifier tends to underestimate pure voxels. Thresholding
the mixing fraction, so that partial voxels with α(x) ≤ δ or α(x) ≥ 1 − δ are
relabeled as pure, marginally improves labelling accuracy. This threshold is also
learned from the validation set, and in practice we found δ = 0.1 to work well.

3 Results and Validation

Our approach is validated on the Internet Brain Segmentation Repository1,
where 20 normal subjects of T1-weighted brain MR images with expert seg-
mentation are available. The volume size is around 256 × 256 × 60, with voxel
resolution 1mm × 1mm × 3mm. We compute voxel-wise classification accuracy
and the associated standard error by running our measurements on different ran-
dom training-validation-testing splits. In each run the forest classifier is employed
for discriminative optimization. Our results are compared to the state-of-the-art
in Fig. 3. We achieve nearly 40% improvement on CSF, 5% on GM, and parity
on WM, compared with the best methods. Note that our results are close to the
“ideal” score obtained by human experts (last row).

Next, we demonstrate how the test paradigm may further be improved by
taking into account partial volume effects. In Fig. 4d we show the confusion
matrix results of partial volume classification, and show that, relative to our
own results of pure tissue classification, error can be reduced if partial voxels
are labelled in datasets. We propose that this is the way brain tissue labelling
algorithms should be evaluated in the future.
1 http://www.cma.mgh.harvard.edu/ibsr/
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Method CSF GM WM

Adaptive MAP 0.069 0.564 0.567
Biased MAP 0.071 0.558 0.562
Fuzzy c-means 0.048 0.473 0.567
Maximum-a-posteriori (MAP) 0.071 0.550 0.554
Maximum-likelihood 0.062 0.535 0.551
Tree-Structure k-means 0.049 0.477 0.571
MPM-MAP [11] 0.227 0.662 0.683
BSE/BFC/PVC [17] — 0.595 0.664
Constrained GMM [8] — 0.680 0.660
Spatial-varying GMM [9] — 0.768 0.734
Coupled surface [14] — 0.701 —
FSL [10] — 0.7562 —
SPM [18] — 0.7902 —

MAP with histograms 0.549 ± 0.017 0.814 ± 0.004 0.710 ± 0.005
Decision Forest Classifier 0.614 ± 0.015 0.838 ± 0.006 0.731 ± 0.007

Inter-rater consistency — 0.876 0.882

Fig. 3. Comparison of our approaches with the state of the art. Mean and std.
error of Jaccard indices are obtained from repeated random runs. We are targeting
CSF/GM/WM segmentation only, but note that [17] also classifies the background.

a b

Fig. 4. Segmentation results: (a) Ground-truth with black-gray-white correspond-
ing to CSF-GM-WM; (b) Label map obtained by our approach. (c-e) Confusion matrices
(in %) for tissue classification. (c) without partial volume classification; (d) modeling
partial voxels by direct histogram learning; (e) modeling partial voxels by uniform
mixture of pure voxels. Matrix rows (top-bottom) correspond to ground-truth, while
columns (left-right) are our labelling, both in CSF, GM, WM, CSF/GM, GM/WM order. (d)
yields best results, i.e., maximal overlap averaged on 3 pure tissue classes.

4 Conclusions

We have proposed a learning-based method combining bias field correction, his-
togram tissue likelihood, and atlas based prior, with a decision forest classifier
that uses context, to achieve substantial improvements on tissue labelling of
brain MR images. Performance obtained is now very close to that of expert
practitioners. We also showed that further improvements could be obtained in
classification error performance by taking account of partial volume effect, and
this suggests a modified test paradigm for future studies.
2 Dice index reported by [19], different from Jaccard index we use in Fig. 3. By def-

inition, Dice > Jaccard. Thus for a fair comparison we also present here the mean
Dice indices of our approach: CSF 0.699, GM 0.900, WM 0.831.
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