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Abstract. We present a novel fuzzy region-based hidden Markov model 
(frbHMM) for unsupervised partial-volume classification in brain magnetic 
resonance images (MRIs). The primary contribution is an efficient graphical 
representation of 3D image data in which irregularly-shaped image regions 
have memberships to a number of classes rather than one discrete class. Our 
model groups voxels into regions for efficient processing, but also refines the 
region boundaries to the voxel level for optimal accuracy. This strategy is most 
effective in data where partial-volume effects due to resolution-limited image 
acquisition result in intensity ambiguities. Our frbHMM employs a forward-
backward scheme for parameter estimation through iterative computation of re-
gion class likelihoods. We validate our proposed method on simulated and 
clinical brain MRIs of both normal and multiple sclerosis subjects. Quantitative 
results demonstrate the advantages of our fuzzy model over the discrete ap-
proach with significant improvements in classification accuracy (30% reduction 
in mean square error). 

1   Introduction 

Graphical models have long been successfully used in various signal processing and 
analysis applications such as speech recognition, computer vision, error correction 
coding, and genome analysis. Such models provide a graphical representation of prob-
abilistic distributions by expressing complex computations for inference and learning 
as simpler graphical structures [1]. There exist two major classes of graphical models - 
directed and undirected. The directed graphical models, or Bayesian Networks (BN), 
specify a particular directionality on the links of the graphs, which are useful for con-
veying causal relationships between the underlying random variables. An example of 
BN is the hidden Markov model (HMM), which is commonly used to represent sto-
chastic processes. On the other hand, undirected graphical models or Markov random 
fields (MRF) do not carry any directional implications but rather specify some con-
straints between the random variables. Both directed and undirected graphical models 
have been applied successfully in the context of brain tissue segmentation from mag-
netic resonance imaging (MRI) data, such that each of the image voxels represents an 
underlying hidden random variable of tissue class label, which cannot be observed 
directly but can be indirectly estimated given observations by inference. 
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Performing exact inference on a fully connected high dimensional graphical model 
is a daunting task. Regardless of whether the model is directed or undirected, the 
amount of computations is expensive if not intractable. For the directed representa-
tion, 2D/3D HMMs (causal MRF) have been proposed on a regular rectangular pixel 
lattice [2], but estimating the exact states requires exponential time thus a block-based 
approach [3] and an iterative approximation method [4] have been proposed to im-
prove efficiency. However, modeling an image in such a way is odd as voxels do not 
typically bear causal orders. Recently, a more data-driven model [5] was proposed as 
a tree-structure extension of the iterative approximation method [4]. For the undi-
rected representation, performing a maximum a posteriori (MAP) estimation on a 
hidden MRF (HMRF) is a computationally difficult problem [6]. In such cases, the 
optimal solutions were usually computed using some optimization techniques through 
local optimization or optimization on a relaxed problem [7-9]. 

For image segmentation tasks, the above mentioned estimation methods commonly 
provide a single discrete label to each image voxel. An alternative model subdivides 
the content of one voxel into numerous classes simultaneously, allowing for a more 
accurate modeling of a common physical imaging limitation, namely, partial volume 
effects. Discrete segmentations thus appear as a special case by assuming that no 
partial volume voxels exist, where all classes are null except for the hard estimate. 
One can intuitively infer the partial volumes from the class distributions of a discrete 
labeling process using techniques such as the classical forward-backward algorithm 
[10]. However, a more accurate model should simultaneously model all pixel likeli-
hoods without assuming one single, particular true label class. Furthermore, classifi-
cations based on partial-volume models have shown to achieve improved accuracies 
in tissue volume measurements [11, 12]. A number of interesting works in this aspect 
have been done using graphical models. Bricq et al. [13] converted 3D scan data into 
a 1D chain. Such vectorization is not truly 3D as only a single fixed-ordering 
neighboring pixel is considered in the estimation process, and the scan order is pre-
defined irrespective of the data. Others [12, 14] utilized fuzzy hidden MRFs to incor-
porate information from immediate neighbors. However, parameter estimation in such 
an undirected model is known to be difficult and time consuming. In contrast, estima-
tion in a directed model is comparatively easy with the results achieved being gener-
ally similar to those of an undirected model [15]. Therefore, starting with a more 
natural, data-driven region-based HMM (rbHMM) that was proposed in [5], where the 
advantages of rotational invariance and increased efficiency were shown, we propose, 
in this paper, a novel partial-volume extension for brain tissue segmentation – hence-
forth referred to as fuzzy rbHMM or frbHMM. We integrate the classical forward-
backward scheme in the tree-structured parameter estimation algorithm and refine 
region boundaries to the voxel level resulting in a more accurate classification model 
for partial-volume effects. We present quantitative validation results demonstrating 
the advantages of modeling each voxel in brain MRI scans as mixtures of multiple 
classes as opposed to one single label in simulated as well as real clinical MR data of 
both normal and Multiple Sclerosis (MS) patient subjects. 

2   Methods 

We first briefly describe the discrete rbHMM of [5] and present our proposed exten-
sion for modeling partial volumes within a new fuzzy framework (hereafter referred 
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to by frbHMM). We then describe how the forward-backward algorithm is employed 
for estimating the 3D frbHMM parameters and region class likelihoods, and how the 
classification resolution is improved by further refining image regions. 

2.1   Region-Based Hidden Markov Model Overview 

In [5], Huang et al. proposed a method where an image U is first divided into a set R 
of contiguous homogeneous local regions ri, each of size Ni=║ri║, where 1≤i≤NR and 
NR=║R║ is the total number of regions. Each voxel with coordinates (x, y, z) belongs 
to a region ri if the pixel is labeled as L(x, y, z)=i. The assumption was that each  
region would exhibit similar properties such as intensity or texture, and that by group-
ing them together using, e.g., a watershed transform or a normalized cut, the complex-
ity and computational cost can be largely reduced. For grayscale images, e.g. MRI, 
such regional features fi can be simply defined by the mean observed voxel intensities 
of ri. The observed fi represented noisy regions with true underlying discrete states si, 
which can then be optimally estimated in a MAP sense based on the three statistical 
model assumptions: 

Assumption 1: The observations for the underlying model states l∈{1, 2, …, Ns}, 
where Ns is the total number of given underlying states, follow Gaussian distributions 
with mean μl and variance σl

2, which are estimated from the observed samples.. 

Assumption 2: If si is known, then fi is conditionally independent of other regions. 

Assumption 3: The true underlying state si is governed by an irregular Markov mesh 
such that each region ri has a set of spatially neighboring regions Ri’. The transitional 
probabilities are defined as P(si=l | ni)= lni ,α , where ni={(si”,fi”): ri”∈Ri”} is a set of 

states and features of some preceding neighbors Ri”, which is a subset of Ri’ where 
states si” are already known. 

The primary advantages of this region-based modeling and its tree-structured parameter 
estimation scheme are increased efficiency over pixel-based methods and invariance to 
rotations that are commonly observed in medical images. 

2.2   Proposed Fuzzy Region-Based Hidden Markov Model 

Our main contribution here is the extension of rbHMM by introducing fuzzy states that 
allow each region to belong to multiple classes simultaneously. Rather than consider-
ing one single ‘true’ underlying state si, we now consider an underlying state vector 
Si=( ti,1, ti,2, …, ti,Ns) such that 1

1 , =∑ =

Ns

l lit , ti,l ∈[0,1] represents the proportion of the lth 

class in region ri for l = 1,…, Ns. The term ti,l can also be seen as the probability of 
labeling region ri with label l given the model and observations. For discrete or crisp 
segmentation, ti,l=0 for all l in Si except for the single element where si=l, then ti,l=1. 

To compute the model parameters, K-means clustering is used as a simple way to 
initialize the state means and variances from the samples. The state probabilities Si = 
(ti,1, ti,2, …, ti,Ns) for 1≤i≤NR are then calculated based on a Gaussian mixture assump-
tion. The transition probabilities 

lni ,α  are determined based on probability-weighted 

empirical frequencies given the constraint 1
1 , =∑ =
R

i

N

i lnα  for 1≤l≤Ns. Once these model 
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parameters are initialized, the likelihoods, ti,l , are computed using the forward-
backward algorithm, which has been shown to be efficient in 1D [10]. Thus, similar to 
rbHMM, we iteratively construct a 3D Markov tree from a randomly selected region 
outwards by traversing all regions [5]. 

For each region, we substitute the global region index i with (b,k) such that ri is the 
kth region on branch b; thus, ti,l can be represented as t(b,k),l. For each of the tree 
branches formed, the forward-backward algorithm is applied to estimate the likeli-
hood of class l by defining a forward term, ζ(b,k)(l), and a backward term, η(b,k)(l): 

),1,()( 2
),,(),(),( lllkbkbkb tfPl σμζ ==

r
 1≤l≤Ns (1) 

),,1()( 2
),,(),(),( lllkbkbkb tfPl σμη ==

s
 1≤l≤Ns (2) 

where 
),( kbf

r
 is the set of the observed mean intensity features from the start of the tree 

branch to region r(b,k), and 
),( kbf

s
 is the set of the observed mean intensity features from 

region r(b,k+1) to the end of the branch. We can solve both terms at each region i = (b,k) 
inductively by: 

),(])([)( 2
)1,(1 ,),()1,( llkb

N

m lnkbkb fPml s

i
σμαζζ +=+ ∑=  

k=1,…, length-1

1≤l≤Ns

(3)

∑ = ++= s

i

N

m mmkblnkbkb fPml
1

2
)1,(,)1,(),( )],()([)( σμαηη  k=length-1,…,1

1≤l≤Ns

(4)

where length is the number of regions in the branch. The forward term is initialized as 
ζ(b,1)(l)=P(f(b,0) | μl, σl

2) and the backward term is initialized as η(b,length)(l)=1/Ns. The 
likelihood, ti,l, is thus calculated based on both the forward and the backward terms as: 

∑ =
== sN

m kbkbkbkblkbli mmlltt
1 ),(),(),(),(),,(, )]()([)]()([ ηζηζ  (5)

Once all region likelihoods are found, the algorithm then re-evaluates the model pa-
rameters [μl, σl

2,
lni ,α ] for each state l∈{ 1,2,…,Ns } using probability weighting, by 

assuming a linear model such that the estimated region class probabilities represent 
the underlying partial volumes. A new Markov tree is then constructed from a random 
region and the estimation process repeats. The convergence criterion is defined as a 
minimum mean absolute change or a maximum number of iterations reached. 

While using watershed regions to divide the image into contiguous homogeneous 
regions as proposed by Huang et al. [5] works well for discrete classification, the 
fuzzy approach can benefit from further subdivision along the region boundaries. The 
boundary between two watershed regions represents an optimal sharp division based 
on intensity gradients, and in the discrete rbHMM framework provides an adequate 
level of detail because each region only receives one class label (Fig. 1a). However,  
in our proposed fuzzy rbHMM framework, a finer resolution around the region 
boundaries would allow for superior capturing of gradient changes due to partial  
volume effects (Fig. 1b). Thus, we first pre-segment an image using the watershed 
transform. Once the watershed regions are established, we refine them by assigning 
voxels around all region boundaries as individual regions so as to provide increased 
boundary resolution for the likelihood estimation procedure (Fig. 1c). 
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 (a)  (b)  (c) 

Fig. 1. Image (grayscale) and watershed subdivision (green) for (a) ideal and (b) partial-volume 
edges with two regions. By assigning boundary voxels as individual regions (c), we increase the 
resolution for subsequent estimations. 

3   Results and Discussion 

We tested our fuzzy partial-volume classification technique, frbHMM, on 3D MR brain 
images and compared the performance to that of the discrete approach, rbHMM [5]. We 
first validated on simulated T1-weighted BrainWeb scans (181×217×181 dimensions, 
1mm×1mm×1mm spacing, 0% noise) of normal and MS anatomical models to quantify 
our accuracy as the ground truths are available [16]. We then applied our method to real 
clinical 3DT1 MR scans (256×256×120 dimension, 0.837mm× 0.837mm×1.10mm spac-
ing) of 18 relapse-remitting MS (RRMS) patients and 14 healthy controls from the UBC 
MRI Research Centre to demonstrate the robustness of the proposed method in maintain-
ing control/subject measurements at reduced resolution, and therefore, increased partial-
volume effects. We performed a 4-class segmentation - background, white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF). For MS data, lesions cause errors in 
CSF and/or GM classification due to intensity overlap, but frbHMM remains robust for 
WM and more importantly, does not show unexpected stability problem when model 
assumptions are violated. frbHMM required approximately twice the runtime as rbHMM. 
Results of classification improve iteratively, but for the purpose of fair comparisons, both 
discrete and fuzzy estimations were run for 10 iterations. 

3.1   Simulated Images 

We examined the segmentation accuracies of both rbHMM and frbHMM. Fig. 2 
shows qualitative results obtained by both methods. For MS data, both methods clas-
sified periventricular lesions as GM; however, frbHMM performed better than 
rbHMM in capturing the partial WM details of ambiguous regions (Fig. 2). Quantita-
tively, Table 1 shows that mean square errors (MSE) of the segmentation results. At 
the original resolution, frbHMM achieved approximately 20% lower MSE for both 
WM and GM results. Analyzing the MSE gains of partial volume regions 
(0<probability<1) yielded similar performance. To simulate progressively reduced 
resolution, hence increased partial volumes, we performed smoothing by using a 
Gaussian kernel (7×7×7 dimension) with varying standard deviations to incorporate 
intensities within ±3mm. Again, frbHMM was superior (about 40% MSE reduction). 

3.2   Clinical Scans 

Next, we tested both rbHMM and frbHMM classification accuracy on high resolution 
3DT1 scans of real clinical control (C) and subject (S) groups. With no ground truths 
available, in order to evaluate the robustness of the proposed frbHMM approach with 
increased partial-volumes, we examined the WM volume fraction measurements  
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Fig. 2. Experimental results on simulated BrainWeb MRI scans. (a) Input T1-weighted scans at 
1mm slice thickness, (b-c) results of discrete rbHMM, and (d-e) results of proposed frbHMM. 

Table 1. Quantitative MSE of simulated BrainWeb MRIs of normal and MS subject anatomical 
models. Classifications were performed using discrete and fuzzy rbHMMs, and results were 
compared to the discrete and fuzzy phantoms, respectively. The better performance for each 
comparison is highlighted in bold. Gain is defined as (rbHMM-frbHMM)/rbHMM. 

Original Scan 
Gaussian kernel 

std. dev. = 1.0 voxel 
Gaussian kernel 

std. dev. = 2.0 voxel Data Tissue
rbHMM frbHMM % gain rbHMM frbHMM % gain rbHMM frbHMM % gain 

WM 0.0089 0.0069 22.47 0.0217 0.0133 38.71 0.0352 0.0213 39.49 Normal 
GM 0.0149 0.0119 20.13 0.0364 0.0213 41.48 0.0572 0.0345 39.69 
WM 0.0090 0.0069 23.33 0.0222 0.0136 38.74 0.0348 0.0213 38.79 MS 

Subject GM 0.0151 0.0121 19.87 0.0364 0.0213 41.48 0.0565 0.0345 38.94 

 
(WMVF = VWM / VBRAIN × 100%, where VWM and VBRAIN are the WM and intradural 
volumes respectively). We targeted the WM as it is the largest tissue by volume and 
the pathological regions in patient scans are the most distinct in WM and thus can be 
readily excluded. We first demonstrate that both methods (rbHMM and frbHMM) 
performed comparably in terms of the WMVF measure when using the high resolu-
tion scans. However, we then demonstrate how the proposed frbHMM is far more 
robust when the image resolution is reduced. 

Table 2 shows the average WMVF obtained by using the original (high resolution) 
scans. Both methods showed that the average WMVF in the controls were signifi-
cantly (p<0.05) higher (+3.53% for discrete, +3.11% for fuzzy) than those of the  
 

Table 2. Quantitative average WMVF measurement on high resolution clinical MRI data. Note 
that both the rbHMM and frbHMM segmentation methods show consistent and significant 
differences between the control and the subject groups, while no significant differences were 
observed between the two methods for either group, which is expected in high resolution data. 

 rbHMM frbHMM Δ (methods) p-Value 
Controls (C) 42.57 (σ=1.66) 41.98 (σ=1.43) 0.58 0.33 
Subjects (S) 39.03 (σ=2.82) 38.88 (σ=2.59) 0.15 0.87 
Δ (groups) 3.53 3.11   

p-Value <0.05 <0.05   
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(a) input scans
(raw) 

(b) rbHMM 
results 

(c) frbHMM
results 

(d) input scans
(smoothed) 

(e) rbHMM 
results 

(f) frbHMM
results  

Fig. 3. Example results on real clinical MRI scans. (a-c) Input 3DT1 scans at original resolution 
and results of discrete and fuzzy rbHMMs, (d-f) smoothed 3DT1 scans (kernel standard devia-
tion=2.0 voxel) and results of discrete and fuzzy rbHMMs. 

Table 3. Quantitative segmentation comparisons on real clinical data with escalated partial 
volume effects. Classifications were performed using discrete and fuzzy rbHMMs, and results 
were compared to the segmentations obtained based on the original high resolution scans. The 
superior performance is highlighted in bold. Gain is defined as (rbHMM-frbHMM)/rbHMM. 

Gaussian kernel std. dev. = 1.0 voxel Gaussian kernel std. dev. = 2.0 voxel Metric 
rbHMM frbHMM % gain rbHMM frbHMM % gain 

MSE (C) 
0.0159 

(σ=0.0018) 
0.0102 

(σ=0.0010) 
35.89 

(p<0.05) 
0.0250 

(σ=0.0027) 
0.0179 

(σ=0.0022) 
28.40 

(p<0.05) 

MSE (S) 
0.0155 

(σ=0.0015) 
0.0100 

(σ=0.0008) 
35.48 

(p<0.05) 
0.0244 

(σ=0.0022) 
0.0173 

(σ=0.0016) 
29.10 

(p<0.05) 

MSD (C) 
11.37 

(σ=6.33) 
2.29 

(σ=3.10) 
79.86 

(p<0.05) 
35.48 

(σ=11.05) 
18.06 

(σ=10.30) 
49.10 

(p<0.05) 

MSD (S) 
6.72 

(σ=5.97) 
1.43 

(σ=1.75) 
78.72 

(p<0.05) 
22.71 

(σ=13.74) 
8.55 

(σ=8.24) 
62.35 

(p<0.05) 

 
RRMS patients due to the presence of WM lesions and enlarged ventricles in MS 
patients. Comparing the two methods within groups, no significant evidence (p≥0.05) 
of differences in WMVF was observed demonstrating that both methods achieved 
similar performances on high resolution data. 

Similar to the simulated scans case, we then progressively reduced the image reso-
lutions by Gaussian smoothing. Fig. 3 shows the effects of such smoothing on the 
classifications of control and subject scans. Again, the proposed frbHMM classified 
ambiguous intensity regions (zoomed-in regions of Fig. 3) with greater accuracy than 
the discrete model. Quantitatively, Table 3 shows the average MSE (image-to-image 
comparison) and the mean square difference or MSD (WMVF comparison) of the 
control and subject groups. The proposed frbHMM consistently achieved significantly 
(p<0.05) lower MSE (approximately 30% improvement) and MSD for both groups. 

4   Conclusions 

We introduced a novel fuzzy 3D region-based hidden Markov model for modeling 
and estimation of partial volumes in image voxels within an unsupervised framework. 
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The paper’s main contribution is a new fuzzy 3D HMM framework based on irregu-
larly-shaped homogeneous regions with further spatial refinement at the region 
boundaries, where the contents of each region are assigned to multiple underlying 
classes simultaneously rather than assuming a single true discrete label. To compute 
the region class likelihoods, we employ a classical iterative forward-backward 
scheme. We evaluated the classification accuracy and robustness of our method under 
increased partial volume effects using both simulated and real clinical brain MRI data 
of healthy controls and MS subjects. Results showed the proposed frbHMM approach 
to be consistently superior to the discrete rbHMM in labeling intensity-ambiguous 
regions, such as white matter with reduced signal due to pathology. Future work in-
cludes investigating the utility of our frbHMM approach for quantifying the extent of 
white matter disease such as diffusedly-abnormal white matter (DAWM). 
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