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Abstract. Bipartite ranking refers to the problem of learning a ranking
function from a training set of positively and negatively labeled examples.
Applied to a set of unlabeled instances, a ranking function is expected to
establish a total order in which positive instances precede negative ones.
The performance of a ranking function is typically measured in terms of
the AUC. In this paper, we study the problem of multipartite ranking,
an extension of bipartite ranking to the multi-class case. In this regard,
we discuss extensions of the AUC metric which are suitable as evalua-
tion criteria for multipartite rankings. Moreover, to learn multipartite
ranking functions, we propose methods on the basis of binary decom-
position techniques that have previously been used for multi-class and
ordinal classification. We compare these methods both analytically and
experimentally, not only against each other but also to existing methods
applicable to the same problem.

1 Introduction

There are several connections between “learning to rank”, a topic of increasing
interest in machine learning research, and conventional classifier learning. First,
some ranking problems such as label ranking [16] can be seen as direct extensions
of (multi-class) classification. Second, many learning methods for ranking essen-
tially reduce the original problem to a standard classification problem. Third,
aspects of ranking and sorting are also of interest for classification itself. A
notable case is ROC analysis, which evaluates the ability of classifiers to sort
positive and negative instances in terms of the area under the ROC curve, ab-
breviated as AUC [7]. The problem to learn classifiers with high AUC (instead
of low error rate) is called bipartite ranking.

In this paper, we are interested in extending bipartite ranking from the bi-
nary to the multi-class case. This problem, that we shall refer to as multipartite
ranking, is closely related to ordinal classification, that is, classification with a
totally ordered set of classes. Yet, just like in bipartite ranking, the goal is not to
learn a good classifier, but a good ranker, that is, a function that systematically
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ranks “high” classes ahead of “low” classes. Note that a ranking is in a sense a
refinement of the order information provided by an ordinal classifier, as the latter
does not distinguish between objects within the same category. As an example,
compare the task of two reviewers: one has to make an ordinal prediction for
each paper (reject, weak reject, weak accept, accept), and the other has to rank
the papers according to quality. Obviously, the latter approach provides more
detailed information that can be used not only for partitioning papers into the
above four categories.

To solve the multipartite ranking problem, we explore the use of binary de-
composition techniques. Such techniques have already been applied quite suc-
cessfully in conventional classification, ordinal classification, and label ranking
[1,8,16], but have not yet been explored in prior work on multipartite ranking
[20,22]. Our main result is that, compared to existing methods applicable for
the multipartite ranking problem, binary decomposition techniques are at least
competitive in terms of predictive accuracy, and presumably even superior, while
being computationally much more efficient.

In the next section, we introduce the multipartite ranking problem, discuss its
relation to bipartite ranking and ordinal classification, and also address the ques-
tion of how to evaluate multipartite ranking functions. In Section 3, we propose
two methods for multipartite ranking which are based on binary decomposition
techniques. Section 4 is devoted to an experimental analysis of these methods.
The paper ends with some concluding remarks in Section 5.

2 Ordinal Classification and Multipartite Ranking

In this section, we introduce the problem of multipartite ranking and discuss
corresponding performance metrics. Beforehand, we recall the related problems
of ordinal classification and bipartite ranking.

2.1 Ordinal Classification

In ordinal classification, also called ordinal regression in statistics, the set of
class labels L = {λ1, λ2 . . . λm} is endowed with a natural (total) order relation
λ1 ≺ λ2 ≺ · · · ≺ λm. This distinguishes ordinal from conventional classification,
where L is an unordered set.

From a learning point of view, the ordinal structure of L is additional infor-
mation that a learner should try to exploit, and this is what existing methods for
ordinal classification essentially seek to do [8,4]. In fact, the problem of ordinal
classification is in a sense in-between classification and regression, two problems
that have been extensively studied. Like in classification, the output space is
finite, and like in regression, the elements of this space are ordered.

Thus, it is hardly surprising that both classification and regression algorithms
have been used to tackle ordinal classification problems, even though both ap-
proaches are obviously problematic: A simple classification method will neglect
information about the class order, whereas a regression method will make too
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strong assumptions, because it does not only exploit the order relation but as-
sumes meaningful distances between output values [19]. To avoid these problems,
new algorithms have been developed in the machine learning field in recent years,
which are able to exploit class order information in a meaningful way [13,8,5,4].

2.2 Bipartite Ranking

In the problem of bipartite ranking, training data consists of a set of positively
and negatively labeled instances, just like in conventional binary classification.
However, instead of learning a classifier that can be used for assigning instances
to one of the two classes, the goal is to learn a ranking function f(·) that can
be used for ordering a set of instances from most likely positive to most likely
negative. Thus, given a set X of instances with unknown class labels, the learned
ranking function outputs a linear order of these instances. Typically, this is
accomplished by scoring the instances, i.e., f(·) is implemented as an X → R

mapping that assigns a real-valued score f(x) to each instance x from an instance
space X. The instances are then ranked according to their respective scores.

The most commonly used metric to evaluate a predicted ranking is the area
under the ROC curve (AUC) [7]:

AUC(f, X) =
1

|P ||N |
∑

x∈P

∑

x′∈N

S(f(x′), f(x)) , (1)

where P ⊂ X and N ⊂ X are the positive and negative instances in X (hence
X = P ∪ N , P ∩ N = ∅). The mapping S(·, ·) outputs 1 when the positive
instance is ranked before the negative one, and 0 in the reverse case. An output
of 1/2 is given when the instances are assigned the same score.

2.3 Multipartite Ranking

Given that class labels are ordered, as in ordinal classification, the idea of bipar-
tite ranking can obviously be generalized from the binary to the multi-class case.
Given a set of instances X with class labels in L = {λ1, λ2 . . . λm}, the goal is to
order them in such a way that, ideally, the instances from λm precede those from
λm−1, which in turn precede those from class λm−2, etc. Subsequently, we shall
refer to the problem of learning a corresponding ranking function from a training
set T = {(xi, �xi

)}n
i=1 ⊂ X × L of labeled instances as multipartite ranking.

A common approach to learning the scoring function f consists of turning the
original training data into a set of order constraints on f(·), and then finding a
function that is as much as possible in agreement with these constraints. More
specifically, each pair of observed examples (xi, �xi

) and (xj , �xj
) with �xi

� �xj

gives rise to a constraint f(xi) > f(xj). To make the problem amenable to ex-
isting learning algorithms, the idea is to express such constraints as classification
examples. Suppose, for example, that f(·) is a linear function x 	→ 〈α, x〉. Then,

f(x) > f(x′) ⇔ 〈α, x〉 − 〈α, x′〉 > 0 ⇔ 〈α, x − x′〉 > 0 ,
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which is equivalent to saying that z = x − x′ should be classified as positive
(or −z as negative) by a standard binary classifier [13]. The number of pairwise
constraints, and hence the size of the training data for the binary classifier, will
typically be much larger than the original training data (cf. Section 3.5).

2.4 Evaluation Metrics for Multipartite Ranking

To evaluate the performance of a predicted multipartite ranking of a set X of
instances, different metrics have been proposed in the literature. An obvious gen-
eralization of the AUC, which estimates the probability that a randomly chosen
positive instance is ranked higher than a randomly chosen negative instance, is to
consider the probability that a randomly chosen pair of instances from different
classes is ranked correctly by f(·), i.e.

P (f(x) < f(x′) |λx ≺ λx′) .

Assuming that the training examples are drawn independently from an under-
lying probability distribution on X×L, an unbiased estimate of this probability
is obtained by the C-index

C(f, X) =
1∑

i<j ninj

∑

1≤i<j≤m

∑

(x,x′)∈Xi×Xj

S(f(x′), f(x)) , (2)

where Xi is the subset of instances x ∈ X whose true class is λi, and ni = |Xi|.
The C-index is commonly used as a metric of concordance in statistics [11]. It is
essentially equivalent to the pairwise ranking error introduced in [13]. Obviously,
the AUC defined in (1) is a special case of (2) with X1 = P and X2 = N .

A related metric is the Jonckheere-Terpstra statistic [14], which is closely
related to a multi-class extension of the AUC that has been proposed in [12]:

U(f, X) =
2

m(m − 1)

∑

1≤i<j≤m

AUC(f, Xi ∪ Xj) . (3)

The key difference between (2) and (3) is that in (2), the contribution of a class
is proportional to the size of the class, while each class has the same weight in
(3). In fact, (2) can be written as a weighted sum of pairwise AUCs:

C(f, X) =
1∑

i<j ninj

∑

1≤i<j≤m

ninj AUC(f, Xi ∪ Xj) (4)

An alternative proposal for extending the AUC has recently been made in [22].
This alternative is motivated by the observation that decomposing the evaluation
of a multipartite ranking into several pairwise evaluations may arguably come
along with a certain loss of information and, moreover, can violate desirable tran-
sitivity properties. For example, pairwise AUCs can violate stochastic transitiv-
ity: AUC(f, X1∪X2) ≥ 1/2, AUC(f, X2∪X3) ≥ 1/2 but AUC(f, X1∪X3) < 1/2.
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Therefore, to evaluate rankings in a more global way, the idea is to consider the
probability

P ( f(x1) < f(x2) < . . . < f(xm) | �x1 = λ1, . . . , �xm
= λm) ,

where the (xi, �xi
), i = 1 . . .m, are again drawn independently from an underly-

ing probability distribution on X×L. This gives rise to the following evaluation
metric for the ranking of a finite set X of instances:

W (f, X) =
1∏m

i=1 ni

∑

x1∈X1,...,xm∈Xm

I(f(x1) < f(x2) < . . . < f(xm)) , (5)

where the indicator function I(·) maps truth values of predicates to {0, 1}. Thus,
the basic idea is to select m instances, one from each class, and to check whether
they are correctly ordered or not. The metric (5) is simply the average over all
possible m-tuples that can be verified in this way.

Despite having some potential advantages, we believe that (5) does also exhibit
some questionable properties. In particular, evaluating a ranking of m elements
in terms of a simple 0/1 loss, as done by the indicator function I(·), does not
distinguish between very poor rankings (e.g., a reversal of the correct ranking)
and rankings that are “almost correct” (in which, for example, only two adjacent
classes are swapped). To take an extreme example, suppose that X1 = {x1}
and X2 = {x2} each only contain a single instance, and that the predicted
ranking swaps these two instances (f(x1) > f(x2)), while the instances from all
other classes are always ordered correctly by f(·). Still, (5) will yield the worst
evaluation W (f, X) = 0.

This strong sensitivity toward small mistakes could in principle be avoided
by replacing the indicator function I(·) in (5) with a more tolerant metric, for
example the (normalized) sum of concordant pairs

2
m(m − 1)

∑

1≤i<j≤m

I(f(xi) < f(xj)) .

This would obviously yield a metric closely related to the pairwise variants (2)
and (3). Still, when expressing the metric thus obtained in terms of pairwise
AUCs, another questionable property of (5) becomes obvious. In fact, one will
again obtain a weighted combination of pairwise AUCs, just like (4), but now
the AUC of classes λi and λj is weighted by

∏m
i=1 ni/(ninj). In other words,

the weighing is now inversely related to the size of the classes. This is because,
to produce all m-tuples in (5), a pair of instances (xi, xj) is combined with all
instances from all other classes. In our above example, where |X1| = |X2| = 1, the
instance pair (x1, x2) has an extreme influence, since it will necessarily appear
in all m-tuples.

Subsequently, we shall focus on the pairwise evaluation metrics (2) and (3),
which are intuitively appealing and widely adopted in the literature.
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2.5 From Multipartite Ranking to Ordinal Classification

We end this section with a few comments on the relationship between multi-
partite ranking and ordinal classification, the problem that we also started with
at the beginning of the section. Obviously, an ordinal classification function can
be used as a ranking function. In fact, note that an ordinal classifier becomes
a scoring function by interpreting its predictions, namely class labels, as scores
(i.e., predicting class λi for instance x is considered as scoring x by i). Needless
to say, however, this type of scoring will produce a large number of ties, which
is why one cannot expect ordinal classifiers to be good rankers.

Conversely, a ranking function f(·) can be turned into an ordinal classifier by
thresholding: Given m+1 threshold values ti, i = 1 . . .m+1, class λi is predicted
for an instance x if the score f(x) is between ti and ti+1. The main problem here
is to find optimal thresholds, i.e., thresholds that lead to an optimal classification
performance [21]. However, this problem is beyond the scope of this paper.

3 Binary Decomposition for Multipartite Ranking

As mentioned in Section 2.3, existing ranking methods are mostly based on the
idea of transforming the original ranking problem into a binary classification
problem. Roughly speaking, each pair of instances (from different classes) gives
rise to a training example. It is worth mentioning that these methods are indeed
applicable though not specifically designed for multipartite ranking: Their input
is a set of order constraints on instances (f(xi) > f(xj)), which can originate
from class information (�xi

� �xj
), but may also come from other sources; in

fact, the existence of classes is not even assumed. In this section, we propose
an alternative strategy which is specialized to the multipartite ranking problem
and exploits class information in a more explicit way.

3.1 Exploiting Class Information by Binary Decomposition

Instead of transforming the original problem to a single binary classification
problem, we decompose it into several such problems, resorting to binary de-
composition techniques that have already been used successfully in multi-class
classification. A decomposition technique specifically designed for ordinal clas-
sification has been proposed in [8]. Since ordinal classification and multipartite
ranking are closely related (cf. Section 2.5), the idea to adapt this method to the
latter problem suggests itself, and we will do so in Section 3.2. Another promis-
ing decomposition technique is the all-pairs learning scheme that has already
been used in conventional and ordinal classification, as well as in other types of
ranking problems such as label ranking [9,10,16,15]. In fact, this technique is es-
pecially motivated by (3) and (4), which show that the quality of a multipartite
ranking is in direct correspondence with the quality of the associated bipartite
rankings. Thus, it should, in principle, be possible to optimize the former by
optimizing the latter, and this is what the all-pairs approach is seeking to do.
We shall elaborate on this approach in Section 3.3.
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One key advantage of binary decomposition is that the related problems are
simpler and usually much smaller than a single binary problem, as they avoid the
combinatorial explosion caused by considering all pairs of the original training
examples (cf. Section 3.5). Roughly speaking, by exploiting class information, a
large number of order constraints can be satisfied in an implicit way: A classifier
that separates n0 negative from n1 positive instances, and which is hence trained
on n0 + n1 examples, automatically satisfies n0n1 order constraints.

On the other hand, binary decomposition also produces an additional prob-
lem, namely the need to aggregate the predictions of the different models into
a single ranking: Binary decomposition techniques learn a set of models Mi

on different subproblems. Given a query instance x, this instance is submitted
to all models, and the predictions Mi(x) have to be combined into an overall
prediction. In the context of multipartite ranking, aggregation can essentially be
realized at two different levels: (1) Aggregation of rankings: In this case, each
model Mi produces a ranking, and these rankings are combined into a consen-
sus ranking. (2) Aggregation of scoring functions: If all models Mi are based on
scoring functions fi(·), a second option is to combine these functions into a single
function f(·), which means combining the scores fi(x) into a single score f(x).
Computationally, the first alternative is more complex, since, depending on the
concrete criterion used, optimal rank aggregation may become very expensive.
We shall therefore adopt the second approach.

3.2 The Approach of Frank and Hall

A simple and intuitively appealing approach to ordinal classification has been
proposed by Frank and Hall [8]. The idea of this method, subsequently re-
ferred to as F&H, is to decompose the original problem involving m classes
L = {λ1, λ2 . . . λm} into m − 1 binary problems. The i-th problem is defined by
the “meta-classes” C− = {λ1, λ2 . . . λi} and C+ = {λi+1, λi+2 . . . λm} playing
the role, respectively, of the negative and positive class.

Let Mi, i = 1 . . . m − 1, denote the model learned on this problem. Given
a query instance x, a prediction Mi(x) is interpreted as an estimation of the
probability P(�x � λi) that the class of x, denoted �x, is in C+. Consequently,
the models must guarantee outputs in the unit interval. From these probabilities,
a probability distribution on L is derived as follows:

P(�x = λ1) = 1 − P(�x � λ1)
P(�x = λi) = max {P(�x � λi−1) − P(�x � λi), 0 } , i = 2, . . . , m − 1
P(�x = λm) = P(�x � λm−1)

(6)

Eventually, the class with the highest probability is predicted.
Coming back to the problem of multipartite ranking, recall that we seek to

aggregate the scoring functions associated with individual models into an overall
scoring function that defines the ranking. Here, these functions are given by the
predictions of the models Mi, that is, fi(x) = Mi(x), and each of them induces
an individual ranking. An obvious aggregation function is given by



366 J. Fürnkranz, E. Hüllermeier, and S. Vanderlooy

f(x) =
m−1∑

i=1

fi(x) =
m−1∑

i=1

Mi(x) . (7)

This aggregation is meaningful as it systematically assigns higher scores to in-
stances from higher classes. For example, an instance x of class λ1 will be in the
negative meta-class of all m − 1 binary classifiers, i.e., all Mi should return a
low score fi(x), and hence the cumulative score f(x) will be low.

Formally, it is worth mentioning that (7) is in direct correspondence with the
expected class index of an instance, given that the models Mi yield reasonable
probability estimations and are consistent in the sense that Mi(x) ≥ Mi+1(x).
In fact, the mapping i 	→ Mi(x) is nothing else than a decumulative distribution
function, and hence, with E(i) the expected class index of x:

f(x) =
m−1∑

i=1

P(�x � λi) =
m−1∑

i=1

m∑

j=i+1

P(�x =λj) =
m−1∑

i=1

(i−1)P(�x =λi) = E(i)−1

3.3 Learning by Pairwise Comparison

Learning by pairwise comparison (LPC), also known as all-pairs or round robin
learning [9], is a popular binarization technique for multi-class classification.
LPC trains a separate model Mi,j for each pair of classes (λi, λj) ∈ L × L,
1 ≤ i < j ≤ m; thus, a total number of m(m − 1)/2 models is needed. At
classification time, a query x is submitted to all models, and each prediction
Mi,j(x) is interpreted as a vote for a label. More specifically, assuming scoring
classifiers that produce normalized scores fi,j = Mi,j(x) ∈ [0, 1], the weighted
voting technique interprets fi,j and fj,i = 1−fi,j as weighted votes for classes λi

and λj , respectively, and predicts the class λ∗ with the highest sum of weighted
votes, i.e., λ∗ = argmaxi

∑
j �=i fi,j .

LPC has been used successfully for conventional multi-class classification, but
has also been shown to produce strong results for ordinal classification [10,15].
To derive a ranking function from the ensemble of models Mi,j , we again need a
proper scoring function. Imitating the derivation of (7), a reasonable candidate
is the sum of the predictions “in favor of a higher class”, that is

f(x) =
∑

1≤i<j≤m

fj,i(x) =
∑

1≤i<j≤m

Mj,i(x) . (8)

A variant of this aggregation, motivated by the fact that the C-index (2) is a
weighted combination of the pairwise AUCs, is

f(x) =
∑

1≤i<j≤m

pipj fj,i(x) =
∑

1≤i<j≤m

pipj Mj,i(x) , (9)

where pi is the probability of class λi estimated by the relative frequency in the
training data. In fact, one may expect that (9) is more suitable to optimize the
C-index (2), while (8) might be preferable when using (3) as evaluation metric.
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3.4 Comparing LPC and F and H

A critical issue of the LPC approach is the so-called “non-competence” problem.
Even though the pairwise models Mi,j are trained only on examples from classes
λi and λj , they have to be queried by all instances at prediction time. Thus, if
x neither belongs to λi nor to λj , then Mi,j is actually not “competent” and
the prediction Mi,j(x) becomes arguably questionable.

This problem is well-known from standard classification, and is also relevant
for other binary decomposition techniques which are based on a generalized
version of error correcting output codes that allows classifiers to be trained on
proper subsets of the label set [1]. Despite this problem, LPC is known to per-
form extremely well for classification and often outperforms other decomposition
techniques that do not suffer from the non-competence problem, including the
one-vs-rest decomposition and the F&H method. A key advantage of LPC is a
simplification effect produced by the all-pairs decomposition: Two-class prob-
lems are maximally simple from a learning point of view, and the predictions of
models trained on these problems are hence more accurate. Since methods like
one-vs-rest and F&H train each model on all classes, it is true that they only
produce competent models. On the other hand, however, the problems are more
difficult (typically requiring more complex decision boundaries), and hence the
model predictions presumably less accurate. Besides, there is another potential
advantage of LPC, namely a kind of redundancy due to the training of a larger
(namely quadratic) number of models. Thanks to this redundancy, is is easier to
compensate for prediction errors of individual models.

For the following reason, however, one may expect the non-competence prob-
lem to be more severe for multipartite ranking than for classification: In classifi-
cation, one score is derived for each class label λi by combining the predictions
Mi,j(x), 1 ≤ i �= j ≤ m. Thus, at least the computation of the score for the
true label �x does not involve any incompetent prediction, and as long as these
predictions are correct, the true class will be the winner of the voting scheme,
regardless of all other (non-competent) predictions. In multipartite ranking, on
the other hand, the score of an instance x depends on all models Mi,j , and most
of them are not competent for x.

Fortunately, due to the ordinal structure, there is still reason to hope that
even the non-competent models will make reasonable predictions: Given that
the ordinal structure of the set of class labels L is also reflected in the topology
of the instance space X, an assumption which is implicitly made by all ordinal
classification methods [15], a model Mi,j will indirectly also be trained for classes
λk, i �= k �= j. For example, when the model M2,3 is queried with an instance x
whose true class is λ4, a vote for the higher class λ3 (which is supposed to be
“closer” to λ4) should be more likely than a vote for the lower class λ2.

In summary, LPC has the disadvantage of partially non-competent models,
but the advantage of simplicity and redundancy. Which of these effects will
dominate in practice is a question that cannot be answered in general, especially
since the answer will strongly depend on the data set and learning algorithm
used. First insights will be offered by our empirical study presented in Section 4.
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3.5 Computational Complexity

The F&H method trains m− 1 models on the complete set of training examples
whose size is |T | = n. Thus, the total number of training examples for the
transformed problem is (m−1)n, and when using a base learner with complexity
O(kα), the overall complexity for training an F&H ranking model is O(mnα).

LPC requires a total of (m−1)n training examples, too, because each original
example (xi, �xi

) is used in exactly m−1 binary models Mi,j . Correspondingly,
the training complexity is O(m2nα) for a base learner with complexity O(kα).
It should be noted, however, that the pairwise problems, which involve only the
instances from two classes, are typically much smaller than n. For example, for a
uniform class distribution where each class has ≈ n/m examples, the complexity
is O(m2−αnα). Thus, for base learners with super-linear complexity (α > 1),
LPC is typically even more efficient than F&H.

For methods that construct a single binary classification problem, with one
order constraint for each pair of instances with different class labels, the number
of training examples can become as large as O(n2). With a classifier whose
complexity is O(kα), the overall complexity is hence O(n2α) and increases much
faster with the size of the training set T than for the decomposition methods.

However, it is worth mentioning that, for support vector machines, a quadratic
growth in the number of examples can be avoided under certain conditions. In
[18], Joachims proposes a sophisticated cutting plane algorithm for SVM training
that exploits the sparsity of a data set and scales with O(s · n · log(n)), where
s is the average number of non-zero features. Unfortunately, an implementation
of this approach (http://svmlight.joachims.org/) is offered only for the case
of two ranks (m = 2), which precludes its use in our experimental analysis.

4 Experimental Analysis

In this section, we provide an extensive empirical evaluation and comparison
between methods for multipartite ranking. Our primary interest is to show that
a reduction to multiple binary classifiers is at least competitive to state-of-the-
art ranking methods in terms of predictive accuracy, while being much more
efficient from a computational point of view. Besides, we are also interested in
comparing the two decomposition methods, LPC and F&H, amongst each other.

4.1 Data Sets, Ranking Methods, and Experimental Setup

Due to a lack of ordinal benchmark data sets, several previous studies includ-
ing [8,10,15] have resorted to discretized regression data sets for experimental
purposes. This is reasonable and has the advantage that, by changing the dis-
cretization, ordinal data sets can be produced in a quite flexible manner. We
have used twenty-one regression data sets from the UCI repository [2]. These
data sets vary strongly in size and number and type of features, and hence, they
are representative for a wide range of data that may occur in practice; see Ta-
ble 1. To obtain an ordinal class attribute, the numerical output attributes were

http://svmlight.joachims.org/
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Table 1. The twenty-five data sets used in the experiments (name, number of instances,
number of numerical features, number of nominal features). The last four data sets are
truly ordinal, and the number of classes is given in brackets after the name.

# name size num nom # name size num nom

1 Abalone 4177 7 1 14 House 8L 22784 8 0
2 Ailerons 13750 40 0 15 House 16H 22754 16 0
3 Auto Mpg 398 40 0 16 Kinematics 8192 8 0
4 Auto Price 159 14 1 17 MV Artificial 40768 7 3
5 Bank 8FM 8192 8 0 18 Pumadyn 8NH 8192 8 0
6 Bank 32NH 8192 32 0 19 Pumdayn 32H 8192 32 0
7 Boston Housing 506 12 1 20 Servo 167 0 4
8 California Housing 20640 8 0 21 Stocks 950 9 0
9 CPU Act 8192 21 0

10 CPU Small 8192 12 0 22 ERA (9) 1000 40 0
11 Delta Ailerons 7129 5 0 23 ESL (9) 488 40 0
12 Elevators 16599 18 0 24 Eucalyptus (5) 736 14 5
13 Friedman Artificial 40768 10 0 25 LEV (5) 1000 40 0

discretized into m = 5 classes using equal-frequency binning. It is worth noting
that this did not always lead to classes of equal size, since in many data sets, one
or more values of the numerical output attribute occurs many times. We only
report results for m = 5, because other values produced quite similar results.
We complemented the discretized regression data sets with four truly ordinal
classification data sets taken from [3], namely those that have reasonable size
and at least five classes.

As a baseline, we selected SVMRank [17], a state-of-the-art method for rank-
ing problems which is based on support vector learning (http://svmlight.
joachims.org/). We used this method in its default setting with a linear ker-
nel. F&H and LPC were implemented with logistic regression as a base learner,
which comes down to fitting a linear model and using the logistic link func-
tion (logit(x) = log(x/(1 − x))) to derive [0, 1]-valued scores, the type of model
output requested by both methods. Essentially, all three methods are therefore
based on linear models so that the comparison is fair from this point of view.
For LPC, we tried both aggregation strategies, the unweighted version (8) and
the weighted variant (9); we shall refer to these methods as LPC-U and LPC-W,
respectively. As a side remark, we mention that we also tried the classifier ver-
sions of F&H and LPC (ordering instances by the predicted class). As expected,
however, these were consistently outperformed by their ranking variants, and
therefore we excluded them from the analysis that we will present below.

We report averages of several test statistics over five repetitions of a stratified
ten-fold cross validation, each time with a different random permutation of the
data. The standard deviations were very small (often of the magnitude 10−4)
and, for the ease of exposition, are therefore omitted in the tables.

http://svmlight.joachims.org/
http://svmlight.joachims.org/
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4.2 Experimental Results

The ranking performance of the methods in terms of the C-index (2) and the
Jonckheere-Terpstra statistic (3) are shown in Table 3. To analyze the results, we
followed the two-step statistical test procedure recommended in [6], consisting of
a Friedman test of the null hypothesis that all learners have equal performance
and, in case this hypothesis is rejected, a Nemenyi test to compare learners in a
pairwise way. Both tests are based on the average ranks over all data sets, which
are shown at the bottom of the table. The ranks on the individual data sets are
indicated by the numbers in brackets (the best method has rank 1, the worst
rank 4; average ranks are assigned in case of ties).

The results show that F&H is significantly better than the rest, while no
significant difference is detected among the others (the critical rank difference
is 0.88 for a significance level of 10%). Note that, as expected, the performance
of LPC-U increases in comparison to LPC-W when using (3) instead of (2) as a
performance metric. Overall, however, these differences are small.

The main conclusion from this experiment is that the binary decomposition
methods are quite competitive to SVMRank in terms of ranking performance,
and in fact, the ranking variant of F&H seems to be even superior. (We are
somewhat cautious here, since the computational complexity of SVMRank pre-
vented from a truly thorough parameter optimization.) In terms of computa-
tional complexity, the decomposition methods are much more efficient, outper-
forming SVMRank by several orders of magnitude on some data sets. In fact,
training of a single SVMRank model may easily take hours to days, and running
the experiments for this method was only feasible on a parallel computer. Obvi-
ously, this precludes a direct comparison of run-times. We can mention, though,
that the run-times of F&H and LPC are comparable to the run-times of their
corresponding classification variants, and for both methods, 5 repetitions of a
10-fold cross validation never took more than one hour of CPU time.

As to the direct comparison of F&H and LPC, we complemented the ranking
results by the performance of the respective classifier-versions in terms of clas-
sification accuracy; see Table 2. This study essentially confirms previous results
[10,15], which have shown that LPC, even though it is not specifically designed

Table 2. Classification accuracy for the classifier-variants of LPC and F&H

# LPC F&H # LPC F&H # LPC F&H # LPC F&H

1 .5248 .5157 8 .5490 .5463 14 .5040 .4814 20 .7425 .7199
2 .6084 .6118 9 .7195 .7183 15 .4967 .4603 21 .8307 .7840
3 .6836 .6846 10 .6686 .6676 16 .4044 .4161 22 .4036 .4062
4 .5987 .5902 11 .5716 .5587 17 .9149 .8837 23 .7729 .7741
5 .7897 .7885 12 .5727 .5707 18 .4860 .4575 24 .6378 .6619
6 .4851 .4855 13 .5547 .5547 19 .3863 .3933 25 .5972 .6022
7 .6608 .6561
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for ordinal problems, is at least competitive and often superior to F&H: The
classification version of LPC wins 15 times against the classification variant of
F&H and looses only 9 times; see Table 2. All the more interesting is the question
why F&H performs better for the ranking problem.

In Section 3.3, some possible answers to this question have already been an-
ticipated. To get more insight, we looked at the ranking performance of the
individual models. More precisely, we let each of the models Mi in F&H and
Mi,j in LPC rank all examples, and compared this ranking to the true ordi-
nal classification of the examples. Table 4 shows the minimum, mean, median,
and maximum C-index among these models for both LPC and F&H. It can be
seen that F&H is consistently better in terms of the minimum, i.e., the worst
model Mi is still better than the worst model Mi,j . This may not be too sur-
prising, because the pairwise approach learns a much higher number of models.
However, the same can also be observed for the mean and the median (with a
single exception), and even in terms of the maximum, F&H is better in 20 of the
25 data sets. Less surprisingly, the variability among the LPC models Mi,j is
higher than among the F&H models Mi, as can be seen from the difference be-
tween the maximum and the minimum. We take these results as strong evidence
for the dominance of the non-competence problem of LPC models, as discussed
in Section 3.3, and consider this problem as a reasonable explanation for the
superiority of F&H.

Worth mentioning is finally a kind of ensemble effect revealed by the results
in Table 4: For both methods, LPC and F&H, the overall performance of the ag-
gregated model is consistently better than the best performance of an individual
model.

5 Conclusions

We have elaborated on the use of binary decomposition methods in the context of
multipartite ranking, a generalization of bipartite ranking to the multi-class case.
The use of such methods is motivated by their successful application to related
problems, including multi-class classification, ordinal classification, and label
ranking. Our results have shown that decomposition methods are competitive,
if not even superior, to state-of-the-art ranking methods in terms of predictive
accuracy, while being much more efficient from a computational point of view.
In any case, they offer a viable alternative to hitherto existing methods.

In future work, we plan to further improve the performance of the methods
proposed in this paper, for example by means of alternative aggregation schemes.
Moreover, only simple classification methods such as logistic regression have
been used as base learners so far. Such methods seek to maximize classification
accuracy in the first place, and hence optimize ranking performance (in terms of
AUC) only indirectly. Therefore, the use of AUC-optimizing classifiers as base
learners is likely to yield improved results.
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