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Abstract. The Support Vector Machine error bound is a function of
the margin and radius. Standard SVM algorithms maximize the margin
within a given feature space, therefore the radius is fixed and thus ignored
in the optimization.

We propose an extension of the standard SVM optimization in which
we also account for the radius in order to produce an even tighter error
bound than what we get by controlling only for the margin.

We use a second set of parameters, u, that control the radius intro-
ducing like that an explicit feature weighting mechanism in the SVM
algorithm. We impose an l; constraint on g which results in a sparse
vector, thus performing feature selection. Our original formulation is not
convex, we give a convex approximation and show how to solve it. We
experiment with real world datasets and report very good predictive per-
formance compared to standard SVM.

Keywords: Feature Weighting, Support Vector Machine, convex opti-
mization.

1 Introduction

Support Vector Machines have been proven one of the most successful machine
learning tools over the last decade. Their wide acceptance from the machine
learning community has to do by the excellent performance that they achieve
over different learning problems—excellent performance that is founded on sound
theoretical concepts and namely the fact that they control directly their error
bound. In the classification setting they work by establishing a class separating
hyperplane in some feature space, typically given by a kernel function. The the-
ory shows that their error bound is a function of both the margin, v, informally
the distance of the nearest data points from the hyperplane, and the radius, R,
of the smallest sphere enclosing the data; more precisely, the function depends
on the ratio R?/~2.

However, even though this double dependency is well known, all SVM algo-
rithms optimize the error bound by focusing only on the margin and ignoring the
radius. One could argue that for a given feature space the radius of the smallest
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sphere enclosing the data remains fixed and thus can be ignored. However it is
quite easy to show that under a very simple scenario, for example by weighting
or selecting features, the radius changes. The question that then arises is what
is the best way to control that change, i.e. best in the sense of the error bound
optimization. This question has been partially explored in the context of feature
selection; for example [I] and [2] directly try to exploit this dual dependency of
the error bound in order to determine which features to remove and which to
retain. SVMRFE [3] also implicitly changes the radius since it removes features;
however since the algorithm is based on the recursive application of a standard
SVM, its cost function obviously disregards the radius.

Nevertheless it still remains a challenge to exploit all the facets of the gener-
alization bound in the learning process. In this paper we move one step ahead in
this direction and propose an SVM algorithm that optimizes the error bound by
controlling both for the margin and the radius. To do so we extend the standard
margin-based cost function of SVM (which controls the margin by controlling
the size of the norm of the normal vector, w, of the maximum margin hyper-
plane), to include also the radius. We control the latter by introducing a second
vector of parameters, u, which in fact performs feature weighting; we call our
algorithm MR-SVM (Margin-Radius SVM). The proposed algorithm includes a
sparsity constraint on g which is based on the [y norm; this forces many features
to have a zero weight, thus performing also feature selection.

The paper is organized as follows. In section [2] we briefly review previous
work on SVM that deal with both the margin and the radius, mainly in the
context of feature selection. In section [3] we discuss the various error bounds
that motivate the use of the radius and present the standard SVM framework.
We give our main contribution in section ] and present some experiments on
several benchmark datasets in section Bl Finally, we conclude in section [6] where
we also present some ideas for future work.

2 Related Work

The idea of optimizing the error bound of SVM by controlling both the margin
and the radius has received relatively limited attention. This despite the fact that
one would expect, at least in principle, to be able to produce tighter error bounds
when we control for both, thus achieving better generalization performance.
Somehow naturally the only two works of which we are aware that move in that
direction fall within the feature selection research domain.

Weston et al. in [I] start from exactly the same idea, i.e. that the gener-
alization performance of SVM depends on the ratio R?/4? and not only on
the margin « and propose a feature selection algorithm which tries to optimize
that ratio. To do so they introduce a binary valued vector o € {0,1}¢, where
each o;,7 := 1,...,d corresponds to one of the dimensions of the input space.
The o controls which features are included or removed through a componen-
twise multiplication with the learning instances. They then express the ratio
as a function of o, ie. f(o) = Ijj (o). Their goal is to find that vector o*
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which minimizes f(o). However the original formulation of the problem requires
searching over all possible feature subsets which is a combinatorial problem that
is only tractable by greedy search methods. The authors propose an alternative
approach in which they relax o to be a real valued vector and formulate the
problem as an approximation of integer programming which they solve by using
gradient descent by computing the gradient Jf(o)/0c. There is no guarantee
that the algorithm will reach a global minimum. Moreover since they view the
problem as a feature selection problem they parametrize the ratio in a manner
that includes or removes features on the basis of the original input space, i.e.
the parametrization performed by o is not done in the feature space. However
the radius is computed in the feature space and obviously tighter error bounds
can be achieved if the parametrization is done in the feature space, in the same
way that the parametrization of the margin is done in the feature space and not
in the original input space.

Rakotomamonjy in [2] examines a number of different SVM-based functions
and feature ranking approaches to perform feature selection. Among the different
functions he examines we find the radius-margin ratio as it was given in the
previous paragraph, i.e. f(o). He explores two approaches to establish a ranking
of the features from f(o), which he calls zero-order and first-order approaches.
In the zero-order approach the importance of a feature is given by the value

of f(o) when that feature has been removed. In other words the importance
of feature i is given by f(o(=9), where O’;;Z) =1 and O'i(_z) = 0. In the first-
order approach the importance of a feature ¢ is given by the value of the partial
derivative Of (o) /0o; calculated at o; = 1. The two approaches are incorporated
within a stepwise selection method to determine which features to retain. We
note here that this work does not try to optimize f(o) but simply uses it as
a way to determine the importance of the different features in the input space
and decided which ones to retain and which to eliminate. Moreover the initial
value of f(1), where 1 is the vector of ones, may not be the optimal value and
the method removes those features that have the smallest effect on the value of
F(1).

In both approaches the parametrization of the radius-margin ratio is achieved
via the parametrization of the kernel function which is written in the form
K (o .x;,0.x;), where the operator . denotes the componentwise multiplication.
[4] examined the more general problem of tuning any number of parameters of a
kernel and proposed a framework that relies on the use of theoretical error bounds
to perform that tuning. One of the error bounds they examined was the radius-
margin ratio. Obviously the K (o.x;,0.x;) form can be addressed within their
framework, and in fact they did use their method and this kernel parametriza-
tion to perform feature selection and scaling. As in the two previous works, fea-
ture scaling and weighting is performed in the input space. The framework they
proposed is based on a two step iterative optimization procedure. The first step
solves a standard SVM problem in which the set of parameters o is kept fixed. The
second step uses gradient descent to update the parameters o in the direction that
minimizes the theoretical error bound, i.e. the radius-margin ratio. However the
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radius-margin ratio can have many local minima, see for example [5], and a simple
gradient method may easily get trapped in one of them.

As it is apparent from the above discussion, one of the learning tasks in
which SVMs have been used often is that of feature selection. Probably the
most popular algorithm of this family is SVM-RFE, introduced by [3], which
is a backwards feature elimination procedure that removes features based on
the values of their weights as these are determined by a linear kernel SVM. In
fact the work of [2] extends this work. The linear kernel has been proven one of
the most popular kernels for SVM not only because of its very good predictive
performance, but also because of its understandability; its weights directly reflect
the importance of the corresponding features, provided that features have been
normalized. These explain why it is the kernel of choice not only for the feature
selection task but also more generally for the task of classification in problems
with high dimensionality.

The same trend also appears in regression problems where some of the most
successful algorithms for high dimensional problems are algorithms that produce
linear models by imposing sparsity constraints on the vector of weights of the
coefficients, e.g. Lasso, [6], LARS, [7], and more recently Adaptive Lasso, [§]. All
of them use the I; norm to control the coefficients of the linear regression models,
which is known to produce sparse weight vectors. In an interesting twist Adaptive
Lasso uses two sets of weights: a first set of weights controls the importance of
the different features and the second is the set of lasso coefficients learned on
the weighted feature set. The author proposes to derive the first set of weights
from the solution of the Ordinary Least Squares regression [9]. Note here that
unlike the different regression algorithms mentioned the standard SVM does not
impose strong sparsity constraints such as the one imposed by the l; norm.

3 SVM, Margin and Radius Based Error Bounds

There are a number of theorems in statistical learning that bound the expected
classification error of the thresholded linear classifier given by the maximum
margin hyperplane by quantities that are related to its margin and the radius
of the smallest sphere that encloses the data. Below we give two of them that
correspond to the cases of linearly separable and non-separable training sets.
Consider a mapping x — ®(x) in which a training instance x € X’ is mapped
to an inner product feature space H. Moreover the inner product of H is given by
K(.,.), a kernel function defined in the original input space X, i.e. K(x;,X;) =
(®(x,), ®(x,)-
Theorem 1. [{], Given a training set S = {(x1,91),..., X, y1)} of size I, a

feature space H and a hyperplane (w,b), the margin v(w,b,S) and the radius
R(S) are defined by

y(w.b,S) = min V(W @) +D)
(xi,y:)€S |w|
R(S) = minmax ||®(x;) — a||
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The mazimum margin algorithm L; : (X x V)l — H xR takes as input a training
set of size I and returns a hyperplane in feature space such that the margin
~v(w, b, S) is maximized. Note that assuming the training set is separable means
that v > 0. Under this assumption, for all probability measures P underlying the
data S, the expectation of the misclassification probability

Derr(W,b) = P(sign((w,®(X))+b) #Y)

has the bound

1 R2(2)
E{perr(Li—1(2)} <  FE
{pl ( l 1( ))} l {VQ(LZ(Z),Z)
The expectation is taken over the random draw of a training set Z of size | — 1
for the left hand side and | for the right hand side.

The following theorem gives a similar result for the error bound of the linearly
non-separable case.

Theorem 2. [10], Consider thresholding real-valued linear functions £ with unit
weight vectors on an inner product space H and fiz v € R™. There is a constant
¢, such that for any probability distribution D on H x {—o00, 0o} with support in a
ball of radius R around the origin, with probability 1 — § over I random examples
S, any hypothesis f € L has error no more than:

c R*+€]3
9 log

err(f)p < l( 2l—|—log(15)7 (1)

where & = &(f,S,7) is the margin slack vector with respect to f and 7.

It is clear from both theorems that the bound on the expected error depends
not only on the margin but also on the radius of the data. The expected error
is bounded in the linearly separable and non-separable cases by functions of the
ratios R%/v% and (R? + ||€]|3)/~? respectively.

The standard soft margin SVM builds exactly on these results, namely theo-
rem[2] by learning maximal margin hyperplanes while controlling for the I norm
of the slack vector in an effort to optimize the error bound given in equation [
Maximizing for the margin is equivalent to minimizing the norm of the normal
vector, w, of the separating hyperplane, thus the optimization problem that is
solved by the standard soft margin SVM is given by:

1 C <
. 2
pin o {wow) + ZZ,:I & (2)

st oyi((w, @(x))+b) >1—-&,i=1,...,1

C is a regularization parameter that controls the trade off between the size of the
margin and the norm of the slack variables vector; the latter is directly related
to the total number of training set missclassifications. Obviously this approach
to error bound optimization focuses exclusively on the margin and ignores the
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radius; under this problem formulation the latter is fixed and optimizing the
cost function of equation [ is equivalent to optimizing the error bound given in
equation [Il Usually we solve the dual optimization problem of equation [} this
is given by:

! !
1
mng(a) = Zai Yy Zaiajyiyj(K(xi,xj) + C(Sij)
i ij

1
s.t Zyiai =0,0; 20,0=1,..,1
i=1

where a is the vector of Langrange multipliers, and ¢;; is the Kronecker 6,
defined to be 1 if ¢ = j and 0 otherwise. The decision function of SVM is
f(x) = sign({(w*, P(x)) + b*) = sign(Zé yiof K (xi,x) + b*) where w*, b* and
o are the solutions of [ and its dual form.

The radius of the smallest sphere that contains all instances x; in the H feature
space defined by the ®(x) mapping is computed by the following formula [T1]:

min R? (3)
R,®(x0)

s.t. || ®(xi) — ®(x0)||* < R%, Vi

where ®(xg) is the center of the sphere.

4 Margin and Radius Based SVM

In this section we will show how it is possible to control not only for the margin
but also for the radius in an effort to achieve better error bounds. Consider the
feature space H given by the mapping function @(x) = (@1 (x), P2(x), ..., Pa(x)) €
R%, where x € X; let p € R? be a vector of parameters whose role will be to
perform feature weighting in the feature space. Then the feature space H,, given
by the mapping ®,,(x) = @(x).,/u is a feature space the radius of which is no
longer constant but can be controlled by the weighting vector p (/p denotes the
componentwise square root of p). Therefore, if we use the standard SVM, which
maximizes only the margin, we will not be fully optimizing the generalization
bound given in equation [Il To exploit the full potential of the radius-margin
error bound we should also learn the vector p. Note that in the standard SVM
formulation g = 1, i.e. all features of the feature space have equal importance or
weight. For reasons that will become apparent below, and without loss of gener-
ality, we will work in the normalized feature space H’, i.e. ®'(x) = I;E:;H; this
normalization is also achieved by the kernel K'(x,y) = Kxy)

VEEx)K(y.y)
K (x,y) is the kernel associated with the ¢(x) mapping. To simplify notation in
the following we will be using H, ®(x), and K (x,y), instead of H', ®'(x), and
K'(x,y).

where
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We will now discuss a number of inequalities that relate the radius of the
‘H,. space to the radii of the spaces defined by each one of its features. Con-
sider the one-dimensional space given by Hy, @r(x), which we get by pro-
jecting H on its k' dimension. Its radius is given by Ry = (max;(®y(x;)) —
min; @ (x;))/2. Let R?, be the radius of the feature space H,,. The following
inequalities hold:

maxk (i RY) < Ry, < 0y g < maxg(R) < 1 (4)
s.t. ZZ we =1, ux >0, Vk
The inequality, maxy (R%) < 1, holds because the feature space H is normalized.
The rest of the proof is given in the appendix.
We will now describe how we can optimize the radius-margin error bound given
in equation [T by learning also the g vector. A straightforward way to do so is to

modify the cost function of the standard SVM so that it also includes the radius.
We define the the following optimization problem in the #,, feature space:

min 1<w w) R2 Z§ (5)

w,b,&,u 2
st yi((w, \/u.QS(Xi» + b) >1-&,Vi

By rewriting w := /u.w we also have wy := ,/ppw;i and then we can rewrite
equation [0 as:

d
. ]- <wk7 wk 2
min 6
b o g

HE
d
st 4i()(wi, Br(xi)) +b) > 1= &,
k

Zﬂk = 17;“’14: 207Vk

The constraint ZZZI i = 1 is added so that we get a unique solution. If py =0
we will see that from the dual form given later we have wy = 0; in this case, we
use the convention that 8 = 0. Note the similarity of the two sets of parameters,
w and p, to the two sets of weights used by the Adaptive Lasso algorithm of [g],
however here we simultaneously optimize over both sets of parameters within
the same optimization problem and not independently as it is done in [g].

We will denote the cost function of equation [6 by F(w,b, &, ). This opti-
mization problem is not a convex optimization problem because the cost func-
tion F 1s not convex. From the set of inequalities given in equation [] we have
R2 < Zk prR? <1 and from this we can get:



322 H. Do, A. Kalousis, and M. Hilario

d

F(w,b,&, ) Z {wr, w) R% + Z£2§ (7)
k
d

3 z(’ e

k k

d
wkawk
Zk: m 2Zk R2Z§Z Z“'“R’“

<1Zdj<wk’w‘“> Zg bé,
22 ) =F(w )

Kk QZk kRz

| /\

The tighter the bound R, < Zi (i R2 is, the closer F will be to the original error
bound given by F. ﬁ(w, b, &, 1) is a convex function so instead of the original
soft margin optimization problem given in formula [6] we propose to solve the
following upper bounding convex optimization problem:

d
min L Z <w;€7w;€> 252 (8)

wbEn 25~ QZk W R?
d
st 4i()(wi, Pr(:)) +0) > 1= &,
2
d
Zﬂk = 17;“’14: > 07Vk
k=1

The 1 norm constraint on p has the potential to result in a sparser solution, i.e.
many of the p; could be zero, which can not be obtained using standard SVM.
The dual function of the optimization problem of equation [§ is:

d
W (a IJ Zaza]yzyj Z;U'k dsk Xl) @k<x])> (9)
+ Z Zk NkRk (@, @)

- ; Z QG YiY; (Z k(P (%), Pre (x5))
ij k

l

d 2
R
+Zkgk kéz-jH— E «;

%
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The dual optimization problem is:

max Ws(a, p) (10)
o
!
s.t. Zaiyi =0,
(67 Z 07V’L
! !
RO
D iy (Pr(xi), Br(x;)) = (f ;ERQ)?’W’
k k

ij
As it is obvious the cost function and the constraints are not expressed in the
form of a kernel function on the feature space H but instead require access to its
explicit representation. This limits for the moment the application of the method
that we propose here only to features spaces for which we have access to their
explicit form, e.g. linear or polynomial feature spaces. In the next section we will
show how we can solve this optimization problem.

4.1 Algorithm

The dual function [@ is quadratic with respect to « and linear with respect to
. One way to solve the optimization problem [§ is by using a two step itera-
tive algorithm such as the ones described in [4/12]. Following such a two step
approach, in the first step we will solve a quadratic problem that optimizes over
(w,b), while keeping p fixed; as a consequence the resulting dual function is
a simple quadratic function of a which can be optimized easily. In the second
step we will solve a linear problem that optimizes over p. More precisely the
formulation of the optimization problem with the two-step approach takes the
following form:

min J(p) (11)
"

d
s.t. Zuk =1,ur > 0,Vk
k=1

where

. 1 d (wg,wg) C l 2
J( ) _ {mlnw,b 2 Zk Wi + Y4 R2 Zz gz (12)

s.t. yi(ZZ<UJk7@k(Xi)> +b)>1-¢

To solve the outer optimization problem, i.e. min, J(u), we use gradient de-
scent.

At each iteration, we fix p, compute the value of J(u) and then compute
the gradient of J(w) with respect to pu. The dual function of equation [I2is the
W(ex, p) function already given in equation[d Since p is fixed we now optimize
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only over « (the resulting dual optimization problem is much simpler compared
to the original soft margin dual optimization problem given in formula [IT):

max W(a, )
(e

l
s.t. Zaiyi =0,a; >0,Vi

K3

which has the same form as the SVM quadratic optimization problem, the only
difference is that the C parameter here is equal to Y. Sk R
k k

For the strong duality, at the optimal solution a*, the value of Wy (e, p), and
thus the J(p) value, is given by:

l d
Ws<a 7/’1') = _2 aiajyiyj( Nk<¢k(xz)7djk(xj)>
i k

d 2 l
R
+Zkgk k5ij) + § az«

The last step of the algorithm is to compute the gradient of the J(p) function,
formula [T2] with respect to p. As [4] and [12] have pointed out, we can use the
theorem of Bonnans and Shapiro, [13], to compute gradients of such functions.
Hence:

9J ()

l
IS arar R;
Opu T2 o a5yiy; ((Pr(xi), Pr(x;)) + k‘siﬁ)

— C
ij

To compute the optimal step in the gradient descent we used line search. The
complete two-step procedure is given in algorithm [l

Algorithm 1. MR-SVM
Initialize pj = ; fork=1,...,d
repeat
Set RZ = 3¢ ut R}
compute J(u') as the solution of a quadratic optimization problem with given u

compute 66;;2 for k=1,..,d
compute optimal step ¢
pttl gt 4y aéif)

until stopCriterion is true

4.2 Computational Complexity

At each step of the iteration we have to compute the solution of a standard SVM,

with a fixed g and C equal to s Sk g2 » Which has a complexity O(n?) where n
k k
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is number of instances. Moreover when p is updated we have to recompute the
approximation of Ri, a computation that is linear in the number of features,
O(d), where d is number of features.

5 Experiments

We experimented with 12 different datasets. Six of them, lonosphere, Liver,
Sonar, Wdbc, Wpbe, Musk1, were taken from the UCI repository, and six, Colon-
Cancer, CentralNervousSystem, FemaleVsMale, Leukemia, stroke, ovarian, [14],
from the domain of genomics and proteomics. A short description of the datasets
is given in Table [l In the experiments we limit ourselves to the linear feature
space, although as we mentioned previously any feature space for which we have
access to its explicit form can be used. We compare the performance of the stan-
dard SVM with the linear kernel, ST D-SVM, to that of M R-SVM. We tuned
the hyperparameter C by inner cross-validation choosing from the set of val-
ues {0.1, 1,10, 100,500, 1000}. We terminate M R-SVM when the duality gap is
smaller than 0.01. We estimated the classification error using 10-fold cross vali-
dation. In table [2] we give the results including: the classification errors of both
algorithms, the number of non-zero weight features selected by M R-SVM, the
percentage that these non-zero weight features represent with respect to the to-
tal number of features, and the result of McNemar’s test of significance with a
significance level of 0.05 (if M R-SVM is significantly better than standard SVM
we denote that by +, if it is significantly worse by -, and if they are equivalent
by =).

As it is obvious from the results the performance of M R-SVM is much better
than that of standard SVM. Its classification performance is significantly better
in seven out of the 12 datasets and significantly worse only in two of them.
Remember here that the two algorithms operate in exactly the same space, i.e.

Table 1. Datasets Description

DATASET #INST. #FEATURES #CLASS1 #CLASS2
IONOSPHERE 351 34 126 225
LIVER 345 6 145 200
SONAR 208 60 97 111
WbDBC 569 32 357 212
WPBC 198 34 151 47
Musk1 476 166 269 207
COLONCANCER 62 2000 40 22
CENTRALNERVOUS 60 7129 21 39
FEMALEVSMALE 134 1524 67 67
LEUKEMIA 72 7128 25 47
STROKE 208 171 101 107
OVARIAN 253 385 62 91

PROSTATE 322 390 253 69
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Table 2. Results of the experiments. The average errors of standard SVM and M R-
SVM are reported, together with the average number of non-zero weight features estab-
lished by M R-SVM and the respective number of total features. The last column gives
the results of the McNemar’s significance test, + means that M R-SVM is significantly
better than the standard SVM.

DATASET STD-SVM MR-SVM #p; #0 , 170 SiG.
IONOSPHERE 11.71 11.14 28.3 83.23 +
L1vVER 32.35 32.35 5.9 98.33 =
SONAR 24.5 23.00 44.3 73.88 +
WbDBC 1.96 2.50 16.7 52.18 -
WPBC 18.95 17.37 24.8 72.94 +
MUusk1 13.62 13.83 68.1 41.02 =
COLONCANCER 15.00 16.67 2000 100 =
CENTRALNERVOUS  38.33 31.67 6442 90.36 +
FEMALEVSMALE 13.08 11.54 1524 100 +
LEUKEMIA 1.43 1.43 6922 97.10 =
STROKE 28.00 26.00 76.8 44.91 +
OVARIAN 04.80 3.60 53.2 13.81 +
PROSTATE 18.44 20.00 93.07 23.86 -

the one that corresponds to the linear kernel. Their only difference is that M R-
SVM directly optimizes for both the radius and the margin and not just the
margin as the standard SVM does. This has the potential, at least in theory, to
produce lower error bounds than those we would get by optimizing only for the
margin—a fact that seems to be confirmed by the performance results we get.

Apart from the very good classification performance that M R-SVM achieves
we also get for many of the datasets, though not for all of them, a significant
reduction of the number of features actually used in the learned model, many
of them are assigned a p; that has a value of zero due to the use of the [y
constraint. The mean value of features retained is around 68.6% of the total
number of features over the different datasets.

6 Discussion and Future Work

In this paper we present an extension of the standard SVM that incorporates in
its cost function not only the margin but also the radius of the smallest sphere
that encloses the data, thus implementing directly well known error bounds from
statistical learning theory. Our experimental results show that indeed optimizing
the error bound accounting for both the radius and the margin leads to much
better classification performance than when we optimize only for the margin as
it is typically done in the standard SVM algorithms. We want to further verify
the preliminary results reported here by experimenting with more datasets; if
these are verified, and provided that we are able to provide a kernelized version,
the proposed algorithm has a potential of very wide application.
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A possible way of producing a kernelized version of our algorithm is by using
kernel PCA [I5] and expressing the original feature space by projecting it on its
PCA components. In this case we do not need the explicit representation of the
feature space, and we will work on the representation given by the projections on
the PCA dimensions of the feature space. Since these can be computed explicitly
we will be able to directly apply our algorithm on the transformed space.

Apart from the remarkable predictive performance, a further advantage of the
algorithm comes as a result of the way we control the radius through the intro-
duction of the u vector of parameters. This vector weights the different features
in the feature space; moreover due to the incorporated sparsity constraint on
o the algorithm has the potential to produce sparser linear models than those
of the standard SVM. The result is that we do not only get a feature weight-
ing mechanism but we also perform direct feature selection. However we would
like to explore further the l; constraint defined on the g vector in order to see
whether it is possible to control the desired level of sparsity in the final models.
Remember that we set that constraint to one so that we get a unique solution.
For some of the datasets this resulted in quite sparse solutions retaining as few
as 14% or 24% of the original features, yet in others it retained all of them. We
want to understand better the conditions under which this constraint becomes
active and removes a significant number of features. Moreover we would like to
explore the option of regularizing this norm as it is done in other methods, such
as Lasso, in order to get even sparser solutions.

Finally we should mention that it is straightforward to use our algorithm, in
its present form, within the SVM-RFE algorithm in order to replace the standard
linear kernel SVM used there. Its advantage over the standard SVM will be the
fact that at each iteration we can potentially remove a larger number of features
the weight of which will be zero due the sparsity constraint and with a better
predictive performance as our results indicate.

Acknowledgments. The work reported in this paper was partially funded by
the European Commission through EU projects DropTop (FP6-037739), De-
buglIT (FP7-217139) and e-LICO (FP7-231519).

References

1. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, J., Vapnik, V.: Feature
selection for svms. Advances in Neural Information Processing Systems 13, 668674
(2000)

2. Rakotomamonjy, A.: Variable selection using svim-based criteria. Journal of Ma-
chine Learning Research 3, 1357-1370 (2003)

3. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using suppor vector machine. Machine Learning 46, 389-422 (2002)

4. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1-3), 131-159 (2002)

5. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for
tuning svm hyperparameters. Neurocomputing 51, 41-59 (2002)



328 H. Do, A. Kalousis, and M. Hilario

6. Tibshirani, R.: Regression shrinkage and selection via the lasso. Roal statistics 58,
276-288 (1996)

7. Efron, B., Hastie, T., Tibshirani, R.: Least angle regression. Annals of statistics
(2003)

8. Zou, H.: The adaptive lasso and its oracle properties. Journal of the American
statistical association 101, 1418-1429 (2006)

9. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning theory.
Springer, Heidelberg (2001)

10. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines.
Cambridge University Press, Cambridge (2000)

11. Vapnik, V.: Statistical learning theory. Wiley Interscience, Hoboken (1998)

12. Bach, F., Rakotomamonjy, A., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of
Machine Learning Research (2008)

13. Bonnans, J., Shapiro, A.: Optimization problems with perturbation: A guided tour.
STAM Review 40(2), 202-227 (1998)

14. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a
study on high dimensional spaces. Knowledge and Information Systems 12(1), 95—
116 (2007)

15. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
University Press, Cambridge (2004)

16. Leo Liberti, N.M.: Global OPtimization - From Theory to Implementation.
Springer, Heidelberg (2006)

17. Collobert, R., Weston, J., Bottou, L.: Trading convexity for scalability. In: Pro-
ceedings of the 23th Conference on Machine Learning (2006)

18. Stephen Boyd, L.V. (ed.): Convex optimization. Cambridge University Press, Cam-
bridge (2004)

Appendix

Proof of inequality (4). If K, (x,x’) is the kernel function associated with the
®,,(x) mapping then the computation of the radius in the dual form is given
by [15]:

l
max R2 Zﬂz (xi,%i) _Zﬁi/@jK(xiuxj) (13)
iJ

s.t. Zﬂi:Lﬁi 20

We also introduce the kernels K, and K}, as follows: K, (x;, X;)=(Pp(x;), Ppn (%))
d d .

= (V-D(xi), /uP(x;)) = D iy b (Pr(%3), Pr (%)) = Dopmy (x4, x5), fe.,

K,, is the kernel, inner product, in the weighted feature space, H,,, and Kj(x;,X;)

= (Dk(x;), Pr(x;)), is the trivial kernel, inner product, on the k** dimension, Hj,

of the non-weighted feature space H. Remember that the solution g satisfies:

d
2= e = 1.
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If 5* is the optimal solution of (I3) when K = K,,, and ﬁk is the optimal
solution of (I3) when K = Ky, i.e. :

d l
R = (D B Ki(xi,xi) Z B; B; Ki(xi,%;))
k=1 =1

4,5=1

1 l
R} =" gt Ki(xi,xi) — Y B%,0% Ki(xi,x;)

i=1 ij=1
then

l l
D B Kk(xixi) = Y 070 Ki(xi,x;) <
i=1 ',j:l

l

Zﬁk Kk: waz Z ﬁk ﬁk Kk(X“X])

i=1 3,j=1

Therefore: R}, < ZZ:1 i R:. This still obviously holds true when K is linear
kernel.

Proof of convexity of R-MKL (EqI8). To prove that Bl is convex, it is enough

to show that functions f7 where z € R, u € RT; and M o i where & €
k

R, ux, o € RT, are convex. The former is quadratic-over-linear function which
is convex. The later is convex because its epigraph is a convex set [18].
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