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Abstract. Random Projection (RP) has drawn great interest from the research
of privacy-preserving data mining due to its high efficiency and security. It was
proposed in [27] where the original data set composed of m attributes, is multi-
plied with a mixing matrix of dimensions k& x m (m > k) which is random and
orthogonal on expectation, and then the k series of perturbed data are released for
mining purposes. To our knowledge little work has been done from the view of the
attacker, to reconstruct the original data to get some sensitive information, given
the data perturbed by R’P and some priori knowledge, e.g. the mixing matrix, the
means and variances of the original data. In the case that the attributes of the orig-
inal data are mutually independent and sparse, the reconstruction can be treated
as a problem of Underdetermined Independent Component Analysis (UICA), but
UICA has some permutation and scaling ambiguities. In this paper we propose
a reconstruction framework based on UICA and also some techniques to reduce
the ambiguities. The cases that the attributes of the original data are correlated
and not sparse are also common in data mining. We also propose a reconstruction
method for the typical case of Multivariate Gaussian Distribution, based on the
method of Maximum A Posterior (MAP). Our experiments show that our recon-
structions can achieve high recovery rates, and outperform the reconstructions
based on Principle Component Analysis (PCA).

Keywords: Privacy-preserving Data Mining, Data Perturbation, Data Reconstr-
uction, Underdetermined Independent Component Analysis, Maximum A Poste-
riori, Principle Component Analysis.

1 Introduction

Privacy-preserving Data Mining (PPDM) concerns the problems of completing data
mining tasks without any direct access to the original data sets, because the providers
claim privacy on their data. The general mining tasks include classification, clustering
and association rule mining. PPDM can be treated as a subset within the problems of
Secure Multi-party Computation (SMC) ([19], [20], [26], [40], etc). The cryptographic
techniques from SMC provide solutions which always demand high computation cost,
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especially on processing volumes of data in data mining applications. Alternative ap-
proaches are based on data perturbation techniques which aim to be much more efficient
than techniques of SMC.

Additive data perturbation, i.e. adding random data to the original data, was used
in [3]] to build decision tree classifiers, but in [[17]] and [22] random additive noise was
questioned and pointed out that it can be easily filtered out, and thus lead to compro-
mising of privacy. Multiplicative perturbation was used in [32]] where the original data
of each data provider is multiplied with the same matrix which is random and orthog-
onal before released, while in [28] this kind of perturbation is easily reconstructed by
methods such as Principle Component Analysis (PCA), i.e. recovering the original data
by analyzing the covariance matrix of the perturbed data.

In [27], an improved multiplicative data perturbation was proposed, in which the
original data set X with m attributes is multiplied with a k& x m (m > 2k — 1) matrix
R, each entry of which is an independently and identically distributed (i.i.d.) random
number with the zero means. We name this method Random Projection (R'P) following
[27] to avoid confusions with the method in [32]]. The security claim of RX in RP is
based on the structure of R and the fact that there does not exist a matrix 7" such that
the product T'R is a partition matrix and T'RX is a separation of some attributes of X.
However in the research field of Independent Component Analysis (ICA), the separation
of m series of data X from k (m > k) series of linearly mixed data RX is treated as the
problem of Underdetermined ICA (UICA). Plenty of methods have proposed for UICA
([31]), and most of them are not seeking for the partition matrix T, but the possible
values of X with maximum probability given only R.X, and they have been successful
in the case that the m original sources in X are mutually independent and sparse, except
some permutation and scaling ambiguities.

In [8] and [[L6] reconstructions based on ICA were employed to attack the pertur-
bation method of [32]]. To our knowledge the only work on attacking the RP of [27]
was proposed in [29] or [2] (Chapter 15), which was based on Maximum A Posterior
(MAP). This attack only assumed the original data are uniformly distributed, but in
practice many data properties can be assumed as normally (or approximately normally)
distributed (e.g. personal heights, weights, financial variables), or are sparse enough to
be modeled by the Laplace distribution (e.g. the voice or image data, financial data).
It is not difficult for an attacker to obtain these priori knowledge on the original data,
such as whether they are sparse, or whether they are normally distributed, given enough
samples extracted from the same pool where the original data are extracted. It is also
possible that the attacker may know the mixing matrix R by colluding with one data
provider. Little work has been done to address these considerations.

In this paper, we will propose some attacking techniques on the R’P method of [27]]
under some practical scenarios. We name the recovery of the original data by the at-
tacker who is given the perturbed data as “reconstruction” following [3] and [17]. We
also assume the attacker has a collusion with one of the data providers from which
he can know the mixing matrix in R'P, the attacker has also obtained enough samples
with identical distribution with the original data set, and thus some necessary priori
knowledge on the original data, including whether the data attributes are mutually in-
dependent, whether they are sparse, their means and covariance matrix. Based on these
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assumptions we propose the following reconstruction methods from the view of the
attacker:

1) If the attributes are mutually independent and sparse, we propose Underdetermined
Independent Component Analysis (UICA) based reconstruction for the case that the
attacker knows the mixing matrix, which outperforms the reconstruction based on
PCA.

2) If the attributes are not mutually independent, where the ICA-based reconstruction
will not be effective, we propose Maximum A Posterior (MAP) based Reconstruc-
tion for the case that the attacker knows the mixing matrix, and the original data
following the Multivariate Gaussian Distribution. Our reconstruction outperforms
the reconstruction based on PCA.

The organization of this paper is as following. In Section[2] we briefly review the related
work. In Section [3| we give formal definitions on the problems of Data Perturbation
and Data Reconstruction. In Section [l we talk about how to obtain the necessary priori
knowledge. In Section |3 and Section [6] we propose the ICA-based and MAP-based
Reconstructions respectively. In Section [7] we conduct some experiments to evaluate
our reconstruction methods, and compare them with reconstructions based on PCA.
Section[8 concludes the paper.

2 Related Work

2.1 Data Perturbation

According to the taxonomy of [[1l], two families of approaches, query restriction and
data perturbation, are usually used to provide statistical information (sum, count, av-
erage, etc) without compromising sensitive information about individuals. The query
restriction family includes restricting the size of query result, controlling the overlap
amongst successive queries, suppression of data cells, clustering entities into mutu-
ally exclusive atomic populations, etc. The data perturbation family includes the meth-
ods, loosely speaking, which perturb the original value of the data, X, into a random
value Y.

The perturbation methods employed until now consist of data replacement ([[1], [25]],
[23]), data swapping ([10], [13]), additive value distortion ([3I, [22], [L7]), and mul-
tiplicative value distortion ([32]], [27]]), random perturbation on categorical or boolean
data ([12],[33l], [4]), etc. k-anonymity ([35], [30], [24]) and sensitive rule hiding ([5],
[34]], [39]]) have also been employed in PPDM. Details on these methods can be found
in the given references. In this paper we only focus on the multiplicative value distortion
(or multiplicative data perturbation).

Multiplicative Data Perturbation of [32]. Multiplicative data perturbation was used
in [32]] in which the original data set X = (z1, ..., Z;,)’ is multiplied by a random and
orthogonal matrix R of dimensions m x m, and perturbed into the set U = RX. Given
Uy = RX; and Uz = RXj, obviously Uj - Uy = X} - Xy, i.e. the inner products
X} - X7 are the same as the inner products Uy, - Uy. The distance-related metrics such as



Data Reconstruction in Random Projections 337

Euclidean distance between X; and X2 can be computed based on the inner products
U} - Uy, Uy - Uy, U} - Us, and data mining tasks can continue by these metrics without
knowing the private X; and Xs.

Random Projection of [27]. In [27], a similar R is used in their multiplicative per-
turbation, but is different from [32] in that R is rectangle, which is & x m(m >
2k —1,m > 2) with i.i.d entries from N (0, 02). Two data owners respectively compute

U= \/kla” RX and V = \/kla” RY, and then send them to the miner. Because U’V =

k},% X'R'RY, and E(R'R) = ko2I (by Lemma 5.2 of [27])), then E(U'V) = X'Y.
By this statistical result, the inner product z - y (Vz € X,Vy € Y') can be computed
without knowing X and Y.

The security of this RP method is based on the fact that if R is a rectangle (k x m)
matrix and m > 2k — 1, there does not exist a matrix 7" such that the product TR
becomes a partition matrix which has at most one nonzero element in each column, and
separates any single independent signal in T'RX. Details on the partition matrix and
signal separation can be referred to [7].

2.2 Reconstructions on Multiplicative Data Perturbation

Without the transformation matrix R, the recovery of X from U is infeasible given only
the linear system RX = U. Ifin the k X m matrix R k < m, given Rand RX = U, X
can not also be determined from solving the linear system. However, the solutions can
be sought from clues in some priori knowledge on X.

Reconstruction on the Perturbation of [32]. According to [28], if some input-output
pairs “(x;,u;)” (e. x; € X, u; € U, and u; = Rux;), or some samples z; € X,
are known apriori by an attacker, he may approximately recover X. Given some input-
output pairs, the attacker can uniformly select an R to meet some criterion function, but
this kind of attack can be prevented by deleting these pairs from the data owners, or
de-identifying the output set U by randomly mixing the records (us, ..., u;, ...), before
they are released for mining.

Another reconstruction of [2§]] is based on PCA, and does not requires the input-
output pairs, but some general samples from the same pool where X is originated. By
analyzing these samples, the attacker can estimate the covariance matrix of X, i.e. X'x.
By analyzing the covariance matrix of the perturbation U, i.e. X, the attacker can ob-
tain the information on R since Xy = RXx R’. Specifically, suppose the eigenvalue
decompositions of X'x and Xy are Q x ExQ’y and Qu EyQ7;, then the diagonal ma-
trices Ex = Ey, and the orthogonal matrices Qu = RQx. When R is know in this
way, the attacker can then have an estimate on X .

This attack based on PCA will not be effective on reconstructing the RP perturbation
of [27], since in this method R is rectangle (k < m), Xy is very similar as a diagonal
matrix as proved by [[L1]], and it may be difficult to make an eigenvalue decomposition
on Yy. What’s more, given Yy and Y, it is difficult to obtain the information on the
rectangle R from Xy = RYx R'.
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Attacks based on ICA were proposed in [2] (Chapter 15), [8] and [16], under various
assumptions on the attacker’s priori knowledge. They assumed an m X m mixing matrix
R, thus were not suitable to attack the RP in [27].

Underdetermined Independent Component Analysis (UICA). Underdetermined (or
overcomplete) independent component analysis (or blind source separation) has been
under years of research in the field of signal processing, which addresses the problem
that, X composed of m sources is linearly mixed by a k¥ x m matrix R, and given
only the mixed data RX, without knowing R, the sources are required to be separated
out. A survey on the research can be referred to [31]]. The methods of UICA have been
mostly successful in the case that the m sources are mutually independent and sparse.
They generally require two steps: 1) recovering the mixing matrix R, and 2) given R,
recovering the sources. For Step 1) a lot of improvement work have been continuously
done (e.g. [6], [24], [37] and [41]). For Step 2) L;-norm minimization is the standard
method that has been widely used.

L;-norm minimization comes from the general approach of Maximum A Posterior
(MAP). Considering v = Rx and neglecting any additional noise, the probability of
observing a vector x given R and a vector u is p(x| R, u), and by Bayes Theorem

p(u|R, z)p(x)
p(u)

By MAP z will be the vector in the Euclidean space of R" that maximize the above
equation. In the searching of this vector, p(u) is a constant, p(u|R, z) can be viewed
as a constraint Rx = w, a sparse source z; (i = 1,...,m) can be modeled by the
Laplace distribution, i.e. p(z;) o< e~ 1%l (assuming they have zero means and identical
variances). Then x will be the solution of the following constrained linear programming
problem:

p(z|R,u) =

@ = arg max p(z)

= arg max e~ ltl= = lwm]

Rx=u (1)

m
= arg Igﬁlgluzl ||
i

InEq. (@) >°;", |z;] is the Ly-norm of the vector x = (1, ..., Z,, ), therefore x will be
the solution of the constrained L;-norm minimization problem. There have been many
methods to solve this problem and a survey of them can be referred to [9].

When the methods of UICA are used for reconstructions on the R/P-perturbed data,
there is no additional noise NV such as U = RS + N and no need to reduce NN, but they
still have the following limitations:

1) When R is not known, these methods have permutation and scaling ambiguities.
For each estimate of R, e.g. R, there is infinite equivalent matrices R = RPL in
which P is a permutation matrix of dimensions m x m, L is a nonsingular diagonal
matrix of dimensions m x m (scaling matrix), and R is also an estimate of R. Thus
the recovering of X will also have permutation and scaling ambiguities.
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2) When R is known, there is no permutation ambiguity (the detailed reason is post-
poned to Section [3)), but the means and variances of x; should not be neglected in
the constrained L;-norm minimization of Eq. (@, since in practical scenarios their
means may not be zero, and their variances may be not identical.

3) These methods generally require the original sources are mutually independent and
sparse. In many scenarios of data mining, the attributes of the original data are
correlated and not sparse. One typical model of these data is the Gaussian Mixture
Model (GMM).

2.3 Disclosure Risk of the Distances

The risks of disclosing the mutual distances between data objects were investigated
in [38]. They proposed two reconstruction methods based on the mutual distances of
the data objects. The first one needs some known samples in their original forms and
perturbed forms, so this method will not be effective when all perturbed data objects
are mixed arbitrarily and de-identified before released, and an attacker can not find the
corresponding perturbed data of the known samples. The second one needs no known
sample, but makes a PCA on the perturbed data. However, this PCA will not be effective
on analyzing the data perturbed by the method of [27], because R is rectangle, the
covariance matrix of U = RX is very similar as a diagonal matrix by [[L1], and it will
be difficult to make a desired eigenvalue decomposition of the covariance matrix.

3 Problem Statement

3.1 Database Model

For convenience we consider a two-party case in which Alice and Bob share a distrib-
uted database. The reconstructions under the cases of more than two parties are similar
as the two-party case, since in all the cases the parties use the same mixing matrix R
for R'P. Suppose Alice and Bob have the data set X and Y respectively. Suppose the
database has m attributes. If the database is horizontally distributed on the two parties,
Alice has 1 records, Bob has ns records, then X is an m x nq matrix [[z; ;]72,]71,,
Y isanm x ny matrix [[y; ;];2, |72,

If the database is vertically distributed and the database has n records, Alice has m
attributes, Bob has my attributes, then X is an n x my matrix [[z;;]7_;];, Y is an
n X mg matrix [[y;,:]7_;];% . In this paper we only focus on the horizontally distributed
database. In the RP of [27] the vertically distributed databases are perturbed as similar
as the horizontally distributed databases are perturbed, so our proposed reconstruction
methods can be easily extended to the vertical cases.

3.2 Network Model

We consider two kinds of network models in this paper:

1) Centralized model: There is an independent miner who receives perturbed data
from the data owners Alice and Bob (as in Fig. [[(a)). Scenarios are some com-
panies under the investigation of a governmental organization. The companies are
data providers, and the governmental organization wants to mine their private data.
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2) Distributed model: There is no independent miner. All the data owners, Alice and
Bob, act as miners on the perturbed data of their own and those received from the
other party (as in Fig. [I(b)). Scenarios are some companies which want to share
their data with each other to complete the data mining tasks. Each company is
simultaneously a data provider and miner.

u \%
U
‘Alicezx ‘ ‘ Bob: Y ‘ ‘Allcezx m Bob: Y ‘
(a) Centralized Model (b) Distributed Model

Fig. 1. Two Network Models for PPDM

3.3 Adversary Model

Adversary models have been theoretically defined in SMC ([[14]), and also extensively
used in PPDM. Depending on whether the participants merely gather information, or
take active steps to disrupt the execution of the protocol, there are usually two types of
adversaries:

1) Semi-honest participants, which are assumed to execute the solution exactly as what
is prescribed, but may collude and analyze all the intermediate computations.

2) Malicious participants, which may arbitrarily deviate from the specified solution,
e.g. generate arbitrary inputs, substitute the intermediate computations, or pre-
maturely quit.

3.4 Problem Definition

Definition 1 - Privacy-preserving Data Mining based on Data Perturbation: A
database is distributed on two parties, Alice and Bob. The two providers respectively
perturb their data matrices X and'Y into U and V, and publish U,V to the miner. The
miner may be an independent party, or replaced by Alice and Bob. All of them may be
semi-honest or malicious. Privacy-preserving data ming on the miner should satisfy the
following two requirements:

1) Privacy Requirement: No sensitive information on X and Y should be inferred
from U and V by the miner.

2) Accuracy Requirement: The mining tasks including classification, clustering, etc,
onU and V', should have statistically the same results as directly mining X andY .

It is worthy to note that in Definition 1 we do not specify the method of perturbing
X and Y into U and V. Different perturbation methods possess different properties
on privacy and accuracy, so the definition is made inclusive so as to cover as many
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perturbation methods as possible. In addition, to achieve the accuracy requirement, an
accurate computation on the inner product of two vectors, such as z'y(Vx € X,Vy €
Y'), is enough. Distance-related metrics like Euclidean distance, required in both the
horizontally and vertically partitioned data mining, can be computed based on those
inner products, the details of which can be referred to [27].

Definition 2 - Data Reconstruction: An attacker obtains the perturbed data U and
V' from the data providers Alice and Bob. He wants to recover as many as possible
the entries of X and Y. The attacker and any of the providers may be semi-honest or
malicious.

In the centralized model, if the miner and any of the providers are semi-honest, they
may collude to reconstruct the data of the other providers. If the miner is malicious, he
may not communicate the correct data mining results with the data providers.

In the distributed model, if one of the provider is semi-honest, he may reconstruct
the data of another provider using R. If he is malicious, he may arbitrarily substitute
his original data and publish them to another provider. Malicious attackers are not the
focus of this paper.

Figure shows the two mutually inverse processes, data perturbation and
reconstruction.

X —> Perturbation —>U U —>Reconstructionf— X

(a) Data Perturbation by the owner Alice (b) Data Reconstruction by an adversarial miner

Fig. 2. Data Perturbation and Reconstruction for PPDM

Definition 3 - Recovery Rate: Suppose X is a reconstruction of the original data X,
X = [[#;]72]72,, and X = [[z; j]721]L,. The Recovery Rate, 7(X, €) with a given
threshold ¢, is the percentage of reconstructed entries whose relative errors are within
€ i.e.
#{‘%i,j : |w”T?w” ‘ < E,i = ]., ...,m,j = ]., ...,nl}
r(X, ) = 2
m xny

We will use the recovery rate in this definition to evaluate the performance of our re-
construction methods.

4 Obtaining the Priori Knowledge

In this section we discuss how the attacker can obtain the necessary priori knowl-
edge on the original data, including their mean values, covariance matrix, whether
they are mutually independent, under the condition that he has got enough samples,
i.e. m-dimension vectors like v = (v1,...,v,,), which are identically and indepen-
dently selected from the multivariate distribution of the original data X, i.e. p(X) =

D(T1y ey Tin).
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Given enough samples, the attacker can compute the sample means X = (1, ..., )
in which z; is an estimate of x;’s mean u;, and he can also compute the sample covari-
ance matrix Xx = [[cov(w;,x;)]72]7L, in which cov(z;, ;) is an estimate of the
covariance E[(z; — u;)(x; — uj)]

When the estimated covariance matrix is diagonal, z1, ..., x,, are uncorrelated with
each other. Uncorrelation is only a necessary condition of independence. In order to
know the independence, the attacker should do a further test of mutual independence of
the m attributes (1, ..., Z,, ). One test method is to compute the mutual information I
among the m attributes, i.e. I (1, ...,%m) = Y ivy H(x;) — H(21, ..., Tm), in which
H (xz;) is the entropy of the i-th attribute x;, H(x1, ..., Z,,) is the joint entropy of the
m attributes. I is zero if and only if the m attributes are statistically independent. There
are also characteristic function-based and kernel-density based methods, which can be
referred to [[15]] and [21]].

When the attributes are mutually independent, the attacker can use statistical test,
e.g. Kolmogorov-Smirnov Test, to check whether the values are following the Laplace
distribution (i.e. sparse enough). When the attributes are not mutually independent, the
attacker can employ some multivariate statistical test, e.g. the method of [36], to check
whether the attributes are following the Multivariate Gaussian Distributions. As we
discuss in Section[2.2] practically the original data may be in a Gaussian Mixture Model
in which there are multiple clusters, but the attacker can easily identify some clusters
given the perturbed data, and target his attacks on the original data belonging to these
clusters.

In the later sections we assume the attacker has obtain all the necessary priori knowl-
edge about whether the m attributes are sparse, whether they are in the Multivariate
Gaussian Distribution, the means and covariance matrix. The reconstructions made by
the attacker are summarized in Table [Tl

Table 1. Types of Reconstructions

Priori Knowledge Reconstruction
I(z1,...,2m) = 0 & p(x;) = Laplace(ui, 0;) UICA-based
I(z1,....,2m) > 0& p(X) = N(u, X) MAP-based

5 UICA-Based Reconstruction

As we have discussed in Section[2.2] UICA has permutation and scaling ambiguities in
recovering X . However, in R'P of [27], the data owner can not arbitrarily permute the
rows in R and the resulting U = RX, before U is released, otherwise suppose P; and
P, are two different permutation matrices of Alice and Bob respectively, i = P RX,
VY = P, RY, then V'U will not equal Y’ X on expectations. Therefore, when an attacker
knows R and U, he will not have permutation ambiguity in the reconstruction of X.
The attacker still needs to reduce the scaling ambiguity with the priori knowledge on
the mean p; and variance 02-2 of the i-th attribute x;. In our reconstruction, we will use
the same optimization function as Eq. (1)), which assumes all x; have zero means and
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identical variances. In order to do this, we firstly remove the means of all z; before the
use of Eq. (1), and afterwards add them again. We also change R to RL in which L is
a scaling matrix whose diagonal entries are the variances, thus we can use Eq. (I) to
obtain solutions with identical variances, and afterwards the solutions will be multiplied
with the corresponding variances.

Specifically our UICA-based reconstruction includes the following steps:

1) Remove the means: Let ji,, is the sample mean of u;, the i-th row of U (i =
Lo K)o g = (B ooos fug )= © = (1,0, 1), then U = U — py 6.
2) Change R to R: R = RL, in which

o1 0..0
I — 0 g9 ... 0
0 0 ...om

3) Lji-norm Minimization: By the optimization function in Eq. (I, substitute R into
R, and each column of U into u, search for the solution x of the function. Let
X be an m x n1 matrix, each column of it is the solution vector of the function
corresponding to each column of U.

4) Reduce the scaling ambiguity: Let i = (pu1, ..., fbm) in which g (i = 1,...,m) is
the sample mean of z;, then the reconstruction is X=LX+ no.

6 MAP-Based Reconstruction

The UICA-based reconstruction is effective when the original data x4, ..., z,, are mu-
tually independent and non-Gaussian. For the case that the m attributes are following
the Multivariate Gaussian Distribution, we use the method of Maximum A Posterior
(MAP) to estimate them. The basic idea of our MAP is similar as the constrained linear
programming problem in Section[2.2] but the probability density function of the origi-
nal data are different, and thus our MAP becomes a constrained quadratic programming
problem.

6.1 Priori Knowledge

As same as UICA-based reconstruction, MAP method also requires sufficient
samples from the multivariate distribution p(z1, ..., T, ), from which the means y =
(41, -+, ptm ), and the covariance matrix (i.e. X'x) of X, can be successfully estimated.
By the definition of Multivariate Gaussian Distribution, X'y is positive definite, i.e. its
eigenvalues are all positive.

6.2 Reconstruction under Collusion

Given u = (uy, ..., uy)" which is one column of U, the attacker can search a vector
% = (X1, ...,%Xmm) in R™ to maximize the posterior probability p(X|u). Since p(X|u) =
p(Xx)p(u|%)/p(u), and under collusion the attacker will know R, then
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p(®) R% =
p(iju) = { row S EX=1 3)
0, if RX # u,

p(u) can be treated as a constant in the search of X, then the maximization of p(x|u) is
equivalent to the following constrained optimization problem:

MAX; p(x), Subject to Rx = u @)
We assume X ~ N (u, Yx), i.e. given a vector X = (X1, ..., Xm)' € X,

1
2m)m/2| X x |1/2

e 3 (x—p) S (x—p)

p(x) = (

Since the exponential function is a monotone one-to-one function, the problem in Eq.
(@) is equivalent to the following Quadratic Programming (QP) problem:

1
MIN; f(%) = ) (% — p)' 2% — p), Subject to Rk = u &)

We have assumed the X'y is positive definite, so is E;(l, then f(X) is convex and has
the unique global minimizer, which can be computed by the gradient of the Lagrange
function:

LG, A) = ) (5~ 1) 5 (% - ) + A (R% — ) ©)

in which A = (A1, ..., \)’, \; (@ = 1, ..., k) are Lagrange multipliers.
By Eq. (6,

oL

g = (S on) = Iy (& =) + RA=0, (7a)
oL )
o4 = (e 3h) = Rk —u=0 (7b)

The m + k equations in Eq. (@) can be treated as a linear system with m + k variables
(Ah cry >\k7 )A(la ) )A(m)

RA+ I % =2, (8a)
0-A+Rx=u (8b)

Let ©1,02 be m x k and k x k zero matrices, I be an m x m identity matrix, then by
solving the above linear system,

—1 / -1
%= (61,1) (ﬁ) = (e 1) 2 (Zﬁ “)7 0= @2 x ) ©)

Lemma 1. (2 in Eq. (9) is nonsingular with high probability.
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Proof. By the Leibniz formula,
det(2) = det(X5") det(@2 — REXR') = (—1)* det(Z ") det(RYx R').

RY xR’ = X, which is the covariance matrix of U = RX.

By [[L1], when x is fixed, R is a kK X m matrix each entry of which is an i.i.d
random number, then u = Rx is approximately Gaussian, following the distribution
N (R, ||x||?I)) in which Iy is a k x k identity matrix. Therefore Xy ~ ||x||*I,
which means when x is not a zero vector, Xy will be nonsingular with high probability.
Since det(X5") # 0, then det(£2) # 0, i.e. 2 is nonsingular. When X is singular, it
is most possible that x is a zero vector. a

In sum, the MAP-based reconstruction includes the following steps:

1) estimate X'x and p by enough samples from the same distribution as X;
2) compute x; by Eq. @) foreach columnu; of U,i = 1,...,n;.Let O3 = (1,..., 1),
the reconstructed X = (X1, ..., Xp, ) can be written as:

; RSN\ (T _
X = (61,1) (92 7 ) (U> , =25 160s. (10)

7 Experiments and Comparisons

7.1 Reconstruction Based on Principle Component Analysis

As we sum in Section [2.2] the PCA-based attack of [28] is not suitable for the RP of
[27], and to our knowledge, there is no PCA-based attack proposed for the RP. For
comparison purposes, we use the pre-whitening phase of ICA ([18]) as a PCA-based
attack, which includes the following steps:

1) The attacker removes the mean of each row u; (i = 1, ..., k) of U.

2) The attacker computes the covariance matrix of U = RX as Xy = E(UU’), and
makes an eigenvalue decomposition of it. Let Xy = QDQ’, in which Q is an
orthogonal matrix, D is a diagonal matrix each entry of which is an eigenvalue of
.

3) The attacker computes X = QD~1/2Q'U, in which D~1/2 is a diagonal matrix
each diagonal entry of which is the inverse of the square root of the corresponding
entry of D. Let A = QD~'/2Q’, then

Yy =AXpA = (@QD*Q)@QDQ)QDTQ) = 1.

4) Suppose ; is the j-th row of X. Fori = 1,...,m,and j = 1,..., k the attacker
computes:

T = 045 + i, (1
and makes a statistical test G (&, p(z;)) in which p(z;) is the p.d.f of z;, e.g. using
the Two-sample K-S Test. If G outputs 1, £; has a similar distribution to z;, and
the attacker treats £; as an estimate of x;.
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In this method, X ; is an identity matrix, so the k rows of X will be uncorrelated.
This reconstruction can be an approximate recovery when the m attributes of the origi-
nal data are mutually independent, or they are not mutually independent and not having
high correlations.

One major limitation of this method is that it can only recover & components, so it
is essential for the attacker to use the priori knowledge to reduce the permutation and
scaling ambiguities, as in Step 4). Another limitation is that Xy may be diagonal by
[[L1], then in Step 2) @ will be an identity matrix, and in Step 3) the reconstruction
result X is simply D~'/2U, i.e. some scaling of U.

7.2 Experiments and Comparisons for UICA-Based Reconstruction

We use the Laplace distribution to simulate 3 series of independent and sparse data, as
the original data X. We generate a random R with dimensions 2 x 3 following the RP
method of [27]. The means of X are (0.3,0.5,0.8), the variances of X are changed to
get different recovery rates measured by Definition 3 in Section[3.4] ¢ for the recovery
rates are set to be 0.2. To search the solutions of the L;-norm minimization problems,
we use the fmincon function in the Optimization Toolbox of MATLAB.

In Fig. the x-axis is the variance o7 of the first row x; of X, we make o9 =
0.801, 03 = 0.3071. From Fig. our reconstruction based on UICA achieves higher
recovery rates than PCA.

3 series of financial data from the UCI Machine Learning Repository, including At-
tribute 1 of the Japanese Credit Screening Data Set, Attribute 1 of the Australian Credit
Approval Data Set, Attribute 5 of the German Credit Data Set, are used as the orig-
inal data, and perturbed by a random 2 x 3 matrix. They are treated as sparse data
since they have high kurtosis (subtract 3), respectively 11.1, 1.17, 3.84. With different €
Fig. B(b)|shows the recovery rates of UICA-based and PCA-based reconstructions, and
in comparison our UICA-based reconstruction performs much better than PCA.

* - PCA o

0.9% &— UICA osl [ % PcA J
\ o— UICA A2
08[ S & L o

Recovery Rate
o o o
&

"

/
Recovery Rate

=
¥

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Synthetic data experiments (b) Real data experiments

Fig. 3. Experiments on UICA-based and PCA-based Reconstructions
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7.3 Experiments and Comparisons for MAP-Based Reconstruction

For the synthetic data experiments we assume m = 10, u; = 0.1 ¢ fort =1,...,10. It
is a non-trivial problem to generate X'x for the experiments which require variations on
the structure of the covariance matrices. We use ' x = AA’ in which A is 10x 10 matrix
with i.i.d entries uniformly sampled from [0, b], and b is changed (from 0.1 to 1) to get
different X'x. We use the mwvnrnd function in MATLAB to generate X composed of
10 synthetic data attributes. R is a 4 x 10 matrix each entry of which follows N (0, 1).
Fig. gives the recovery rates of our MAP-based reconstruction with different b,
in comparisons with the recovery rates of PCA (¢ = 0.2). The figure shows that our
method achieves higher recovery rates than PCA.

It is difficult to find real data strictly following the Multivariate Gaussian Distribu-
tion. We take the Attribute 2 (“Duration in month”), 13 (“Age in years”), 16 (“Number
of existing credits at this bank™) of the German Credit Data Set from the UCI Machine
Learning Repository. They have 1 = (20.9,35.5,1.4), ¥'x = (145.4, —4.96, —0.08;
—4.96,129.4,0.98; —0.08,0.98,0.33). They are perturbed by a 2 x 3 random R. Fig.
(D) shows the recovery rates with different €, and our MAP-based reconstruction per-
forms much better than PCA.

o. T T T T T 1 T T T T e
% PCA 7
o,g‘f\ ©— MAP 0.9 o
o7k ——a 0.8 / % PCA
\// /}\\\{ ol ©— MAP
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b .
(a) Synthetic data experiments (b) Real data experiments

Fig. 4. Experiments on MAP-based and PCA-based Reconstructions

8 Conclusions

In this paper we propose two types of methods to reconstruct the original data from
the data perturbed by Random Projection in [27]]. Our reconstructions consider the case
that the original data are mutually independent and sparse, and the case that the original
data are not mutually independent and not sparse. Experiments show that our methods
outperform the reconstructions based on PCA, and achieve higher recovery rates on the
perturbed data. In the future work we will consider more reconstruction methods when
R is not known, towards an improved perturbation method which is secure under these
reconstructions.



348

Y. Sang, H. Shen, and H. Tian

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Adam, N., Worthmann, J.: Security-control methods for statistical databases: a comparative

study. ACM Computing Surveys 21(4), 515-556 (1989)

. Aggarwal, C., Yu, P.S. (eds.): Privacy-Preserving Data Mining: Models and Algorithms.

Springer, Heidelberg (2008)

. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the 2000 ACM SIG-

MOD Conference on Management of Data, pp. 439-450. ACM, New York (2000)

. Agrawal, S., Haritsa, J.R.: A Framework for High-Accuracy Privacy-Preserving Mining. In:

Proc. 21st Int’l Conf. Data Eng. (ICDE 2005), pp. 193-204 (2005)

. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure Limita-

tion of Sensitive Rules. In: Proc. of IEEE Knowledge and Data Engineering Workshop,
pp. C45-C52 (1999)

. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representa-

tions. Signal Processing 81(11), 2353-2362 (2001)

. Cao, X., Liu, R.: General Approach to Blind Source Separation. IEEE Transactions on Signal

Processing 44(3), 562-571 (1996)

. Chen, K., Sun, G., Liu, L.: Towards Attack-resilient Geometric Data Perturbation.

In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM 2007),
Minneapolis, MN (April 2007)

. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic Decomposition by Basis Pursuit. SIAM

Review 43(1), 129-159 (2001)

Dalenius, T., Reiss, S.P.: Data-swapping: A Technique for Disclosure Control. Journal of
Statistical Planning and Inference 6, 73-85 (1982)

Dasgupta, S., Hsu, D., Verma, N.: A Concentration Theorem for Projections. In: Proc. the
22nd Conference in Uncertainty in Artificial Intelligence, pp. 1-17. AUAI Press (2006)
Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data
mining. In: Proc. 22nd ACM Symposium on Principles of Database Systems (PODS 2003),
pp- 211-222 (2003)

Fienberg, S.E., Mclntyre, J.: Data Swapping: Variations on a Theme by Dalenius and Reiss.
In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 14-29. Springer,
Heidelberg (2004)

Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge Univer-
sity Press, Cambridge (2004)

Gretton, A., Fukumizu, K., Teo, C., Song, L., Scholkopf, B., Smola, A.: A Kernel Statistical
Test of Independence. In: Proc. Advances in Neural Information Processing Systems (NIPS
2007), pp- 585-592. MIT Press, Cambridge (2007)

Guo, S., Wu, X.: Deriving private information from arbitrarily projected data. In: Zhou, Z.-
H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 84-95. Springer,
Heidelberg (2007)

Huang, Z., Du, W., Chen, B.: Deriving Private Information from Randomized Data. In: SIG-
MOD 2005, pp. 37-48. ACM, New York (2005)

Hyvirinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications.
Neural Networks 13, 411-430 (2000)

Jha, S., Kruger, L., McDaniel, P.: Privacy Preserving Clustering. In: de di Vimercati,
S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397-417.
Springer, Heidelberg (2005)

Kantarcioglu, M., Clifton, C.: Privacy-Preserving Distributed Mining of Association Rules
on Horizontally Partitioned Data. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1026-1037 (2004)



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Data Reconstruction in Random Projections 349

Kankainen, A., Ushakov, N.: A consistent modification of a test for independence based on
the empirical characteristic function. Journal of Mathematical Sciences, 1-10 (1998)
Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of
random data perturbation techniques. In: Proc. 3rd IEEE International Conference on Data
Mining (ICDM 2003), p. 99 (2003)

Lefons, E., Silvestri, A., Tangorra, F.: An analytic approach to statistical databases. In: Pro-
ceedings of the 9th VLDB Conference (1983)

Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and 1-
diversity. In: Proc. ICDE 2007, pp. 106-115 (2007)

Liew, C.K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution. ACM Trans-
actions on Database Systems 10(3), 395411 (1985)

Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 36-54. Springer, Heidelberg (2000)

Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation
for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data
Engineering 18(1), 92-106 (2006)

Liu, K., Giannella, C., Kargupta, H.: An Attacker’s View of Distance Preserving Maps for
Privacy Preserving Data Mining. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.)
PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297-308. Springer, Heidelberg (2006)

Liu, K.: Multiplicative Data Perturbation for Privacy Preserving Data Mining., PhD thesis,
University of Maryland, Baltimore County, Baltimore, MD (January 2007)
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: 1-Diversity: Privacy
Beyond k-Anonymity. In: Proc. of ICDE 2006, p. 24 (2006)

O’Grady, P.D., Pearlmutter, B.A., Rickard, S.T.: Survey of Sparse and Non-Sparse Meth-
ods in Source Separation. International Journal of Imaging Systems and Technology 15(1),
18-33 (2005)

Oliveira, S.R.M., Zaiane, O.R.: A privacy-preserving clustering approach toward secure and
effective data analysis for business collaboration. Computers & Security 26(1), 81-93 (2007)
Rizvi, S., Haritsa, J.: Maintaining Data Privacy in Association Rule Mining. In: Proc. of 28th
Intl. Conf. on Very Large Databases (VLDB) (August 2002)

Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of association
rules. ACM SIGMOD Record 30(4), 45-54 (2001)

Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-based Systems 10(5), 557-570 (2002)

Szekely, G.J., Rizzo, M.L.: Testing for Equal Distributions in High Dimension, InterStat,
November (5)

Theis, FJ., Lang, E.-W., Puntonet, C.G.: A Geometric Algorithm for Overcomplete Linear
ICA. Neurocomputing 56, 381-398 (2004)

Turgay, E.O., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Disclosure Risks of Distance
Preserving Data Transformations. In: Ludéscher, B., Mamoulis, N. (eds.) SSDBM 2008.
LNCS, vol. 5069, pp. 79-94. Springer, Heidelberg (2008)

Verykios, V., Elmagarmid, A., Elisa, B., Elena, D., Saygin, Y., Dasseni, E.: Association Rule
Hiding. IEEE Transactions on Knowledge and Data Engineering 16(4), 434447 (2004)
Yang, Z., Zhong, S., Wright, R.N.: Privacy-Preserving Classification of Customer Data with-
out Loss of Accuracy. In: Proc. of the 2005 SIAM International Conference on Data Mining,
SDM (2005)

Zibulevsky, M., Pearlmutter, B.A.: Blind Source Separation by Sparse Decomposition in a
Signal Dictionary. Neural Computation 13(4), 863-882 (2001)



	Reconstructing Data Perturbed by Random Projections When the Mixing Matrix Is Known
	Introduction
	Related Work
	Data Perturbation
	Reconstructions on Multiplicative Data Perturbation
	Disclosure Risk of the Distances

	Problem Statement
	Database Model
	Network Model
	Adversary Model
	Problem Definition

	Obtaining the Priori Knowledge
	UICA-Based Reconstruction
	MAP-Based Reconstruction
	Priori Knowledge
	Reconstruction under Collusion

	Experiments and Comparisons
	Reconstruction Based on Principle Component Analysis
	Experiments and Comparisons for UICA-Based Reconstruction
	Experiments and Comparisons for MAP-Based Reconstruction

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




