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Abstract. Partially ordered feature sets appear naturally in many clas-
sification settings with structured input instances, for example, when
the data instances are graphs and a feature tests whether a specific sub-
structure occurs in the instance. Since such features are partially ordered
according to an “is substructure of” relation, the information in those
datasets is stored in an intrinsically redundant form. We investigate how
this redundancy affects the capacity control behavior of linear classifi-
cation methods. From a theoretical perspective, it can be shown that
the capacity of this hypothesis class does not decrease for worst case
distributions. However, if the data generating distribution assigns lower
probabilities to instances in the lower levels of the hierarchy induced by
the partial order, the capacity of the hypothesis class can be bounded
by a smaller term. For itemset, subsequence and subtree features in par-
ticular, the capacity is finite even when an infinite number of features
is present. We validate these results empirically on three graph datasets
and show that the limited capacity of linear classifiers on such data makes
underfitting rather than overfitting the more prominent capacity control
problem. To avoid underfitting, we propose using more general substruc-
ture classes with “elastic edges” and we demonstrate how such broad
feature classes can be used with large datasets.

Keywords: capacity control, partially ordered features, graph mining,
QSAR.

1 Introduction

In this paper we investigate classification with feature sets that are partially
ordered. Such feature sets often appear naturally in learning settings with struc-
tured input objects. For instance, consider the task of learning whether or not
a particular chemical compound inhibits tumor growth [3,8,2,10]. A popular ap-
proach to this setting is to represent the compounds by molecular graphs and
to generate Boolean features that test for the occurrence of certain substruc-
tures (e.g. subgraphs) in the molecular graph. In this setting each compound
can be represented by a bit vector, where each bit indicates whether or not
the corresponding subgraph appears in the compound’s molecular graph. Such
a representation can then be used with traditional linear classifiers such as the
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ones output by support vector machines. The difference to most other classifi-
cation settings, of course, is that the space of subgraphs is partially ordered via
the “is subgraph of” relation. Consider, for instance, a data instance where the
feature representing an aromatic ring is set to true. This means that all features
that represent linear sequences of up to six carbon atoms connected with aro-
matic bonds must also be set to true. Consequently, the information provided
by partially ordered feature sets is redundant by design.

The main question dealt with in this paper is how this redundancy affects
the empirical risk minimization and capacity control behavior of a learning al-
gorithm. In the first part of the paper we address these questions from a theo-
retical point of view. We show that the capacity of the class of linear classifiers
(as measured by the VC-dimension) does not change, even when the features
in the training data are totally ordered. However, if the underlying data distri-
bution puts lower probabilities on data instances that are ordered in the later
levels of the hierarchy induced by the partial order, one can find smaller upper
bounds for the capacity of the class of linear classifiers. We show that distri-
butions where the probability of observing an instance declines exponentially
with the instance’s level in the hierarchy can lead to settings, where the class of
linear classifiers has finite capacity even in the presence of an infinite amount of
features.

On the practical side we validate the theoretical results empirically on three
datasets from quantitative structure-activity relationships. We show that adding
more features does indeed not lead to overfitting for subsequence, subtree and
subgraph features. Instead, we show that extending the feature set with more
expressive substructures can improve predictive accuracy. This indicates that
underfitting rather than overfitting is the prominent problem on datasets with
partially ordered features. Finally, we investigate how an expressive and therefore
large substructure feature class can be efficiently applied on large datasets.

2 Background

Before we can delve into the details, we need to introduce the used concepts
and definitions. We assume an instance space X of possible objects and a binary
output space Y := {−1, 1}. We are given a set F = {f0, . . . , fm} of m + 1
substructure features, which are ordered by a (possibly partial) “is substructure
of” relation R ⊂ F × F so that (fi, fj) ∈ R whenever fi is a substructure
of fj. We write fi(x) = 1 or fi(x) = 0 to express that the substructure for
feature fi is contained (fi(x) = 1) or not contained (fi(x) = 0) in object x. We
also assume that the first feature f0 represents the empty substructure, so that
f0(x) = 1 for all x ∈ X . With this, each object x ∈ X can be represented by
a m + 1-dimensional binary vector x ∈ {0, 1}m+1. In the following, we will not
distinguish between x as an object and x as a bit vector if the meaning is clear
from the context. We write fi � fj to denote that (fi, fj) ∈ R. Naturally, the
“is substructure of” relation R is transitive so that fi � fk whenever there is a
fj with fi � fj and fj � fk. Also, whenever a substructure feature fi is more
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general than a feature fj (i.e. fi � fj), all objects x ∈ X with fj(x) = 1 also
have fi(x) = 1. The relation R limits the number of bit vectors that can be used
to represent the examples in X . We denote the space of possible bit vectors by
XR := {x ∈ {0, 1}m+1|∀(f, f ′) ∈ R : f ′(x) = 1 → f(x) = 1}.

We follow the usual learning setting, where a data set (X, Y ) ∈ (XR × Y)n

of n instances (x1, y1), . . . , (xn, yn) is drawn i.i.d. from a fixed but unknown
distribution P . The task of the learning system is to find a linear classifier
w ∈ R

m+1, which minimizes the true error εw := E(x,y)∼P l(wT x, y), where
the loss l(y, y′) → R assigns some loss to each misclassification. Since P is un-
known, a classifier’s true error is unknown and practical learning algorithms deal
with the empirical error ε̂w = 1

n

∑n
i=1 l(wT xi, yi) as a computable substitute.

Since the first feature f0 represents the empty substructure and is always set to
1, the first component w0 of the linear classifier is essentially a bias term, which
controls the distance of the hyperplane induced by w to the origin.

3 Ordered Feature Sets

We are now in the position to formulate the main theoretical results. We first
show that the capacity of the class of linear classifiers is the same as the capacity
in the unrestricted case without a partial order. Thus, the introduction of a
partial order on the features does not increase or decrease the capacity of linear
classifiers for worst case distributions. In the second part we give upper bounds
of the capacity for distributions where the probability of observing an instance
declines with its level in the hierarchy induced by the partial order. We also show
that an exponential decay in this probability can lead to linear classifiers having
finite capacity, even though the number of features is infinite. This is the case
for instance for subsequence and subtree features, but not for subgraph features.

3.1 Distribution-Independent Capacity

One of the main contributions of computational learning theory deals with es-
timates for the capacity of hypothesis classes. In the general case (i.e. without
partially ordered features), it is well known that the hypothesis space of linear
classifiers of size m has VC dimension m (see e.g. corollary 13.1 in [4]), giving
rise to bounds of the form

Pr

⎡

⎣εw ≤ ε̂w + O

⎛

⎝

√

m + ln 1
δ

n

⎞

⎠

⎤

⎦ ≥ 1 − δ.

Thus, the “overfitting penalty” introduced by a hypothesis space of linear clas-
sifiers scales as O(

√
m/n) in the number of features. These bounds are tight

up to the order of magnitude, that is, there are also lower bounds that scale
with O(

√
m/n). Let us now consider the hypothesis space of linear classifiers on

the restricted instance space XR, whose instances meet the constraints induced
by the partial order R. Observe that the VC-dimension of the class of linear
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classifiers decreases, if the data instances are chosen only from a d-dimensional
subspace of X with d < m. Since XR ⊂ X , the class of linear classifiers on XR is
smaller in the sense that its hypotheses needs to distinguish between a smaller
number of instances. One could thus hope that the VC-dimension of linear clas-
sifiers on XR decreases in a similar way, if the constraints imposed by R are
strict enough. Unfortunately, this turns out to be not the case. The following
theorem states this more formally:

Theorem 1. Let R be an arbitrary partial order on the features {f0, . . . , fm},
let XR ⊂ {0, 1}m+1 be the space of instances which are consistent with the order
R and let HR denote the hypothesis space of linear classifiers over XR. Then,
HR has VC-dimension m + 1.

Proof. It is sufficient to show that there is no dataset of size m + 2, which
can be shattered and that there is a dataset of size n ≤ m + 1, which can be
shattered by a linear classifier. The first statement follows directly from the fact
that the VC-dimension of linear classifiers in R

m is also m + 1. For the second
statement, assume without loss of generality that the features f0, f1, . . . , fm are
ordered according to R. Then, select the set of examples {x0, x1, . . . , xm}, where
fj(xi) = 1, if fj � fi and fj(xi) = 0 otherwise. The (m + 1) × (m + 1) training
matrix X for this data set has the lower triangle set to zero and the diagonal
set to one, that is, it is in upper diagonal form. A straightforward application
of Gaussian elimination shows that the matrix has full rank. This means that
there is a linear classifier for all 2m+1 possible target value assignments.

This means the VC bounds for the hypothesis space of linear classifiers with
partially ordered features are essentially the same as the ones for unordered
features. The lower bounds in chapter 14 of [4] ensure that there is no way to
get significantly better guarantees than O(

√
m/n). This is quite remarkable,

because we did not impose any restrictions on R. In particular, if R is a total
order so that fi � fi+1 for all 0 ≤ i < m, the instance space XR contains only
m + 1 instances. Thus, the VC dimension HR remains constant for any order
R, regardless of whether R is a total order (and |XR| = m + 1) or the empty
order (and |XR| = 2m+1). Even though the capacity of the hypothesis class
remains constant, the best obtainable empirical risk does depend heavily on R.
In particular, if R is a total order and the Bayes error is zero, it is easy to see
that empirical risk minimization will find a w with ε̂w = 0. This is not true for
non-total orders.

3.2 Distribution-Dependent Capacity

The results in the preceding section indicate that there are worst-case distribu-
tions where the partial ordered feature sets do not decrease the capacity of the
class of linear classifiers. However, there may very well be distributions that lead
to smaller capacity estimates. In the following we show that this is indeed the
case. More specifically, we introduce a distribution-based quantity that can be
used to upper-bound the capacity of the class of linear classifiers with partially
ordered feature sets.
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We begin with a few definitions. Since the features are partially ordered, they
can be categorized by level. More formally, for a given feature fi let the level
λ(fi) denote the largest k ∈ N so that there is a sequence i1, i2, . . . , ik of size k
with fi1 ≺ . . . ≺ fik

. Similarly, the level λ(x) := maxf∈F{λ(f)|f(x) = 1} of an
instance x is the largest level of the features that are set to one by x. The prob-
ability Pr[f(x) = 1] = E[f(x)] that a feature f is set to one decreases with its
level. In fact, if fi � fj and E[fi(x)] = E[fj(x)], then we know that the two fea-
tures fi and fj are equivalent, because fi(x) = fj(x) for all instances x ∈ X . This
means that we can remove a feature fi from the training data whenever it is more
general than another feature fj and E[fi(x)] = E[fj(x)]. Removing the feature
does not affect the capacity of the hypothesis class of linear classifiers, because
for every classifier w that assigns a non-zero weight to fi there is an equivalent
classifier w′, which simply transfers the weight from fi to the equivalent feature
fj. Thus, we can assume without loss of generality that E[fi(x)] > E[fj(x)]
whenever λ(fi) < λ(fj). With this, let λi := maxx∈XR{Pr[X = x]|λ(x) ≥ i}
denote the maximum probability of obtaining an example of level at least i and
let di := |{f ∈ F|λ(f) = i}| denote the number of features of level i. We can
now state the following two results. The first one gives an upper bound of the
capacity of the class of linear classifiers for the zero-one loss, whereas the second
one deals with loss functions that are Lipschitz with Lipschitz constant L.

Theorem 2. Let R be a partial order on a feature space F , let XR := {x ∈
{0, 1}m|∀(f, f ′) ∈ R : f ′(x) = 1 → f(x) = 1} be an partially ordered instance
space, let P be a probability distribution on X × Y and let εw and ε̂w be based
on the zero-one loss. Define

DR :=
n∑

i=1

log

⎡

⎣
k∑

j=1

λj exp
(

k

i
dj

)
⎤

⎦

Then it holds for all linear classifiers w ∈ R
m that

Pr

⎡

⎣εw ≤ ε̂w +

√

2DR + log 1
δ

n
+

√

log 1
δ

2n

⎤

⎦ ≥ 1 − δ

A more straightforward bound can be achieved, if the loss function is continuous
and Lipschitz. Let Bm

2 := {w ∈ R
m|‖w‖2 ≤ 1} denote the m-dimensional unit

ball for the 2-norm.

Theorem 3. Let R, XR, P be as above, but let εw and ε̂w be based on a Lip-
schitz loss lL : R → [0, 1] with Lipschitz constant L. Then it holds for all linear
classifiers w ∈ Bm

2 that

Pr

⎡

⎣εw ≤ ε̂w + 2L

√
∑k

i=1 diλi

n
+

√

8 log 2
δ

n

⎤

⎦ ≥ 1 − δ
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Fig. 1. The maximum probability of observing an instance for each level on the
NCTRER dataset

The proofs are in the Appendix. The results essentially state that the capacity
of the class of linear classifiers can be upper-bounded depending on how λi

and di scale for increasing levels. The bound is small, either if there are only a
limited number of features of higher levels (i.e. di is small for large i), or if the
probability of encountering instances of higher levels is small (i.e. λi is small for
higher levels). As explained above, the sequence λ1, λ2, . . . is strictly decreasing,
but the extent of the decay depends on the distribution. In practice, applications
with structured examples and substructure features often lead to distributions
where the level probabilities features exponential decay. For instance, we plot
the level sequence for the NCTRER dataset in figure 1. The figure shows that
the probability decreases approximately exponentially.

The number di of features per level, though, grows usually exponentially. If
a learning system makes use of all possible substructure features for each level,
an exponential decay in the level probabilities does therefore not automatically
guarantee a small or even finite learning capacity. In the following we give capac-
ity estimates for the case where the decay in the level probabilities is exponential.
In particular we assume that the level probabilities can be upper-bounded by a
decay that is exponential in a constant α:

λi ≤ αi

3.3 Capacity Estimates for Various Partial Orders

Given the upper bound in Theorem 3 we can consider C :=
∑k

i=1 diλi as a
capacity measure for the class of linear classifiers on partially ordered feature
sets. This enables us to investigate the capacity estimates for the partial orders
induced by some popular substructure classes. Let us begin with the total order
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Rt := {(fi, fj)|i ≤ j}. While this order will be rarely encountered in practical
applications, it is interesting from a theoretical perspective, because it is the
order that puts the strongest constraints on the features. Obviously, the level of
feature fi is simply i so that CRt =

∑k
i=1 αi. This is a geometric series, and a

basic analysis confirms that

CRt =
1 − αk+1

1 − α
≤ 1

1 − α

This means that the capacity of the hypothesis class of linear classifiers with
totally ordered features is bounded by a term of order O(1/(1 − α)), which
is independent of the number of features. Thus, empirical risk minimization is
consistent even for instance spaces with an infinite amount of totally ordered
features.

As a slightly more complicated case, we consider the setting where the ex-
amples are sets of items. Here, we have a set O = {o1, . . . , ok} of items and
the instance space X is the power set of O, so that the instances and features
are represented by subsets of O. A feature assigns the label 1 to an example,
whenever the item set associated with the feature is a subset of the item set
associated with the example. It is easy to see that the level of a feature is simply
the number of items in its associated item set. Since there are

(
k
i

)
possible item

sets with i items, the decay capacity can be computed as:

CRI =
k∑

i=0

(
k

i

)

αi = (1 + α)k ≤ ekα

Depending on the size of α, this is an exponential improvement over the VC-
bound, which upper-bounds the capacity of the class of linear classifiers by O(2k),
because there are 2k possible features. This result is also applicable to SVM-
classification with polynomial kernels on binary data. If one selects a polynomial
kernel of degree t for SVM training on data with k binary (i.e. zero-one-valued)
features, the kernel-induced feature space is equivalent to a feature space con-
taining all itemset features of size at most t. In this case the decay capacity is∑t

i=0

(
k
i

)
αi.

In the next step, we handle the case where the examples are strings over an
alphabet A = {a1, . . . , ah} containing h characters. Here, it is a natural choice
to use substring features, which are partially ordered by the “is substring of”
order RS . More precisely, we assume that each feature is associated with a string
and the feature assigns the value 1 to an instance, if this string is a substring of
the instance. Even though there is a potentially infinite number of instances and
features, the analysis is particularly easy. It is clear that the level of a string is
just its length. Also, there are hl different strings of length l. That means that
the decay capacity for linear classifiers with partial order R is:

CRS =
∞∑

i=1

(hα)i
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This is again a geometric series. If α < 1
h , the series converges and the capacity

of the class of linear classifiers can be bounded by 1
1−hα . Since this quantity does

not depend on the number of features, one can have finite capacity even with an
infinite amount of features.

As a more complicated partial order, we consider the classification setting
where the features are represented by labeled rooted trees, where the labels are
taken from label set L of size l. Here, the features are ordered by some form of
subtree isomorphism. Let Ti denote the number of rooted unlabeled trees with
i vertices. It is well known that the fraction Ti

Ti−1
converges as i → ∞ and that

it converges to the limit cT := limi→∞ Ti

Ti−1
= 2.955765 . . . from below [7]. Thus,

we can use ci
T as a crude upper bound for the number of unlabeled rooted trees

with i vertices. Since there are li ways to assign labels, we get the following
upper bound for the “is subtree of” order RT :

CRT ≤
∞∑

i=1

(lcT α)i

If α < 1
cT l ≈ 0.3383...

l , the decay complexity of labeled rooted tree classifiers with
the subtree order RT can be upper-bounded as follows:

CRT ≤ 1
1 − lcT α

It is remarkable that this upper bound differs only in a comparably modest
constant from the one for strings.

Finally, let us investigate the setting, where examples and features are con-
nected graphs and the features are partially ordered according to the “is sub-
graph of” order RG. Here, a graph with i edges has level i. The number of
graphs with i edges and at most l different node labels can be upper-bounded
by li!(l + 1)i. If there are at most k levels, the capacity can thus be upper-
bounded by

CRG ≤
k∑

i=1

i!l ((l + 1)α)i

Unlike the previous substructure classes, this bound does not converge for k →
∞. In fact it is easy to see that the number of graphs with i edges grows at least
with o((i/c)!) for some constant c. That means that an exponential decay of the
level probability is not sufficient to enforce a finite capacity bound in the limit.

4 Experiments

Theoretical results are interesting for determining worst case capacity estimates
and investigating the asymptotical consistency of learning systems with partially
ordered feature sets. However, in practical applications one is much more inter-
ested in finding average case capacity estimates, which can be used to avoid
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over- and underfitting. If the capacity of the learning system’s hypothesis class
is too large, it might overfit on the training data. In this case, the training er-
ror will be near zero, but the validation error is worse than necessary. If, on the
other hand, the learner’s capacity is too small, the system might induce classifiers
with high training and validation error. The theoretical results in the preceding
section indicate that the capacity of the space of linear classifiers can be consid-
erably smaller than it is the case with non-ordered features. In the following we
investigate the overfitting behavior in quantitative structure-activity relation-
ships. Here, the learning system is given a training set containing the molecular
structure of compounds as labeled graphs. The task is to induce a model that
can predict some biological or chemical endpoint such as tumor growth inhibi-
tion or a compound’s ability to pass the blood-brain barrier. We used the three
datasets from [8]. The NCTRER dataset [5] deals with the prediction of binding
activity of small molecules at the estrogen receptor. It contains 232 molecules.
The Yoshida dataset [12] consists of 265 molecules classified according to their
bio-availability. The third dataset classifies 415 molecules according to the degree
to which they can cross the blood-brain barrier (BBB) [6].

4.1 Overfitting

For the first experiment we followed the standard substructure feature genera-
tion methodology (see e.g. [8,2]) and implemented a frequent subgraph mining
tool similar to gSpan [11]. The system recursively generates all subgraphs oc-
curring in at least one graph of the training database. However, in contrast to
gSpan, it discards all substructures whose instantiation vector is a duplicate of
an existing subgraph, that is, a substructure which occurs in exactly the same
graphs as an already generated subgraph. We used the tool to generate all possi-
ble subsequences, subtrees, and subgraphs for the three datasets. The NCTRER
dataset contains 463 subsequences, 1822 subtrees and 1897 subgraphs. We sort
the features by level and plot training accuracy and predictive accuracy of a
support vector machine (with C = 1) induced on an increasing subset of the
features in figure 2. The plot shows no significant overfitting; even though the
training accuracy reaches 100%, the predictive accuracy as measured by tenfold
cross-validation does not decrease very much. Similar plots can be generated for
the yoshida and BBB datasets. Obviously, overfitting is less of an issue as com-
pared to many other datasets. This is remarkable when one considers that the
substructure features lead to training data that has many more features than
examples.

4.2 Elastic Subgraph Feature Generation

As overfitting is apparently not a big problem, one might suspect that the SVM
is actually underfitting. To investigate this question we need a new feature gener-
ation mechanism that leads to feature sets with higher capacity than the existing
ones. The theorems in section 3.2 indicate that one should look for feature sets
whose λis do not decrease too fast. This means we would like to use substruc-
ture occurrence tests, where even large substructures are still likely to appear in
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Fig. 2. Training accuracy (circles) and predictive accuracy (triangles) for the NCTRER
dataset with an increasing number of features
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Fig. 3. The dashed edge in the substructure pattern is an elastic edge, which matches
the path from vertex a over b and c to vertex d in the instance graph

many instances. In order to do so, we extend the class of subgraph features by
allowing for elastic edges. More precisely, we introduce a new “elastic” edge label
in each subgraph’s edge label set. Whenever a subgraph pattern with such an
elastic edge is tested for occurrence in a graph in the database, the elastic edge
matches with any path containing only edges, which are not already matched
with another edge in the subgraph pattern. Figure 3 illustrates this concept.
Here, the substructure pattern on the right contains an elastic edge between
the vertices e and f . This pattern matches with the instance graph on the left,
because the elastic edge can be matched to the path from vertex a over b and c
to vertex d. On the other hand, consider the case where one extends the pattern
with another vertex, which is connected to the vertex e and has label C. The
resulting pattern does not occur anymore in the graph. This is because the new
edge can only be matched to the edge between a and b, but the elastic edge is
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Table 1. Predictive accuracy of a SVM on an increasing number of subsequence,
subtree and subgraph features

Dataset Number of Seq Trees Graphs Elastic
Features Graphs

NCTRER 500 81.0 81.9 81.5 79.7
1000 82.3 81.0 82.3
2000 82.3 82.3 83.6
3000 85.8
4000 84.9
5000 86.2
6000 86.2

Yoshida 500 63.8 67.5 66.0 64.9
1000 64.5 69.8 69.1 68.7
2000 67.5 66.8 64.2
3000 69.1 67.9 63.4
4000 67.9 69.1 64.5
5000 67.5 67.9 63.4
6000 67.9
7000 69.1
8000 68.3

BBB 500 76.1 74.0 77.6 75.4
1000 75.7 74.5 76.1 78.1
2000 76.6 74.5 73.7 79.3
3000 74.2 74.0 81.0
4000 75.2 74.2 81.2
5000 76.1 75.9 81.2
6000 75.2 75.7 81.4
7000 73.7 74.0 81.7
8000 81.9
9000 83.4
10000 81.9
11000 81.7

not allowed to match with the path from a to d, if one of the edges on the path
is already used in a different match.

We extended the subgraph mining tool to also generate subgraph structures
which contain a limited number of elastic edges. While it is feasible to com-
pute all non-duplicate subtree or subgraph features for the three datasets, the
number of non-duplicate subgraph patterns with elastic edges is way too large
to generate all of them. We therefore restricted the maximum size of the elas-
tic subgraph patterns to eight for the NCTRER dataset, and five for the BBB
and yoshida datasets. Table 1 shows the predictive accuracies of a SVM (with
C=1) as estimated by tenfold cross-validation for subsequence, subtree, sub-
graph and subgraph with one elastic edge patterns depending on the number of
used features. Elastic subgraph patterns outperform the other pattern languages
by approximately four percent on the NCTRER dataset and over five percent
on the BBB dataset. On the yoshida dataset, trees, graphs and elastic graph



Capacity Control for Partially Ordered Feature Sets 329

feature give approximately the same predictive accuracy. All three datasets show
better accuracies than the best ones reported in [8]. These results indicate that
underfitting was indeed a problem on two of the three datasets.

4.3 Feature Generation for Large Datasets

For the third experiment, the goal was to investigate how learning linear classi-
fiers with a broad class of substructure features can be made efficient on a large
dataset. The main problem here is that the considerations in section 4.1 indicate
that one should use broad substructure classes with many general features to
avoid underfitting. Unfortunately, the number of substructures in such classes is
way too large to enumerate them exhaustively as it was possible in the preceding
experiments. Consider the NCI DTP Human Tumor Cell Line Screen dataset [9].
The dataset contains 34748 compounds, which were tested for their ability to
inhibit tumor growth. Mining for all non-duplicate subsequences of only up to
four edges leads to over 10,000 features. Clearly, the database is too large to
allow for exhaustive enumeration of all existing subsequence features and work-
ing with all subtree or subgraph features is clearly not feasible. To avoid the
generation of all substructure features, we resort to a heuristic feature search
algorithm inspired by the feature generation method presented in [8]. Instead of
using a combinatorial search approach with an index structure (which would be
too large for the NCI dataset), we perform a simple beam search. The algorithm
starts with substructures of size one (i.e. single vertices) and iteratively extends
the most promising candidate in the current beam with a new edge. The search
heuristic is based on the class-correlated dispersion score as described in [8], but
features an exponential rather than a quadratic penalty for features with high
similarity to an existing feature:

h(s′) :=
m∑

i=1

exp[
c

n
sT

i s′] − m exp[
c

n
tT s′]

Here, s′ is the −1/+1-valued n-dimensional instantiation vector of the new fea-
ture candidate, the si are the instantiation vectors of the m existing features, and
t is the target class vector. We generated one hundred substructure features for
subsequences, subgraphs and subgraphs with one elastic edge. We then learned
a linear classifier from a training set consisting of two thirds of the dataset and
evaluated the classifier on the remaining third. The feature generation, learning
and evaluation took 28 minutes on a 1 GHz Athlon 5200 computer for the se-
quences features, 68 minutes for the subgraphs feature set and 129 minutes for
subgraphs with one elastic edge. The classifier achieved a predictive accuracy
of 64.4% with subtree features, 64.1% with subgraph features and 63.3% with
subgraphs with one elastic edge, so underfitting seems not to be a big issue here.
It is unclear whether this is a limitation of the feature generation method or a
fundamental property of the data generation process.
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5 Conclusion

In the preceding sections we investigated classification with linear classifiers and
partially ordered feature sets. Learning with partially ordered feature sets differs
from other settings in that the partial order induces redundancy in the training
and test data. From a theoretical point of view, this does not necessarily affect the
over- or underfitting behavior of a learning system, because the VC-dimension
of the class of linear classifiers remains the same for worst-case data distribu-
tions. However, if the data distribution features a sufficiently steep decline in
the probability of observing features of higher level, the capacity of the learning
system can be upper-bounded by a smaller term. This means that overfitting
is less of an issue for linear classifiers on those distributions. We evaluated this
theoretical result on three datasets and found that subsequence, subtree and
subgraph features did indeed not show typical overfitting behavior. Instead, we
were able to extend the class of subgraph features towards subgraphs with elastic
edges. These patterns are more likely to occur in higher levels and thus increase
the capacity estimate. Practical experiments confirmed that this extended class
of subgraph features avoids underfitting and increases predictive accuracy on
two of the three datasets. Finally, we showed how classification with such large
substructure feature classes can be implemented efficiently on large datasets.

The work raises a couple of interesting questions. On the theoretical side one
could look for lower bounds that quantify to which degree the presented upper
bounds are tight and investigate how the results apply, if one uses support vector
machines with non-linear kernels. On the practical side, it would be interesting
to obtain more insights on the actual under- or overfitting behavior of common
data (for instance with regard to the study in [2]) and how the present results
apply to other partially ordered feature sets, for example in natural language
processing.
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6 Appendix

6.1 Proof of Theorem 2

Proof. For a data sample S = (X1, . . . , xn) and a vector of Rademacher variables
σ = (σ1, . . . , σn)T (where σi has value +1 or −1 with probability 0.5) define
V (S, σ) = supw[ 1

n

∑n
i=1 σi sgn(wT xi)]. First of all, we consider the conditional

expectation E[V (S, σ)|S]. Let v := (sgn(wT x1), . . . , sgn(wT xn))T denote the
vector of predictions for a fixed training sample S and a fixed linear classifier w.
Changing the value of a Rademacher variable σi changes the value of 1

nvT σ by
at most 2

n . Thus, for a fixed data set S, one can apply McDiarmid’s inequality
to bound the probability that a random Rademacher vector disagrees with v by
more than fraction a fixed r > 0:

Pr

[
1
n

n∑

i=1

σi sgn(wT xi) ≥ r

∣
∣
∣
∣S

]

≤ e−
1
2 r2n (1)

Now, let λ(x) := max{λ(f)|f(x) = 1} denote the level of example x. We can
assume without loss of generality that the instances in S are sorted by level.
Define Si := {x|λ(x) = i} and ni := |Si|, so that

∑k
i=1 ni = n. Sauer’s lemma

states that there are at most
∑di

j=0

(
ni

j

) ≤ (ni+1)di ways, in which the different w
can assign class labels to the instances in Si. This means the number of possible
class vectors induced by the w is at most

∏k
i=1(ni+1)di. Taking the union bound

over all possible class label assignments in (1) yields:
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Pr[V (S, σ) ≥ r|S] = Pr

[

sup
w

[
1
n

n∑

i=1

σivi

]

≥ r

∣
∣
∣
∣S

]

≤ e−
1
2 r2n

k∏

i=1

(ni + 1)di

≤ e−
1
2 r2n exp

[
k∑

i=1

di log(ni + 1)

]

≤ e−
1
2 r2n exp

⎡

⎣
k∑

i=1

di

ni∑

j=1

1
j

⎤

⎦

≤ e−
1
2 r2n exp

[
n∑

i=1

dλ(xi)
k

i

]

≤ e−
1
2 r2n

n∏

i=1

e
k
i dλ(xi)

Taking the expectation on both sides yields:

Pr[V (S) ≥ r] = e−
1
2 r2n

n∏

i=1

E
[
e

k
i dλ(xi)

]

≤ e−
1
2 r2n

n∏

i=1

k∑

j=1

λje
k
i dj

Setting

r :=

√
√
√
√2

∑n
i=1 log

[∑k
j=1 λj exp

(
k
i dj

)]
+ log 1

δ

n

yields that with probability larger than 1 − δ it holds that

V (S) ≤

√
√
√
√2

∑n
i=1 log

[∑k
j=1 λj exp

(
k
i dj

)]
+ log 1

δ

n

Taking the union bound with theorem 5 (b) in [1] yields the result.

6.2 Proof of Theorem 3

Proof. For a sequence of n Rademacher variables σ1, . . . , σn define

Rn(X ) := E

[

sup
w∈Bm

2

∣
∣
∣
∣
∣

2
n

n∑

i=1

σil
(
yi, w

T xi

)
∣
∣
∣
∣
∣

]
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The result follows from theorem 8 in [1] and the fact that

Rn(X ) ≤ 2L

√P
k
i=1 diλi

n . To see this, observe that

Rn(X ) ≤ E

[

sup
w∈H

2
n

n∑

i=1

σil(yi, w
T xi)

]

≤ 2LE

[

sup
w∈H

1
n

n∑

i=1

σiw
T xi

]

(2)

≤ 2LE

[

sup
w∈H

‖w‖2

∥
∥
∥
∥
∥

1
n

n∑

i=1

σixi

∥
∥
∥
∥
∥

2

]

(3)

≤ 2LE

⎡

⎣

√
√
√
√ 1

n2

m∑

k=1

n∑

i,j=1

σiσjfk(xi)fk(xj)

⎤

⎦

≤ 2L

√
√
√
√ 1

n2
E

[
m∑

k=1

n∑

i=1

fk(xi)2
]

(4)

≤ 2L

√
√
√
√1

n

m∑

k=1

E [fk(x)]

≤ 2L

√
∑k

i=1 diλi

n

Here, (2) is due to theorem 12 in [1], (3) is an application of Hölder’s inequality,
while (4) follows from the concavity of the square root and the independence of
the Rademacher variables.
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