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Abstract. This article introduces the class of Most Informative Pat-
terns (MIPs) for characterizing a given dataset. MIPs form a reduced
subset of non redundant closed patterns that are extracted from data
thanks to a scoring function depending on domain knowledge. Accord-
ingly, MIPs are designed for providing experts good insights on the con-
tent of datasets during data analysis. The article presents the model of
MIPs and their formal properties wrt other kinds of patterns. Then, two
algorithms for extracting MIPs are detailed: the first directly searches
for MIPs in a dataset while the second screens MIPs from frequent pat-
terns. The efficiencies of both algorithms are compared when applied to
reference datasets. Finally the application of MIPs to labelled graphs,
here molecular graphs, is discussed.

1 Introduction

Given a dataset describing objects by attributes (or items), a frequent itemset is
a subset of attributes such that the number, also called support or frequency, of
objects presenting all of these attributes is not less than some threshold. Since the
first frequent itemset mining algorithm was proposed [1], frequent itemsets have
become a major and prolific model in data-mining that has served many different
applications and has been generalized to many different classes of patterns, like
sequences, trees, or connected graphs (see for instance the Gaston algorithm [2]
later used in Sect. 4.2). However searching frequent patterns is not an ultimate
objective. Frequent patterns (of any type, even graphs) are generally considered
as the result of an intermediate processing step, usually followed either by the
extraction of frequent association rules, or by the extraction of a set of patterns
of interest wrt some application specific criteria. In any case, resulting rules or
patterns are usually sorted in decreasing order of some score so that only the
head of the sorted list, whose members are sometimes called top-k patterns (like
area-scored top-k patterns [3] later referred in Sect. 2.1), is considered.

For association rules, many scores are available like confidence or lift. For
frequent patterns, scoring often serves supervised classification problems. Scores
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like p-value or information gain are then used to assess the discriminative power
of patterns relatively to two sets of positive and negative examples. Whereas a
direct scoring of patterns may make sense in the framework of machine learn-
ing problems, practical relevance of pattern scoring might be discussed in the
framework of knowledge discovery, where selected rules or patterns are directly
analyzed by experts. In that case two problems occur when providing experts
lists of patterns sorted by decreasing order of score.

First finding a good qualitative scoring function is not an easy task in the
context of knowledge discovery as scoring must predict interest of experts for
patterns. This interest is typically the amount of novel information a pattern
brings to experts relatively to their current state of knowledge but this informa-
tion is obviously hardly assessable. Frequency is an example of a “bad” qualita-
tive scoring function. Because of the anti-monotonic property of frequency, most
frequent patterns tend to be the smallest and thus the least informative as well.
An extreme example is the empty itemset that carries no information but has
the largest possible frequency. However a good scoring function must somehow
integrate frequency as the latter reflects likelihood of patterns, from highly im-
probable to very common. In many applications, the interest of a pattern thus
balances between its frequency and the amount of information contained in its
structure. Such a balance refers to the notion of data representativeness. The
Minimal Description Length principle (MDL) provides a theoretical foundation
to assess representativeness. This principle states the better a model helps to
encode data with a reversible compression scheme, the more this model is rep-
resentative of data. This principle has already been used to identify patterns
representative of data. Data compression then consists in replacing every occur-
rence of these representative patterns by new attributes in datasets of attributes
[4] or new vertices in datasets of graphs [5]. However MDL-based patterns are
limited somehow as they do not take easily into account what experts know and
want to know. A better solution is to provide a flexible model that accepts a
large family of scoring functions tunable to experts’ needs.

The second problem is information redundancy among extracted patterns:
Since usual scoring functions are continuous, similar patterns are likely to have
similar scores. Consequently top-k patterns gets saturated by patterns similar to
the pattern of highest score, especially when patterns like graphs exhibit a high
combinatorial power. In practice experts experience difficulties to distinguish
patterns providing them new elements of information as they are flooded with
redundant copies of already analyzed patterns. One way of reducing the number
of useless frequent patterns to consider might consist in introducing additional
constraints that patterns have to meet [6]. A common example of pattern con-
straints is provided by closed patterns: a pattern P is closed if the frequency
of every pattern containing P is strictly smaller than the frequency of P . How-
ever, although constraints might reduce the number of patterns, they remain
insensitive to pattern redundancy.

In this paper we propose to solve both previous problems by a pattern selec-
tion process that outputs a family of patterns we have called Most Informative
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Patterns or MIPs. Intuitively MIPs are defined as local maxima of a scoring
function. This function is only required to satisfy few conditions in order to as-
sess pattern representativeness. The objective of MIP model is that every MIP
reveals one independent element of interest for experts. In practice MIPs appear
in limited number and are not structurally redundant compared to other pattern
families so that experts can directly analyse them. The idea underlying the MIP
model was initially motivated by a selective extraction of patterns from chem-
ical reaction databases [7]. Contributions of this article are the generalization
of this idea into a broad and formal model, the derivation of properties from
the model, and the introduction, comparison, and application of two methods to
extract frequent MIPs from itemset and graph datasets. To this end, the MIP
model and its properties are introduced in Sect. 2, the MIP extraction methods
in Sect. 3, and experiments in Sect. 4.

2 Introduction of Most Informative Patterns

2.1 An Example

In order to illustrate the redundancy problem, let consider the simple example
of a dataset containing seven objects described by four attributes from a to d
and whose descriptions are respectively a, b, ab, cd, abc, abd, and abcd. Let as-
sume experts decide to score itemsets with the product of their length and their
frequency (a MDL-related score sometimes called area function [3]). Figure 1
displays resulting frequency and score of every pattern inside the order diagram
of itemsets ordered by subset inclusion. The list of itemsets sorted in decreasing
order of score is: ab (score of 8); abc and abd (6); a and b (5); abcd, ac, bc, ad,
bd, and cd (4); acd, bcd, c, and d (3); ∅ (0). When picking patterns from this
list in that order, experts might ignore abc, abd, a, and b as these patterns are
structurally similar to ab but with a lower score. For the same reason of redun-
dancy, experts might ignore abcd, ac, bc not as interesting as abc, then ad and

Fig. 1. Diagram order of itemsets. Every itemset is labeled with (s = f × l) where s,
f and l are resp. its score, frequency and length. Closed patterns are underlined.
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bd not as good as abd. However experts might consider next pattern cd that has
a higher score than those of all similar patterns acd, bcd, c or d. Finally all re-
maining patterns are ignored as they are similar to patterns with better scores.
The fact that cd is retained whereas its score is lower than those of many ignored
patterns illustrates that scoring by itself is a limited approach. Introducing con-
straints may focus the analysis on a limited number of patterns of a particular
type but does not remove pattern redundancy and may discard interesting pat-
terns as well. For instance considering only closed patterns (underlined on Fig.
1) keeps redundant patterns like a, b, ab, abc, abd, abcd, whereas keeping only
patterns containing item a removes the interesting pattern cd. MIPs formalize
the screening process described on the previous example.

2.2 MIP Definition

Formally let consider a set P of patterns, ordered by a partial ordering relation
≤P . A dataset D of objects is then described by a function d : D → P mapping
every object o ∈ D to its description d(o) ∈ P . A pattern P ∈ P is said to
describe an object o if P ≤P d(o). The support or frequency of a pattern M
is then the number σ(P ) of objects of D described by P whereas the relative
frequency σr(P ) is the fraction of σ(P ) over the size |D| of the dataset. Support
and relative frequency are non-increasing functions in the pattern order (P ,≤P):
the smaller a pattern is, the more objects it describes. In addition, the pattern
order is assumed to contain a smallest pattern, called the empty pattern and
denoted ∅P . One of the simplest examples of pattern order is the power set
P = P(A) of a set A of attributes ordered by the subset inclusion relation
≤P=⊆, the empty pattern being the empty set. Another example of pattern
order is the set of non-isomorphic connected graphs whose vertices and edges
are tagged by labels taken from an arbitrary set L. The ordering relation is then
the isomorphic subgraph relation and the empty pattern is the empty graph.

As mentioned previously, the model of most informative patterns integrates
a scoring function to assess the interest or relevance of a pattern. However only
some functions are of interest to score patterns representative of data. The family
of those so-called informative scoring functions is defined as follows.

Definition 1. Given a dataset D described by patterns from order (P ,≤P), a
scoring function is a function s : P × [0; 1] → S mapping a pattern P of relative
frequency σr(P ) in D to a score s(P, σr(P )) whose value is taken from a set S
ordered by a partial ordering relation ≤S. A scoring function s is said informative
if following statements hold for s:

1. For every non-empty pattern P , partial function sP : f �→ s(P, f) is a strictly
increasing function of f ∈ [0; 1]:

∀P ∈ P \ {∅P}, ∀(f1, f2) ∈ [0; 1]2, f1 < f2 ⇒ sP (f1) <S sP (f2)

2. For every non-null real number f ∈]0; 1], partial function sf : P �→ s(P, f)
is a strictly increasing function of P ∈ P:

∀f ∈]0; 1], ∀(P1, P2) ∈ P2, P1 <P P2 ⇒ sf (P1) <S sf (P2)
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3. A pattern of zero frequency can never get a higher score than a pattern of
non-zero frequency:

∀(P1, P2) ∈ P2, �f > 0, s(P1, f) <S s(P2, 0)

The already used area function sa : (P, f) �→ |P | · f is an example meeting all
requirements of an informative function. This function may be interpreted wrt
the MDL principle as an estimation of the amount of compressed space when
replacing every occurrence of P by a new special symbol (attribute or vertex)
[5]. In section 4, we propose to extend this area function by weighting attributes
of an itemset or vertex/edge labels of a graph pattern with variable gains of
information. The definition of the resulting scoring function is given for graphs
(itemsets being equivalent to a graph whose isolated vertices have attributes as
labels):

Definition 2. The information function si is defined as:

si : (g, σr) �→ I(g) · σr

where the factor I(g) of information related to graph pattern g is the sum of
information carried by every vertex v ∈ V (g) of label lv(v) and every edge e ∈
E(g) of label le(e):

I(g) =
∑

v∈V (g)

i(lv(v)) +
∑

e∈E(g)

i(le(e))

Quantity of information associated to a vertex or edge label is in turn:

i(l) = − log2

⎛

⎝ n(l)∑
l′∈L

n(l′)

⎞

⎠

where n(l) is the number of vertices or edges in D carrying label l.

However many other informative functions can be considered here. In particular
experts can complement or replace the previous factor I(g) by other terms that
grow with the pattern: number of vertices, edges and cycles of a given type, num-
ber of subgraphs isomorphic to some specific patterns, maximal degree, maximal
length of paths or cycles.

Now the definition of MIPs formalizes the selection process described in the
introductory example:

Definition 3. Given a pattern order (P ,≤P), a dataset D described by the pre-
vious set of patterns and an informative scoring function s defined on top of D
and of scoring order (S,≤S),

– A pattern P ′ is a neighbour of pattern P if P ′ is an immediate predecessor
or successor of P wrt pattern order (P ,≤P), i.e. P and P ′ are comparable
and no other pattern exists between P and P ′.
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– A pattern P ′ ∈ P dominates pattern P ∈ P if P ′ is a neighbour of P in
(P ,≤P) and scores of P and P ′ are comparable and verify s(P ′, σr(P ′)) >S

s(P, σr(P )).
– A pattern P is a MIP if frequency σr(P ) of P is not null and if no pattern

dominates P .

Figure 2 represents diagram of Fig. 1 whose edges have been oriented according
to the dominance relation: an arc drawn from m1 to m2 means m1 dominates
m2 (rel. to sa). Itemset abc is thus dominated by ab and dominates ac, bc, and

Fig. 2. Dominance relation between patterns from example of Fig.1. MIPs are bold.

abcd. Most informative patterns, in bold, are those pointed by no arc: they are as
expected ab of score 8 and cd of score 4. The extraction of frequent MIPs consists
in finding in dataset D scores and frequencies of all MIPs whose frequency is not
less than some threshold σmin. It is noticeable that a frequent pattern P may
not be dominated by any immediate predecessor and any frequent immediate
successor while being dominated by a non-frequent immediate successor. For
instance, patterns c and d of Fig. 1 are frequent for σmin = 3, but are not MIPs
as they are dominated by the non-frequent pattern cd. Now some properties can
be inferred from definitions of informative scoring functions and MIPs.

2.3 Properties

Let first assume the considered pattern order verifies the so-called “finiteness
hypothesis”: for every finite and non-empty dataset, the number of patterns of
non-null frequency is finite and non-null. This is true for standard pattern orders
like the sets of finite itemsets or finite graphs. This hypothesis allows to prove
the following property:

Property 1. The subset of most informative patterns of a finite non-empty
dataset is not empty.
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Proof. This can be proved by contradiction. If every pattern is dominated by
at least one pattern, it is possible to build recursively a sequence of patterns
(Pi)i≥1 from a pattern P1 of positive frequency, such that for every index i ≥ 1,
Pi+1 dominates Pi. Thanks to the third statement of def. 1, all those patterns
have a positive frequency and thus, according to the finiteness hypothesis, build
a subset of a finite set of patterns. Sequence (Pi) is thus finite and contains a
cycle, contradicting the fact (s(Pi))i≥1 is a strictly increasing sequence of scores.

However the extraction of frequent MIPs may produce no patterns if the thresh-
old σmin is too high. Another important property is related to closed patterns:

Property 2. Every most informative pattern is a closed pattern.

Proof. Let P ′ be a MIP relative to an informative scoring function s. If P ′ is not
closed, there exists an immediate successor P ′′ of P ′ such that σr(P ′′) = σr(P ′).
Since f = σr(P ′) �= 0, the second statement of def. 1 applies so that function
sf : P �→ s(P, f) is strictly increasing. Since P ′ <P P ′′, sf (P ′) <S sf (P ′′),
and thus s(P ′) <S sf (P ′′). Because σr(P ′′) = σr(P ′), sf(P ′′) = s(P ′′) and
s(P ′) <S s(P ′′). Domination of P ′′ over P ′ would contradict the hypothesis P ′

is a MIP.

On the example of Fig. 2, MIPs abc and cd appear to be closed. Conversely
closed patterns can be seen as a particular case of MIPs:

Property 3. Closed patterns are the most informative patterns relative to the
informative scoring function equal to the identity Id : (P, f) �→ (P, f) and the
scoring order equal to the product order (P ,≤P) × ([0; 1],≤)1.

Proof. Given a MIP P , let assume P is not closed. At least one immediate suc-
cessor P ′ would have the same frequency as P and since by definition P <P P ′,
P ′ would dominate P according to the definition of product order, contradict-
ing the initial hypothesis. Conversely a closed pattern has a higher frequency
than every immediate successor and is larger (rel. to <P) than every immediate
predecessor, so that it cannot be dominated and thus is a MIP.

Both properties 2 and 3 prove together that closed patterns build the least
restrictive family of most informative patterns (and thus the largest as well)
among every possible choice of informative scoring functions.

3 Extraction of Frequent Most Informative Patterns

We propose two distinct approaches to extract frequent MIPs. The first one is a
one-step extraction of MIPs from datasets, while the second is a two-step process
that screens frequent MIPs from frequent patterns.
1 The product order (E1 ×E2,≤12) of two orders (E1,≤1) and (E2,≤2) is defined by

(x1, x2) ≤12 (y1, y2) iff x1 ≤1 y1 and x2 ≤2 y2.
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3.1 Direct Extraction Method

As seen in the previous section, every arc P1 → P2 of the diagram order of
(P ,≤P) connects a pattern P1 to an immediate successor P2 of P1. Since every
arc defines a possible relation of dominance, an algorithm extracting frequent
MIPs must potentially look at every arc whose origin P1 is frequent. Conse-
quently the direct extraction method explores the pattern order in a DFS man-
ner and when crossing an arc P1 → P2, compares scores of P1 and P2 and if these
scores are comparable and different, withdraw one of the two patterns from the
set of valid MIP candidates. In order to remember which patterns are still valid
candidates, it is required to maintain a mip flag for every frequent pattern, ini-
tialized to true. To this end, a pattern dictionary T is used to map a pattern P
to an entry T (P ) containing the mip flag along with frequency and score of P .
This dictionary uses a trie structure for storing canonical encoding of patterns.
In case of itemsets, this encoding is simply the list of attributes sorted in some
arbitrary order. In case of labeled connected graphs, encoding first assumes to
compute a canonical ordering of vertices of this graph thanks to some state-of-
the-art algorithm like Nauty [8], and then encodes the resulting canonical graph
as a sequence of symbols for accessing the trie. The DFS exploration is performed
thanks to a recursive function detailed on Fig. 3. This function develop takes
a current pattern P and its entry e in T as arguments. Line 1 then computes
in one single pass over D, frequencies of the set S of all immediate successors
of P occurring in D (i.e. of non-null frequency). This operation can be done
efficiently by storing in memory all embeddings of the current pattern in dataset

Function develop(pattern P , entry e)

Data: Dataset D, threshold σmin, scoring function s and order (S,≤S)
Result: List of frequent MIPs with their scores and frequencies

Extract set S = {(P ′, σr(P
′))} of all imm. succ. P ′ of P occur. in D ;1

foreach (P ′, σ′
r) ∈ S do

if σ′
r ≥ σmin then
Search for entry e′ mapped to P ′ in T ;
if e′ does not exist then

Create entry e′ such that e′.score← s(P ′, σ′
r), e′.freq ← σ′

r, and
e′.mpi← true and map P ′ to e′ in T ;
Call develop (P ′, e′)2

if e.score <S e′.score then3

e.mpi← false

else if e.score >S e′.score then4

e′.mpi← false

else if e.score <S s(P ′, σ′
r) then5

e.mpi← false

Fig. 3. Recursive procedure for a direct extraction of frequent MIPs
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(using data structures like tid-lists [9] for itemsets or occurrence lists [10] for
connected graphs). Then line 2 calls recursively the function in order to further
develop every frequent immediate successor P ′ of P that has not been explored
yet (i.e. that has not already been inserted in T ). In any case, scores of P and
P ′ are compared (lines 3, 4, and 5) to discard dominated patterns from the set
of MIP candidates. At the end of recursion started with the empty pattern as
argument, the algorithm outputs frequent MIPs as patterns contained in T with
a true flag, along with their scores and frequencies.

3.2 Frequent Pattern Screening Method

Another solution is to screen frequent MIPs from frequent patterns produced by
an existing frequent pattern mining algorithm. This screening processes frequent
patterns level by level as a level-wise algorithm like Apriori [1]: level of order
n is the set of frequent patterns with the same length equal to n (i.e. number of
attributes for itemsets and number of edges for graphs). More exactly the algo-
rithm compares the score of every frequent pattern of level n with scores of their
immediate predecessors of level n − 1 for every non-empty level n. Comparison
of scores allows to rule out i) MIP candidates of level n that are dominated by
at least one immediate predecessor and ii) MIP candidates of level n − 1 that
are dominated by at least one frequent immediate successor. This processus is
called the primary screening as it does not exactly produce the set of frequent
MIPs but only the superset of frequent MIP candidates that are not dominated
by any of their immediate predecessors and frequent successors. A secondary
screening is required to rule out MIP candidates that are dominated by at least
one non-frequent immediate successor. The method is summarized on Fig. 4. It
takes as input the set F of frequent patterns wrt threshold σmin and returns the
list I of frequent MIPs. The idea is that lists L−1, L′

−1, L′′
−1, and L′

0 contain
successive copies of level l − 1 (for the three first lists) and of level l (for L′

0),
where each pattern is tagged by its mip flag, score and frequency. The mip tag

Data: Dataset D, threshold σmin, scoring function s, order (S,≤S), and list F
of frequent patterns with their frequencies

Result: List I of frequent MIPs with scores and frequencies

Partition F into levels (Fl)0≤l≤k of the same length l ; Load F0 into list L−1 ;
for l from 1 to k + 1 do

(Clear lists L′
−1, L′

0, and L′′
−1) ;

if l ≤ k then
Primary screening between L−1 (lev. l − 1) and Fl (lev. l) producing
resp. MIP candidates in lists L′

−1 (lev. l − 1) and L′
0 (lev. l) ;

Rename L′
0 in L−1

Secondary screening of L′
−1 producing MIPs in list L′′

−1 ;
Append L′′

−1 to I
Fig. 4. Algorithm computing frequent MIPs by screening frequent patterns
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initialized to true, may get false during primary filtering at iteration l (from
Fl to L′

0), during primary filtering at iter. l + 1 (from L′
0 = L−1 to L′

−1) or
finally during secondary filtering at iter. l + 1 (from L′−1 to L′′−1). At that stage
members of L′′

−1 are necessarily MIPs and are added to I.
Primary filtering consists i) first in loading L−1 into a pattern dictionary T

identical to the one used by the first algorithm (i.e. a pattern is mapped to its
mip flag, score and frequency) ii) then for every pattern P of Fl in computing
every immediate predecessor P ′ of P and retrieving the entry of P ′ from T
(that necessarily exists as P ′ is necessarily frequent) iii) in comparing scores
and updating accordingly mip flags of P and P ′. In case of itemsets, computing
immediate predecessors of P consists in withdrawing any attribute of P but in
case of connected graphs, this requires not only to withdraw any edge of P but
also to ensure the resulting graph is still connected. In other words, only edges
that are not bridges may be withdrawn. Bridge edges can be identified thanks
to a DFS algorithm [11] of complexity linear in the number of edges of P .

Finally secondary filtering consists given any MIP candidate P (i.e. any pat-
tern of L′

−1 with a true mip flag), in computing in one pass over the dataset D
the frequencies of all immediate successors of P occurring at least once in D.
Scores of these successors are then computed one by one until one of these scores
is larger than score of P , otherwise P is output as a MIP.

4 Experiments

Experiments aim at answering two issues. The first is the comparison of algo-
rithm performances on reference itemset datasets, while the second is a practical
and qualitative assessment of MIP relevance on a reference graph dataset.

4.1 Performance Comparison

Both algorithms can be proved to be sound and complete so that they can be
distinguished only by their performance and scalability. A theoretical comparison
of algorithm complexity does not allow to draw conclusions as theoretical bounds
mostly rely on non-assessable measures specific to datasets (like distribution
of frequent patterns over levels, number of MIP candidates that have to be
processed by the secondary filtering. . . ). For this reason, this section proposes
an experimental comparison of both algorithms. In order to ease comparison,
tests have been performed on reference itemset datasets. Compared to other
more complex pattern families like graphs, itemsets have the advantage to be
simple to process so that the risk is reduced to bias performance measurement
by differences of implementation quality.

For a fair comparison, time spent for searching frequent itemset has been in-
cluded in the processing time of the screening process. To this end, a version2 of

2 The used implementation has been written by Bart Goethals and can be downloaded
from http://www.adrem.ua.ac.be/g̃oethals/software/
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Dataset Mushroom Vote Retail Chess

Object number 8124 435 88162 3196
Attribute number 119 17 16470 75

Rel./abs. threshold σmin 4 % / 325 0.2 % / 1 0.01 % / 9 40 % / 1279

Total time for direct extraction (s) 901 1.5 576 6810

Total time for screening MIPs (s) 747 6.8 86 1304
includ. time used by FP-Growth (s) 34 0.5 21 84

N. of frequent patterns 3.957.084 44,073 322,924 6,472,981
N. of freq. closed patterns 15.463 6478 229,303 1,366,834
N. of freq. MIPs 21 7 1045 2

Fig. 5. Test results for various datasets using the area function sa
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Fig. 6. Details of the test results on log-log scales. Figures (c) and (d) focus on the
Mushroom dataset.
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FP-growth [12] has been used as one of the most efficient itemset mining algo-
rithms. Tests have been run on a standard laptop (single thread on Intel Core
2, 1.8 GHz) on four datasets contrasting with each other by their size, density
and purpose. All datasets are from the UCI repository, except Retail that is
provided by Tom Brijs [13]. Table of Fig. 5 compares processing times of both
algorithms and summarizes numbers of patterns when using the area function
sa. The table shows frequent MIPs are very few compared to frequent patterns
(ratio from 2 to 5 decades) and closed frequent patterns (2 to 3 decades) even for
sparse datasets like Mushroom. In case of Chess, almost no MIPs are found
as the dataset describes uncorrelated objects (i.e. winning or loosing chessboard
configurations) that do not share enough common patterns to make some MIPs
emerge. In comparison, datasets Mushroom, Vote or Retail describe set of
objects (resp. mushrooms, senators and customers) that are likely to build fami-
lies sharing common attributes and thus to provide MIPs. Concerning efficiency,
the screening process appears always faster than the direct extraction, expect
for small datasets like Vote. In the latter case, the larger time overhead of the
screening process makes it slower for short processing time (i.e. for small datasets
or large σmin). This overhead can been observed on Fig. 6(a). The figure displays
the evolution of processing times wrt threshold σmin. It shows the screening pro-
cess is always faster than the direct extraction algorithm for low values of σmin,
even if the performance ratio is rather small. Figure 6(b) shows the screening
process requires less memory as this process only requires to store one level of
frequent patterns at a time, while the direct extraction requires to store all fre-
quent patterns. However the ratio is less than a decade, as the screening process
stores levels of frequent patterns by wasting many unused intermediate nodes
in the trie structure, whereas the direct extraction uses every node of the trie
to store a frequent pattern. Distribution of processing time between steps of
the screening process is detailed on Fig. 6(c). For small values of σmin, most of
the time appears to be spent on primary screening. It is interesting to observe
on Fig. 6(d) that the number of MIP candidates does not necessarily increase
when threshold σmin decreases, as other pattern families do. The reason is that
a MIP candidate dominated by a non-frequent successor P gets discarded by the
primary screening as soon as σmin gets less than σr(P ).

4.2 MIP Relevance

MIPs have been used by authors to extract most informative reaction patterns
from chemical reaction databases [7]. Those families of chemical reactions have
shown to be characteristic of independent large families of reactions. However
chemical reaction processing requires to describe too many details so that we
propose a somewhat simpler application that consists in extracting MIPs from
1408 molecular graphs contained in NCI DTP AIDS antiviral active and mod-
erately active datasets (cf dtp.nci.nih.gov/docs/aids/aids data.html) without
taking into account negative examples (i.e. the inactive dataset). MIPs are ex-
tracted in two-steps, first by mining frequent subgraphs by Gaston [2], one of
the most efficient algorithms to perform this task, and then by applying the
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Lmips Lfcps Lfps Score Freq.
rank rank rank si(P ) σ(P ) Comment

1 1 1 76.4 888 Phenyl group
2 217 237 32.3 298 Sulfonyl + phenyl groups
3 224 244 31.8 401 First fragment of carbon skeleton
7 314 365 28 101 Signif. fragm. of AIDS active mol.

15 632 1344 24.2 106 Other significant fragment
53 1615 6765 22.3 116 Azo benzene group
74 2681 11528 21.7 216 Polycyclic aromatic hydrocarbon
80 3775 15046 21.4 107 Double aromatic amine
82 3837 15778 21.3 161 Sulfonic acid + phenyl groups
95 11799 38918 20.1 174 Diol group

111 37083 123812 17.5 249 Ether group
142 45806 211961 13.2 786 Carbonyl group
145 45950 213207 13.1 167 Phenyl + amide groups
152 47109 221915 12.1 270 Amide group
169 50985 237114 8.72 271 Alkene group
176 53288 241210 3.53 107 Sulfide group
177 53329 241261 2.2 211 Imine group
178 53333 241269 1.34 116 Sodium
179 53334 241270 1.27 117 Ammonium group

Fig. 7. The 19 frequent interesting MIPs and their ranks in Lmips, Lfcps, and Lfps

(a) 1st MIP (b) 2nd MIP (c) 7th MIP (d) 53rd MIP (e) 152nd MIP

Fig. 8. Some of the 19 frequent interesting MIPs

screening process to frequent subgraphs wrt to function si. For a threshold
σmin = 100 (7 %), the number of frequent patterns, frequent closed and MIPs are
respectively 262728, 53335, and 179. Test has then consisted in reproducing the
same visual analysis for the three pattern families. To this end, the three set of
frequent patterns, frequent closed patterns and frequent MIPs have been sorted
in decreasing order of scores in three lists Lfps, Lfcps and Lmips. For each list,
the 179 first patterns (i.e. Lmips length) have been visually analyzed: a pattern
has been considered as interesting only if it brings some new obvious pieces of
chemical information (mostly defined in term of functional groups and cycle con-
figurations) compared to previous patterns of higher scores. Whereas 19 MIPs
have been identified as interesting in Lmips, all patterns from rank 2 to 179 in
Lfcps and Lfps appear to be structural variations of the pattern of rank 1 (that
is also the 1st MIP). This pattern is the phenyl ring shown on Fig. 8(a) that
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is common in molecules and is unrelated with the AIDS antiviral application.
This shows how much frequent and even closed patterns are structurally redun-
dant and not adapted to experts’ visual analysis. In comparison the 179 MIPs
provide 19 non-redundant interesting patterns described on Fig. 7. The increas-
ing gap between the ranks of successive MIPs in Lfcps or Lfps gives an idea of the
number of redudant patterns in those lists. Conversely a further analysis shows
that each of the 1000 first closed patterns appears similar to one of the inter-
esting MIPs. In other words, no important information appears to be lost when
considering only the 19 MIPs. Some of these 19 interesting MIPs are represented
on Fig. 8. The 7th MIP (cf Fig. 8(c)) is particularly interesting as it includes
very specific chemical information but still appears in 71 active molecules and 30
moderately active molecules. Other MIPs appear to have various size, frequen-
cies, and types of atoms or bonds. In particular some MIPs appear to represent
well-known functional groups, e.g. amide group on Fig. 8(e).

5 Related Work

Since the advent of frequent itemsets and the Apriori algorithm [1], many meth-
ods have been proposed to reduce the number of frequent patterns to a restricted
subset. Their approaches vary depending on applications these methods serve,
like data compression, data summarization, or supervised classification, patterns
being then used as classification features. The oldest works have proposed con-
densed representations like closed [14] or free [15] patterns in order to reduce
number of patterns. These approaches consist in replacing the set of frequent
patterns along with their frequencies into an equivalent and reduced subset of
patterns. Since then, this approach has been generalized to other functions than
frequency [16]. However in many practical applications, the compression gain
appears insufficient to allow a direct interpretation of condensed representations
by experts, especially when datasets are dense. As their direct analysis is impos-
sible, methods have proposed to summarize set of frequent patterns by clustering
frequent itemsets [17] or even graphs [18]. Other approaches have recently pro-
posed to link pattern mining to constraint programming so that user-defined
constraints can easily be injected into the mining process [6]. Whereas experts
may this way focus on patterns with specific structures, pattern constraints are
generally insensitive to pattern redundancy.

Recent works have been proposed to address specifically the problem of re-
ducing pattern redundancy [4,19,20,21]. Most of these approaches aim at find
a reduced set of patterns that covers (i.e. subsumes) the whole dataset: for in-
stance Siebes et al. [4] use the MDL principle to encode transactions as unions of
itemsets, whereas Bringmann et al. [21] find a basis of patterns, possibly graphs,
whose the various combinations (as conjunctions of patterns) may match every
transaction, one by one. Similarly Hasan et al. [20] proposes to extract from a
graph dataset a basis of orthogonal (i.e. non-redundant) graph patterns with
a large covering of data. In order to achieve coverage of transactions, all those
methods produce patterns that are not defined on an individual basis but all
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together as a set of interdependent patterns. This set is generally defined as an
optimum relative to some global scoring function. Optimizing such a global cri-
terion requires a large amount of processing as the search space (i.e. the power
set of the set of patterns!) is huge. For this reason, a greedy heuristic algorithm
is generally used to select the next best pattern to add to the set under con-
struction. In comparison, the MIP model contrasts on several points: first the
purpose of MIPs is not covering all transactions but finding significant patterns
relatively to user expectation (through a scoring function). Second the MIP
model addresses the redundancy problem with considerations purely based on
pattern space, not on transaction coverage. Third MIPs are defined on an in-
dividual basis, and for this reason, a complete extraction without heuristics is
possible for reasonable frequency thresholds.

6 Conclusion

MIPs provide experts a very reduced set of patterns that are representative of a
dataset and are not redundant compared to other families of patterns like closed
patterns. In addition the model accepts a large choice of scoring functions in
order to reflect representativeness wrt to expert knowledge. The method con-
sisting in screening frequent MIPs from frequent patterns appears more efficient
and more scalable than a direct extraction even if the gain varies from significant
to slight levels, depending on datasets. The model has been tested on datasets
made of itemsets but also of molecular graphs, and chemical reactions. In the
two latter cases, MIPs have shown to provide significant patterns (i.e. molecule
fragments or reaction patterns) characteristic of distinct families of objects (i.e.
families of molecules or chemical reactions). However some MIPs still appear re-
dundant for low level of scores because of noisy variations in the scoring function.
Therefore we plan as a perspective, to screen more severely patterns according
to their score in order to remove these artefacts.
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