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Abstract. The “coefficient H technique” is a tool introduced in 1991
and used to prove various pseudo-random properties from the distribu-
tion of the number of keys that sends cleartext on some ciphertext. It
can also be used to find attacks on cryptographic designs. We can like
this unify a lot of various pseudo-random results obtained by different
authors. In this paper we will present this technique and we will give
some examples of results obtained.

1 Introduction

The “coefficient H technique” was introduced in 1990 and 1991 in [I1], [12]. Since
then, it has been used many times (by myself , Henri Gilbert, Gilles Piret, Serge
Vaudenay, etc.) to prove various results on pseudo-random functions and pseudo-
random permutations. In this paper we will present in a self content way the
“coefficient H technique”, with different formulations when we study different
cryptographic attacks (known plaintext attacks, chosen plaintext attacks, etc.).
We will give proofs of some of these theorems and we will give some simple
examples.

2 Notation - Definition of H

In all this paper, we will use these notations.

— KPA: Known Plaintext Attack

— CPA-1: Non-adaptive Chosen Plaintext Attack

CPA-2: Adaptive Chosen Plaintext Attack

CPCA-1: Non-adaptive Chosen Plaintext and Chosen Ciphertext Attack
CPCA-2: Adaptive Chosen Plaintext and Chosen Ciphertext Attack

— Iy = {0,1}¥ (N is any integer)

— Fy will be the set of all applications from Iy to Iy

By will be the set of all permutations from Iy to Iy

wk will denote the Feistel scheme of Fj,, with k& rounds with & random round
functions randomly chosen in F}, (n is any integer). ¥ is also called a random
Feistel scheme or a Luby-Rackoff construction.

a €r A means that a is randomly chosen in A with a uniform distribution
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— K will denote a set of values that we will sometimes call “keys”. In this
paper we will consider that K is a set of k-uples of functions (fi,..., fx) of
F,. (However generally only |K| will be important, not the nature of the
elements of K).

— G is an application of K — Fl. (Therefore, G is a way to design a function
of Fy from k-uples (fi,..., fr) of functions of F,, of K).

Let m be an integer (m will be the number of queries). Let a = (a;)1<i<m be a
sequence of pairwise distinct elements of I. Let b = (b;)1<i<m be a sequence of
elements of Iy. By definition, we will denote by H(a,b) or simply by H if the
context of the a; and b; is clear, the number of (f1,..., fx) € K such that:

Vi, 1 <4< m, G(flv"'afk)(ai) =b

Therefore, H is the number of “keys” (i.e. elements of K) that send all the a;
inputs to the exact values b;.

3 Five Basic “coeflicient H” Theorems

In this section we will formulate five theorems. These theorems are the basis
of a general proof technique called the “coefficient H technique”, that allows to
prove security results for function generators and permutation generators (and
thus applies for random and pseudo-random Feistel ciphers).

These theorems were mentioned in [I2] (with proofs in french) and in [16].
Since no proof in english was easily available so far we will present in this paper,
in Appendices, a proof of some of these theorems.

Theorem 1. [Coefficient H technique, sufficient condition for security
against KPA] Let a and (8 be real numbers, a >0 and 8 > 0. If:

(1) For random walues a;, by, 1 < i < m of Iy such that the a; are pairwise
distinct, with probability > 1 — 3 we have:

K]
H > 2Nm(1—a)

Then

(2) For every KPA with m (random) known plaintexts we have: Adv®F4 <
a + B, where AdvEP4 denotes the advantage to distinguish G(fi,. .., fr)
when (f1,..., fx) €r K from a function f €r Fy

(By “advantage” we mean here, as usual, for a distinguisher the absolute value
of the difference of the two probabilities to output 1).

Theorem 2. [Coefficient H technique, sufficient condition for security
against CPA-1] Let « and 3 be real numbers, « > 0 and 8 > 0. If:
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(1) For all sequences a = (a;), 1 < i < m of m pairwise distinct elements of In
there exists a subset E(a) of IV such that |E(a)| > (1 — ) - 2N™ and such
that for all sequences b= (b;), 1 <i <m of E(a) we have:

K|

|
H> 2Nm(1—a)

Then

(2) For every CPA-1 with m chosen plaintexts we have: AdvPRE < o+ 3 where
AdvTRY denotes the advantage to distinguish G(f1,..., fx)
when (f1,...,fx) €Er K from a function f €g Fy.

Theorem 3. [Coeflicient H technique, sufficient condition for security
against CPA-2] Let o and 8 be real numbers, o > 0 and > 0. Let E be a
subset of IN such that |E| > (1 — ) - 2N™.

If:

(1) For all sequences a;, 1 <i < m, of pairwise distinct elements of In and for
all sequences b;, 1 <1i <m, of E we have:

K|

|
H> 2Nm(1—a)

Then

(2) For every CPA-2 with m chosen plaintexts we have: AdvPEE < o+ 3 where
AdvTRY denotes the probability to distinguish G(f1, ..., fx) when
(f1,---, frx) €Er K from a function f €r Fi.

Theorem 4. [Coeflicient H technique, sufficient condition for security
against CPCA-2] Let « be a real number, o > 0. If:

(1) For all sequences of pairwise distinct elements a;, 1 < i < m, and for all
sequences of pairwise distinct elements b;, 1 < i < m, we have:

K]
H> oNm (1-a)
Then
(2) For every CPCA-2 with m chosen plaintexts we have: AdvPRE < a+ mg;;”

where AdvPRE denotes the probability to distinguish G(f1,..., fx) when
(f1,-.-, Jr) €Er K from a function f €r By.

Theorem 5. [Coeflicient H technique, a more general sufficient condi-
tion for security against CPCA-2]

Let a and B be real numbers, « >0 and 8 > 0

If there exists a subset E of (IN)2 such that

(la) For all (a,b) € E, we have:

K]

|
H> 2Nm(l—oz)
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(1Ib) For all CPCA-2 acting on a random permutation [ of By, the probability
that (a,b) € E is > 1— 3 where (a,b) denotes here the successive b; = f(a;)
ora; = f~Y(b;), 1 <i < m that will appear.

Then

(2) For every CPCA-2 with m chosen plaintexts we have: AdvPF < o +
where AdvPRE denotes the probability to distinguish G(f1,. .., fx) when
(f1,---, fr) €Er K from a function f €r By.

Remark. There are a lot of variants, and generalizations of these theorems. For
example, in all these theorems 1, 2, 3, 4, 5, the results are also true if we change
H > QIJ{,{JYL (1—a) by H< QIJ{,{JYL (1 4+ «). However, for cryptographic uses H >
is much more practical since often it will be easier to evaluate the exceptions
where H is < average than the exceptions when H is > average.

4 How to Use the “Coefficient H Technique”

We have used the “coefficient H technique” to obtain proofs of security (cf
sections 5 and 6 below), generic attacks (cf section 7 below) and to obtain new
cryptographic designs (cf section 8 below). For proofs of security, very often,
the aim is to prove that a cryptographic construction A is not distinguishable
from an ideal object B. For example, in the Luby-Rackoff original result of [6],
A is a 3 or 4 round Feistel scheme with round functions generated from a small
key k by a pseudo-random function generator, and B is a perfectly random per-
mutation. For the proof, we introduce another ideal construction C, where all
the pseudorandom functions are replaced by truly random functions (or other
pseudo-random objects are replaced by truly random ones). Now the idea is that

Adv(A — B) < Adv(A — C) + Adv(C — B)

i.e. the advantage to distinguish A from B is always smaller or equal to the
advantage to distinguish A from C plus the advantage to distinguish C from
B. To prove that Adv(A — C) is small is generally very easy: it comes from
the hypothesis that the function generator is secure, for example. To prove that
Adv(C — B) is small is sometimes more difficult. However, in A the only se-
cret values are generally contained in a small secret cryptographic k (of 128
bits for example) while in C the secret values are much bigger since they are
generally truly random secret functions. The “coefficient H” technique is very
often a powerful tool to get a proof that Adv(C — B) is small (and therefore
that Adv(A — B) is small, as wanted since Adv(A — C) is small). For this, we
“just” have to compute some values H, as stated in Theorem 1,2,3,4,5. When
the computations of these values H are easy, the proofs will be easy. (Very often
these values are easy to compute when we are below a “birthday bound value”,
i.e. when the analysis of collisions in equations are easy since the probability to
get such collisions is small). However, sometimes, the computations of the values
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H are not easy. For these cases, I have developed two techniques of computations
that I have called H,, and H, techniques.

H,, Technique

H,, stands for H “worst case” technique. The set of parameters on which we want
to compute H is generally fixed from the beginning. For these computations, I
sometimes use the “Theorem P;@ P;” (or variants of it) that I will present below.
(See section 6.1 for an example of this technique).

H, Technique

H, stands for H “standard deviation” technique. The set of parameters on which
we want to compute H is not fixed from the beginning, but it will automatically
be fixed from the computation of the standard deviation of H. We will generally
use the covariance formula to compute this standard deviation. (See section 6.2
for an example of this technique).

C

Fig. 1. Three cryptographic objects A,B,C

“Theorem P; @ P;”

The “Theorem P; & P;” was proved in [I7]. We use it sometimes to compute
some difficult values H. Let us recall here what this theorem is.

Definition 1. Let (A) be a set of equations P; & P; = A, with P, Pj, \i, € I,.
If by linearity from (A) we cannot generate an equation in only the Ay, we will
say that (A) has “no circle in P”, or that the equations of (A) are “linearly
independent in P”.

Let a be the number of equations in (A), and a be the number of variables P;
in (A). So we have parameters A1, Ao, -+, s and a + 1 < o < 2a.

Definition 2. We will say that two indices i and j are “in the same block” if

by linearity from the equations of (A) we can obtain P; & P; = an expression in
A17>\27' : '7>\a-

Definition 3. We will denote by &pqr the mazimum number of indices that are
in the same block.

Ea;ample 1. If A= {Pl e P = /\1,P1 ¢ P = )\2,P4 @ P = /\3}7 here we have
two blocks of indices {1, 2,3} and {4,5}, and &nae = 3.
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Definition 4. For such a system (A), when A1, Aa, -+, Aq are fized, we will
denote by he, the number of Py, Pa,- -, P, solutions of (A) such that: Vi, j, i # j
= P; # P;. We will also denote H, = 2"%hg,.

Remark heo and H, are a concise notations for h,(A) and H,(A). For a given
value a, h, and H, can have different values for different systems A.

Definition 5. We will denote by J, the number of Py, Ps,---, P, in I, such
that:¥i,j, i1#j = P, #Pj. So J,=2"-(2" =1)--- (2" —a +1).

Theorem 6 (“Theorem P; @ P;” when &max is fixed). Let {maq be a fized
integer, Emaz > 2. Let (A) be a set of equations P; & P; = A\, with no circle in
P, with o variables P;, such that:

1. We have no more than &pyq, indices in the same block.

2. The A1, Ao, -+, Ax have any fized values such that: for all i and j in the same
block, i # j, the equation of P;® P; in A1, A2, -+, Aq 18 # 0 (i.e. by linearity
from (A) we cannot generate an equation P; = P; with i # 7).

Then we have for sufficient large n: Hy > Jo. (This means: for all fived &maq,
there exists ng € N such that, for all n > ng, for all system A that satisfies 1.
and 2., we have: Hy(A) > J,).

Remark This theorem was proved in [16] if we add the condition a® < 22" (and
also Enaea® < 227 since &,,45 i here a fixed integer).

Theorem 7 (“Theorem P; @ P;” when &mazax K 2™ ). With the same
notations, we have the same result, with the hypothesis &maza K 2™ (instead of

Emaz 0 fized integer).

Remark. For cryptographic use, weaker version of this theorem will be enough.

For example, instead of H, > J, for sufficiently large n, H, > J, (1 — f(gﬁ‘)),

where f is a function such that f(z) — 0 when x — 0, is enough.
Another variant of this Theorem P; ® P; is:

Theorem 8 (“Theorem P; & P; when &,,,, < O(n) and &uyerage < 3). Let
Eaverage be the average value of &, where £ is the number of variables P; that
are fized from the equations (A) when we fix a variable P;. If &2 < O(n) and

Eaverage < 3, then for sufficient large n, Hy > Jo.

Generalizations of the “Theorem P; ® P;”. This theorem may have many gen-
eralizations. For example:

e Generalization 1: the theorem is still true in any group G (instead of I,,).

e Generalization 2: we have a similar property for equations with 3, 4, ---, or
k variables, i.e. each equation is P;, @ P;, - - - P;, = A\ with pairwise distinct P;
variables.

However in this paper we will only study the original “Theorem P; & P;” (i.e.
theorems [6] and [7) since it is this one that is needed to study random Feistel
schemes.
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5 First Simple Examples

5.1 2

For 2 (Feistel scheme with the round functions (fi, f2) €r F2) let [Li, Ri], 1 <
i < m denotes the inputs, and [S;, T3], 1 < ¢ < m denotes the outputs. We have:
Si=L;® f1(R;) and T; = R; @ f2(Si) (*)

For random values [L;, R;], [Si, Ti], 1 <4 < m (such that ¢ # j — L; # L; or
R; # R;) with probability > 1 — g‘f we have that all the R; values are pairwise
distinct and all the S; values are pairwise distinct. Moreover, if this occurs, we
have exactly H = gﬂ: (since (*) then fix f; exactly on m points and fo exactly
on m points).

So from Theorem 1 (with o =0 and 5 = 72"5) we get:

Theorem 9. For every KPA with m random known plaintexts, we have

2
KPA ™M
Adv < on
where Adv™T4 denotes the advantage to distinguish ? when (fi, f2) €r F?
from a function f €p Fopn. So when m < 2™/2, 4% will resit all known plaintext
attacks.

Remark. This result is tight, since when m? becomes not negligible compared
with 2" then by counting the number N of (i,5)/S; ® L; = S; & L; we will
be able to distinguish 9 from a random permutation with a known plaintext
attack.

5.2 Involutive Permutations

Let assume that G is a generator of permutations that generates involutive
permutations f (i.e. f = f~1). Then we can distinguish such f from random
permutations of By with m = 2 queries in CPA-2 and m = 2 queries in CPCA-1.

CPA-2

In CPA-2 we ask f(a1) = by and f(b1) = ba, and we test if by = a;. This gives
a CPA-2 with m = 2 queries. It is not in contradiction with Theorem 3 since
in Theorem 3, we need property (1) on all sequences a;, 1 < i < m (and not
necessary on all sequences b;). Here if we have a = (a1,a2), b = (b1,b2) with
as = by and by # a1, we will have H = 0. Therefore we will not be able to prove
from Theorem 3 that G is secure in CPA-2 (in fact G is not secure in CPA-2)
since for most (b, by) there exists (a1, as3) (take ag = b1) such that H = 0.

CPCA-1

In CPCA-1 we ask f(a1) = by and f~'(a1) = az and we test if ag = by. This
gives a CPCA-1 distinguisher with m = 2 queries. We will not be able to prove
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Number H, of solutions

A

Jb

Ja

0 >
variables (A1, - Aq) variables (A1, - Aq)
that generates by linearity that do not generate by linearity

an equation P; = Pj, i # j an equation P; = Pj, i # j
Fig. 2.

from Theorem 4 or Theorem 5 that G is secure in CPCA-1 (in fact G is not
secure in CPCA-1) since in a non-adaptive chosen plaintext/ciphertext attack
we can impose that by = aq and if we have a = (a1, a2), b = (b1, b2) with by = a;
and ag # b; we will have H = 0.

CPA-2
KPA CPA-1 CPCA-2
CPCA-1

Fig. 3. Hierarchy of the attacks in secret key cryptography

5.3 Secret Key Security Hierarchy

In Figure 1, we have the well known hierarchy of attacks in secret key cryptog-
raphy (cf [2], [], [5]). With coefficients H technique we can easily prove on small
examples this hierarchy, i.e. for example that there are some scheme secure in
CPA-2 and not in CPCA-1, that some schemes are secure in CPA-1 and not in
KPA etc. For example, we can easily prove that for a random involutive permu-
tation of By we will have KPA and CPA-1 security in O(v/2N). Therefore the
example of Section 6.2 shows that CPA-1 < CPA-2 and that CPA-1 < CPCA-1.

With f such that f(0) = 0 we will have that KPA < CPA-1.

With 92 we will have KPA < CPA-1.

With 93 we will have CPA-2 < CPCA-2 and CPCA-1 < CPCA-2.

With a random permutation such that f2 = Id we see that sometimes CPA-2
> CPCA-1
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With a random permutation, such that f=1(x) = f(x) ® k where k is a secret
constant we see that sometimes CPCA-1 > CPA-2.

6 Proofs with Coeflicient H

6.1 Feistel Schemes ¥

I have proved many security results on ¥* generators with coefficient H. For
example, in [17], the security of 1° when m < 2" was proved (with the H,,
technique and “Theorem P; & P;”).

6.2 Xor of Two Random Permutations

Xoring two permutations is a simple very way to construct pseudorandom func-
tions from pseudorandom permutations (this problem is sometimes called “Luby-
Rackoff backwards”). In [19] we have proved this result:

Theorem 10. For every CPA-2 on a function G of F,, with m chosen plaintexts,
we have

)
21’L

where AdvPRY denotes the advantage to distinguish f © g with f,g €r B, from
hegrF,.

AdvPEE < O(

How to Get Theorem 10 from Theorem 3

A sufficient condition is to prove that for “most” (most since § must be small)
sequences of values b;, 1 < i < m, we have: the number H of (f,g) € B2 such
that Vi, 1 < i < m, f ® g(a;) = b; satisfies: H > IQB;E,;ZI (1 — ) for a small value
a (more precisely o < O(J5)). One way to do this is to evaluate E(H) and
o(H), i.e. the mean value and the standard deviation of H when the b; values
are randomly chosen in I7". (We call this technique, the “H, technique”).

We can see that the result wanted to prove Theorem 10 exactly says that
o(H) < E(H) when m < 2™, To prove this, we can use the “covariance formula”

V(Z Ni) =Y (V(N) + ) _[E(NiN;) — E(N;) E(N;)]

i i#]

By definition, let \,,, be the number of sequences of values of I3, (fi, gi, hi),1 <
© < m such that:

1. The m values f; are pairwise distinct.
2. The m values g; are pairwise distinct.
3. The m values h; are pairwise distinct.
4. The m values f; ® g; ® h; are pairwise distinct.
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After a change of variables we get finally that the property wanted in Theorem
10 means that

nion __ n_m 4 m
NI A +1)) (o™

Qnm

(This is what was proved in [19])
I have also conjectured this property:

Vf € Fo, if @ f(z) =0, then 3(g,h) € B,2, such that f =g & h.

xzel,

Just one day after paper [I9] was put on eprint, J.F. Dillon pointed to us that
in fact this was proved in 1952 in [3]. We thank him a lot for this information.
(This property was proved again independently in 1979 in [24]).

A New Conjecture

However I conjecture a stronger property. Conjecture:

VfeF,,if @ f(z) =0, then the number H of (g,h) € B2,

zel,

|Bn?

such that f = g & h satisfies H > ona2n °

Variant: I also conjecture that this property is true in any group, not only with
Xor.

Remark: In this paper, I have proved weaker results involving m equations with
m < O(2") instead of all the 2™ equations. These weaker results were sufficient
for the cryptographic security wanted.

6.3 Benes Schemes

In [I8] the security of Benes schemes when m <« 2™ was finally obtained (after
the beginning of some proof ideas in [I]).

7 Attacks with Coefficient H

By using the coefficient values we were able to find many generic attacks. We
give here some examples.

7.1 For Feistel Schemes ¥

From [I5] we have the results of Table [I1
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Table 1. Minimum number A of computations needed to distinguish a generator ¥*
(with one or many such permutations available) from random permutations with an
even signature of I, — I,. For simplicity we denote a for O(«). < means best known
attack.

KPA CPA-1 CPA-2 CPCA-1 CPCA-2

U 1 1 1 1 1
w2 on/? 2 2 2 2
w3 on/? on/2 on/? on/2 3
w4 o on/? on/? on/? on/?
w5 < 9%n/2 on on on on
U6 < 9 < gn < 9% < g < 9
1 < 280 < 23n < 280 < 23n < 280
U8 < 2in < 2in < 2in < oin < 2in

Wk7 k > 6 * < 2(k74}n < 2(k74)n < 2(k:74)n < 2(k74)n < 2(k74)n

* If k > 7 these attacks analyze about 2(*~9" permutations of the generator and if
k < 6 only one permutation is needed.

7.2 For Feistel Schemes 1/1/'“ with & Random Permutations for the
Rounds Functions (Instead of Round Functions)

From [26] we have the results of Table

Table 2. Maximum number of computations needed to get an attack on a k-round
Feistel network with internal permutations (4) is shown when the values are larger
than the corresponding values with internal functions.

g?izzrd’: KPA CPA-1  CPA-2 CPCA-1 CPCA-2
1 1 1 1 1 1
9 on/2 2 2 2 2
3 2"(+) 2n/? on/2 on/? 3
4 on on/?2 /2 2"/ 27/
5 23n/2 on on on on
6 PU(4) 2 2 2T 24
7 2%" 2%" 2%" 2" 2%
8 24n 24n 2471 24n 24n
9 () () () () 2
10 26n 96n 26m 20m 20n
11 277,/ 2771, 2771 27n 27n
12 27(+)  2(+)  2(4) 2(H) 2(+)
$26. k=0 mod3 2(1673)”(+) 2(k—3)n(+) 2(k—3)ﬂ(+) 2{k—3)n(+) 2(k—3)n(+)
K36, ket or 2 mods 2E0n glk=t)n " ok—tn " o(k—a)n ok=a)n

7.3 For Unbalanced Feistel Schemes with Contracting Functions

From [21] we have the results of Table [3
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Table 3. Results on G¢ for any k > 4. For more than 2k rounds more that one
permutation is needed or more than 9(2k—4)n computations are needed in the best
known attacks to distinguish from a random permutation with an even signature.

KPA CPA-1%
Gl 1<d<k-1 1 1
Gk' 2n(k2—1) 2
k
Gt 2" 2%
Grt? 25m 23n
Ghts 9("Ehn 25m
GHi1<i<k 2" 137 m 2(*'3
Gi; o(2k—4)n o(2k—a)n

Gl d>2k  2WHE-DLEI=2km gWdt(h-2)L ) ~2k)n

® Here we do not show CPA-2, CPCA-1 and CPCA-2 since for G, no better attacks
are found compared with CPA-1.

7.4 For Unbalanced Feistel Schemes with Expanding Functions
From [22] we have the results of Table @

Table 4. Best known attacks on FZ for k > 3

KPA CPA-1
Flg 1 1
F3 2n 2
F2<d<k 2%3'n 2
Ftt 257 23
F:+2 2k;1"' on
F,f+3 2“:3 n 92n o ngrz
Fi k+2<d<2k 24 *n gld—k—D)n o1 9% n
F2k 2%n 9% tn
FR1 o(k—})n o(k=)n
Figk an 2kn
Fl 3k <d<k2 o(d—2k)n o(d—2k)n
FZ?Q a 9(k2—2k)n 9(k2—2k)n
............. Fk2+1 2(2]&27%72)” 2(%27%72)”
k
Fld>k2+1 o(12d(1= )] —k=3)n o(12d(1— })]—k—3)n

8 New Designs

8.1 Russian Doll Design

See [23] in this volume.
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8.2 Design from Random Unbalanced Feistel Schemes

This design comes directly from Table 3.

8.3 Hash Function Design

From 9.1 and 9.2 we are analyzing a Hash function design (by Xoring two inde-
pendent pseudorandom permutations, or by Xoring the input and the output of
a pseudorandom permutation).

9

Conclusion

With the “coefficient H technique” we were able to prove many security results
and to get many generic attacks. Moreover, it was a source of inspiration for the
design of new schemes.

References

10.

11.

12.

. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-

tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307-320.
Springer, Heidelberg (1996)

. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment

of Symmetric Encryption: Analysis of the DES Modes of Operation. A Concrete
Security Treatment of Symmetric Encryption and appeared in the Proceedings of
38th Annual Symposium of Computer Science, IEEE (1997)

. Hall Jr., M.: A Combinatorial Problem on Abelian Groups. Proceedings of the

Americal Mathematical Society 3(4), 584-587 (1952)

. Katz, J., Yung, M.: Characterization of Security Notions for Probabilistic. In:

Private-Key Encription — STOC 2000 (2000)

. Katz, J., Yung, M.: Unforgeable Encryption and Chosen-Ciphertext-Secure Modes

of Operation. In: Fast Software Encryption 2000 (2000)

. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-

dorandom Functions. STAM J. Comput. 17(2), 373-386 (1988)

. Maurer, U.M.: A simplified and generalized treatment of luby-rackoff pseudoran-

dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239-255. Springer, Heidelberg (1993)

. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)

EUROCRYPT 2002. LNCS, vol. 2332, pp. 100-132. Springer, Heidelberg (2002)

. Maurer, U., Pietrzak, K.: The Security of Many-Round Luby-Rackoff Pseudo-

Random Permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544-561. Springer, Heidelberg (2003)

Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. J. Cryptology 12(1), 29-66 (1999)

Patarin, J.: Pseudorandom Permutations based on the DES Scheme. In:
Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193-204.
Springer, Heidelberg (1991)

Patarin, J.: Etude de Générateurs de Permutations Basés sur les Schémas du DES.
Ph. Thesis. Inria, Domaine de Voluceau, France (1991)



The “Coefficients H” Technique 341

13. Patarin, J.: New results on pseudorandom permutation generators based on
the DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 301-312. Springer, Heidelberg (1992)

14. Patarin, J.: How to construct pseudorandom and super pseudorandom per-
mutations from one single pseudorandom function. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 256-266. Springer, Heidelberg (1993)

15. Patarin, J.: Generic attacks on feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222-238. Springer, Heidelberg (2001)

16. Patarin, J.: Luby-rackoff: 7 rounds are enough for formula image security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513-529. Springer,
Heidelberg (2003)

17. Patarin, J.: On linear systems of equations with distinct variables and small block
size. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 299-321.
Springer, Heidelberg (2006)

18. Patarin, J.: A proof of security in O(2")for the benes scheme. In: Vaudenay, S.
(ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 209-220. Springer, Heidelberg
(2008)

19. Patarin, J.: A proof of security in O(2") for the xor of two random permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232—248. Springer,
Heidelberg (2008)

20. Patarin, J.: Generic Attacks for the Xor of k Random Permutations (eprint) (2008)

21. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS,
vol. 4284, pp. 396-411. Springer, Heidelberg (2006)

22. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS,
vol. 4833, pp. 325-341. Springer, Heidelberg (2007)

23. Patarin, J., Seurin, Y.: Building Secure Block Ciphers on Generic Attacks Assump-
tions. In: SAC 2008 (2008)

24. Salzborn, F., Szekeres, G.: A Problem in Combinatorial Group Theory. Ars Com-
binatoria 7, 3-5 (1979)

25. Schneier, B., Kelsey, J.: Unbalanced Feistel Networks and Block Cipher Design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121-144. Springer, Heidelberg
(1996)

26. Treger, J., Patarin, J.: Generic Attacks On Feistel Schemes with Internal Permu-
tations (paper in preparation)

A Proof of Theorem 1

Let ¢ be an algorithm (with no limitations in the number of computations)
that takes the (a;,b;), 1 <4 < m in input and outputs 0 or 1. let P; be the
probability that ¢ outputs 1 when Vi, 1 < i < m b; = G(f1,..., fr)(a;) when
(f1,..-, frx) €r K. Let P be the probability that ¢ outputs 1 when b; = F'(a;)
when F €r Fn. We want to prove that |E(P; — Pf)|a + 8. Let D be the set of

all pairwise distinct a;, 1 < i < m (so |D| ~2V™(1 — mgz;n)). When the a;,
1 <1 < m are fixed, let W (a) be the set of all by, ..., b,, such that the algorithm
¢ outputs 1 on the input (a;,b;), 1 <i < m. When the a;, 1 < i < m are fixed
in D, then we have:

«_ |W(a)|
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and
1
P = K| Z [Numbers of (f1,...,fr) € K/
beW (a)
Vi? 1< < m, G(flv"'vfk:)(ai) :bz]
SO

ZHab (2)

bEW (a)

Moreover, by hypothesis we have that the number N of (a,b) such that
H(a,b) > K] (1 — ) satisfies : N> |D| - 2V™(1 = B)  (3)
’ — 9Nm : -
When the (a;), 1 <14 < m are fixed, let N'(a) be the set of all b such that:
K
)z Al oo

From (3) we have:

> W(a)| >|D]-2¥"(1~5) (4)

a€D

From (2) we have:
1
Pz D, Hab)
‘ ‘ beW (a)NN(a)
S0

P> 0 e n )

S0
1
Az 0 W) - @) )
where N(a) is the set of all b such that b & N'(a). |N”(a)| = 2V™ — |N(a)], so
Y W'(a) = DY =Y N (a)
a€D a€D
so from (4) we have:
> W) <8-[D]-2V™, so E(N(a)]) < B-2V™  (6)
a€eD

(where the expectation is computed when the (a;), 1 < i < m are randomly
chosen in D). From (5) and (1) we have:

W’(a)|>
QNm

_ W(a)]

2Nm

P> -a)(p -

P> (1—a)Pf
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so from (6) we get:
E(P) > (1-o)E(P) - f
S0
E(P) > E(PY)—a—=( (7)
Now if we consider the algorithm ¢’ that outputs 1 if and only if ¢ outputs 0, we
have P/ = 1—P; and P;* = 1— Pf and from (7) we get: E(P]) > E(P,*)—a—p
(because (7) is true for all algorithm ¢, so it is true for ¢’). So

EQ-P)>E(1-P)—a-0

S0
E(P) - E(Pf)<a+f (8)

From (7) and (8) we get |[E(P1 — P;)| < a+ (8 as claimed.

B Proof of Theorem 3

(I follow here a proof, in French, of this Theorem in my PhD Thesis, 1991,
Page 27).

Let ¢ be a (deterministic) algorithm which is used to test a function f of F,.
(¢ can test any function f from In — In). ¢ can use f at most m times, that
is to say that ¢ can ask for the values of some f(C;), C; € Iy, 1 <i < m. (The
value C; is chosen by ¢, then ¢ receive f(C7), then ¢ can choose any Cy # Cf,
then ¢ receive f(C3) etc). (Here we have adaptive chosen plaintexts). (If ¢ # j,
C; is always different from C;). After a finite but unbounded amount of time, ¢
gives an output of “1” or “0”. This output (1 or 0) is noted ¢(f).

We will denote by Pj, the probability that ¢ gives the output 1 when f is
chosen randomly in F),. Therefore

__ Number of functions f such that ¢(f) =1

P*
! |Fn |

where |Fy| = 2V:2",

We will denote by P;, the probability that ¢ gives the output 1 when
(f1,---, fx) €Er K and f = G(f1,..., fx). Therefore

_ Number of (f1,..., fx) € K such that ¢(G(f1,...,fr)) =1

Py
|K|

We will prove:
(“Main Lemma”): For all such algorithms ¢,
|Pr— Pl <a+p

Then Theorem 1 will be an immediate corollary of this “Main Lemma” since
AdvPEFE s the best | P, — Py| that we can get with such ¢ algorithms.
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Proof of the “Main Lemma”
Evaluation of Pf

Let f be a fixed function, and let C1,...,C), be the successive values that the
program ¢ will ask for the values of f (when ¢ tests the function f). We will note
o1 = f(C1),...,0m = f(Cm). ¢(f) depends only of the outputs o1,...,0m.
That is to say that if f is another function of F, such that Vi, 1 < i < m,
1(C;) = o, then ¢(f) = ¢(f'). (Since for i < m, the choice of C;11 depends
only of o1,...,0;. Also the algorithm ¢ cannot distinguish f from f/, because
¢ will ask for f and f’ exactly the same inputs, and will obtain exactly the
same outputs). Conversely, let o1,...,0, be m elements of Iy. Let C; be the
first value that ¢ choose to know f(C1), Ca the value that ¢ choose when ¢ has
obtained the answer oy for f(C}),..., and C,, the m!" value that ¢ presents to
f, when ¢ has obtained o1, ...,0,—1 for f(C1),..., f(Cpn-1). Let ¢p(o1,...,0m)
be the output of ¢ (0 or 1). Then

. Number of functions f such that Vi, 1 <i <m, f(C;) = o;
- Y
¢(011at:.-;7n73=1

Since the C; are all distinct the number of functions f such that Vi, 1 < i <
m, f(C;) = o; is exactly |F,|/2™™. Therefore

P Number of outputs (o1, ..., 0., ) such that ¢(o1,...0m) =1
=

2Nm
Let A be the number of outputs o1, ..., such that ¢(oy,...0,) = 1. Then
pPr= ..

Evaluation of P;

With the same notation o1,...,0,, and C1,...Cpy,:

P = ! Z [Number of (fi,..., fr) € K such that

Vi, 1 S ) S m, G(fl,. . ,fk)(Cl) = O'i} (3)

Now (by definition of 3) we have at most 5-2"" sequences (o1, . . ., 0y ) such that
(01,...,0m) ¢ E. Therefore, we have at least N'— 3-2V™ sequences (o1, ..., 0m)
such that ¢(o1,...0m) =1 and (01,...,0pm) € E (4). Therefore, from (1), (3)
and (4), we have

W —p-28m)- (1 —a)

Py
|K|

Y

Therefore
N
P>y, —B)1—a)

Pz (P =p)(1—-a)
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Thus P, > P — a — 8 (5), as claimed.

We now have to prove the inequality in the other side. For this, let Py be the
probability that ¢(f) = 0 when f €g Fy. Py* = 1 — P;. Similarly, let Py be the
probability that ¢(f) = 0 when (fi,..., fx) €r K and f = G(f1,..., fr). Po =
1—P;. We will have Py > Py —a—f (since the outputs 0 and 1 have symmetrical
hypothesis. Or, alternatively since we can always consider an algorithm ¢’ such
that ¢'(f) =0 < ¢(f) =1 and apply (5) to this algorithm ¢’).

Therefore, 1 — P > 1— Pf —a — (3, i.e. P > P — a — (3 (6). Finally, from
(5) and (6), we have: |P, — P;| < a + (3, as claimed.
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