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Abstract. We study the security of step-reduced but otherwise unmod-
ified SHA-256. We show the first collision attacks on SHA-256 reduced
to 23 and 24 steps with complexities 218 and 228.5, respectively. We give
example colliding message pairs for 23-step and 24-step SHA-256. The
best previous, recently obtained result was a collision attack for up to 22
steps. We extend our attacks to 23 and 24-step reduced SHA-512 with
respective complexities of 244.9 and 253.0. Additionally, we show non-
random behaviour of the SHA-256 compression function in the form of
free-start near-collisions for up to 31 steps, which is 6 more steps than
the recently obtained non-random behaviour in the form of a semi-free-
start near-collision. Even though this represents a step forwards in terms
of cryptanalytic techniques, the results do not threaten the security of
applications using SHA-256.
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1 Introduction

In the light of previous break-through results on hash functions such as MD5 and
SHA-1, the security of their successors, SHA-256 and sisters, against all kinds
of cryptanalytic attacks deserves special attention. This is even more important
as many products and services that used to rely on SHA-1 are now migrating to
SHA-256.
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1.1 Previous Work on Members of the SHA-2 Family

Below, we briefly discuss existing work. Results on older variants of the larger
MD4 related hash function family, including SHA-1, suggest that the concept
of local collisions might also be important for the SHA-2 family. The first pub-
lished analysis on members of the SHA-2 family, by Gilbert and Handschuh [2],
goes in this direction. They show that there exists a 9-step local collision with
probability 2−66. Later on, the result was improved by Hawkes et al. [3]. By
considering modular differences, they increased the probability to 2−39. Using
XOR differences, local collisions with probability as high as 2−38 where used by
Hölbl et al. [4]. Local collisions with lower probability but with other properties
were studied by Sanadhya and Sarkar in [13].

Now we turn our attention to the analysis of simplified variants of SHA-256.
In [17], Yoshida and Biryukov replace all modular additions by XOR. For this
variant, a search for pseudo-collisions is described, which is faster than brute
force search for up to 34 steps. Matusiewicz et al. [8] analysed a variant of
SHA-256 where all Σ- and σ-functions are removed. The conclusion is that for
this variant, collisions can be found much faster than by brute force search. The
work shows that the approach used by Chabaud and Joux [1] in their analysis
of SHA-0 is extensible to that particular variant of SHA-256. The message ex-
pansion as a building block on its own was studied by Matusiewicz et al. [8] and
Pramstaller et al. [12].

Finally, we discuss previous work that focuses on step-reduced but otherwise
unmodified SHA-256. The first study was done by Mendel et al. [9]. The results
obtained are a practical 18-step collision and a differential characteristic for 19-
step SHA-224 collision. Also, an example of a pseudo-near-collision for 22-step
SHA-256 is given. Similar techniques have been studied by Matusiewicz et al. [8]
and recently also by Sanadhya and Sarkar [15]. Using a different technique,
Nikolić and Biryukov [10] obtained collisions for up to 21 steps and non-random
behaviour in the form of semi-free-start near-collisions for up to 25 steps. Very
recently, Sanadhya and Sarkar [16] extended this, and showed a collision example
for 22 steps of SHA-256 in [14].

1.2 Our Contribution

We extend the work of Nikolić and Biryukov [10] to collisions for 23- and 24-step
SHA-256 with respective time complexities of 218 and 228.5 reduced SHA-256
compression function evaluations. These 23- and 24-step attacks are also applied
to SHA-512, with complexities of 244.9 and 253.0 for 23-step SHA-512 and 24-
step SHA-512, respectively. Example collision pairs for 23-step SHA-256 and
SHA-512, and for 24-step SHA-256 are given. The collision attacks presented
in this work do not extend beyond 24 steps, but we investigate several weaker
collision style attacks on a larger number of rounds. Our results are summarised
in Table 1.

We use the terminology introduced by Lai and Massey [5] for different types of
attacks on (iterated) hash functions. A collision attack aims to find two distinct
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Table 1. Comparison of our results with the known results in the literature for each
type. Effort is expressed in (equivalent) calls to the respective reduced compression
functions.

function steps type effort source example

SHA-256 18 collision 20 [9] yes
SHA-256 20 collision 21.58 [10] no
SHA-256 21 collision 215 [10] yes
SHA-256 22 collision 29 [14] yes
SHA-256 23 collision 218 this work yes
SHA-256 24 collision 228.5 this work yes
SHA-512 23 collision 243.9 this work yes
SHA-512 24 collision 253.0 this work no

SHA-256 23 semi-free-start collision 217 [10] yes
SHA-256 24 semi-free-start collision 217 this work no

SHA-224 25 free-start collision 217 this work no

SHA-256 22 free-start near-collision 20 [9] yes
SHA-256 25 semi-free-start near-collision 234 [10] yes
SHA-256 31 free-start near-collision 232, Table 6 this work no

messages that hash to the same result. In a semi-free-start collision attack, the
attacker is additionally allowed to choose the initial chaining value, but the
same value should be used for both messages. In a free-start collision attack, a
(small) difference may appear in the initial chaining value. Near-collision attacks
relax the requirement that the hash results should be equal and allow for small
differences.

The structure of this paper is as follows. We give a short description of SHA-
256 in Sect. 2. Section 3 gives an alternative description of the semi-free-start
collision attack by Nikolić and Biryukov [10], which will make the subsequent
description of the new attacks easier to understand. We then discuss our collision
attacks on 23- and 24-step SHA-256 in Sect. 4. In Sect. 5, we apply our results
to step-reduced SHA-512. Finally, Sect. 6 concludes.

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using the
notation from Table 2. For a detailed specification, we refer to [11].

The compression function of SHA-256 consists of a message expansion, which
transforms a 512-bit message block into 64 expanded message words Wi of 32
bits each, and a state update transformation. The latter updates eight 32-bit
state variables A, . . . , H in 64 identical steps, each using one expanded message
word. The message expansion can be defined recursively as follows.

Wi =
{

Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 64 . (1)
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Table 2. The notation used in this paper

X ≫ s X rotated over s bits to the right
X � s X shifted over s bits to the right

X One’s complement of X
X ⊕ Y Bitwise exclusive OR of X and Y
X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232

Ai, · · · , Hi State variables at step i, for the first message
A′

i, · · · , H ′
i Idem, for the second message

Wi i-th expanded message word of the first message
W ′

i Idem, for the second message
δX Additive difference in X, i.e., X ′ − X

δσ0 (X) Additive difference in σ0 (X), i.e., σ0 (X ′) − σ0 (X)
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f m
a
j

f c
h

+

+

+

+

+

+

+

Ai Bi Ci Di Ei Fi Gi Hi

Ki

Wi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Fig. 1. The state update transformation of SHA-256

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X � 3) ,
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X � 10) .

(2)

The state update transformation updates two of the state variables in every step.
It uses the bitwise Boolean functions fch and fmaj as well as the GF(2)-linear
functions Σ0 and Σ1.

fch(X, Y, Z) = XY ⊕ XZ ,
fmaj(X, Y, Z) = XY ⊕ Y Z ⊕ XZ ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22) ,
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25) .

(3)

Figure 1 describes the state update transformation, where Ki is a step constant.
Equivalently, it is described by the following equations.
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T1 = Hi + Σ1(Ei) + fch(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fmaj(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 steps, the initial state variables are fed forward using word-wise addition
modulo 232.

3 Review of the Nikolić-Biryukov Semi-Free-Start
Collision Attack

In this section, we review the 23-step semi-free-start collision attack by Nikolić
and Biryukov [10]. The new results presented in this paper are extensions of this
attack. The notations we use are given in Table 2.

The attack uses a nine step differential, which is presented in Table 3. All
additive differences are fixed, as well as the actual values of some of the internal
state variables. Fixing these values ensures that the differential is followed, as
will be explained later. The constants α, β, γ and ε are determined by the attack.
The first difference is inserted via the message word W9. There are no differences
in expanded message words other than those indicated in Table 3, i.e., only W9,
W10, W11, W12, W16 and W17 can have a difference.

Table 3. A 9 step differential, using additive differences (left) and conditions on the
value (right). Blanks denote zero differences resp. unconstrained values.

step δA δB δC δD δE δF δG δH δW A B C D E F G H

8 α γ
9 1 α α γ + 1 γ
10 1 1 −1 −1 α α −1 γ + 1 γ
11 1 −1 1 δ1 α −1 α α ε −1 γ + 1 γ
12 1 −1 1 δ2 α α −1 α β ε −1 γ + 1
13 1 −1 1 α α α −1 β β ε −1
14 1 −1 α α α −1 β β ε
15 1 α α 0 −1 β β
16 1 1 α −2 0 −1 β
17 1 −1 −2 0 −1
18 −2 0

The attack algorithm consists of two phases. The first phase finds suitable
values for the constants α, β, γ and ε as well as two expanded message words,
W16 and W17. A detailed description of this phase of the attack will be given in
Sect. 3.2, as it is more instructive to describe the second phase first.
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3.1 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α, β, γ,
ε, W16 and W17, a pair of messages and a set of initial values that lead to a
semi-free-start collision for 23 steps of SHA-256. It works by carefully fixing the
internal state at step 11 as indicated in Table 3, and then computing forward
and backward. At each step, the expanded message word Wi is computed such
that the differential from Table 3 is followed. During this, four extra conditions
appear, involving only the constants determined by the first phase of the attack.

σ1 (W16 + 1) − σ1 (W16) − Σ1 (ε − 1) + Σ1 (ε)
− fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 . (5)

σ1 (W17 − 1) − σ1 (W17) − fch (β, ε − 1, 0) + fch (β, ε,−1) = 0 . (6)

β = α − Σ0 (α) . (7)

fch (β, β, ε − 1) − fch (β, β, ε) = −1 . (8)

The first phase guarantees that the constants are such that these conditions
are satisfied. The second phase of the attack has a negligible complexity and
is guaranteed to succeed. Since there is still a lot of freedom left, many 23-step
semi-free-start collisions can be found, with only a negligible additional effort, by
repeating this second phase several times. A detailed description of this phase,
including the origins of (5)–(8), is given in Appendix A.

3.2 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for the
constants α, β, γ and ε, as well as two expanded message words, W16 and W17.
Suitable values imply that the four conditions (5)–(8) are satisfied. Nikolić and
Biryukov [10] do not give much detail on this procedure, hence we clarify it
below.

1. Make a random choice for γ and ε and search for a value of W16 such that
condition (5) is satisfied. This condition is of the form σ1 (x + 1)−σ1 (x) = δ.
There exists a simple, generic method to solve equations of this form, which
is described in Appendix B. We note however that for this particular case,
a faster method exists. An exhaustive search over every possible value of x
resulted in the observation that only 6 181 additive differences δ can ever be
achieved. These can be stored in a lookup table, together with one or more
solutions for each difference. Hence, solving an equation of this form can be
done with a simple table lookup.

If no solution exists, simply retry with different choices for γ and/or
ε. If the right hand side difference δ is selected uniformly at random, the
probability that the equation has a solution is 2−19.5, so we expect to have
to repeat this step about 219.5 times.
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2. Make a random choice for α, and compute β using (7). Now check condi-
tion (8). As described in [10], this equation is satisfied if the bits of β are
zero in the positions where the bits of ε − 1 and ε differ. This occurs with a
probability of approximately 1/3, so this condition is fairly easy to satisfy.

3. The last condition, (6), is of the same form as the first condition, so it can
be solved in exactly the same way. The expected probability that a solution
exists is again 2−19.5.

Note that, because not all conditions depend on all of the constants determined
in this phase of the attack, the first condition can be treated independently of the
last three. Thus, the first and last step of this phase of the attack are executed
about 219.5 times and the second step about 221 times. One of these steps requires
much less work than an evaluation of the compression function of (reduced)
SHA-256 — a bit less than one step. Hence, the overall time complexity of the
entire attack, when expressed in SHA-256 compression function evaluations, is
below 217.

4 Our Collision Attacks on Step-Reduced SHA-256

In this section we describe a novel, practical collision attack on SHA-256, reduced
to 23 steps. It has a time complexity of about 218 evaluations of the reduced SHA-
256 compression function. We also extend this to 24 steps of SHA-256, with an
expected time complexity of 228.5 compression function evaluations.

4.1 23-Step Collision

Our collision attack for SHA-256, reduced to 23 steps, consists of two parts.
First, we construct a semi-free-start collision for 23 steps, based on the attack
from Sect. 3. Then we transform this semi-free-start collision into a real collision.

Finding “Good” Constants. Finding a 23 step semi-free-start collision is done
using the same attack as described in Sect. 3, with a slight change to the first
phase. In Sect. 3.2, it was described how to find constants α, β, γ and ε such
that there exist values for W16 and W17 ensuring that the conditions (5) and (6)
are satisfied. There are still some degrees of freedom left in this process. Indeed,
it is possible to determine the constants α, β, γ and ε such that there are many
values for W16 and W17 satisfying (5) and (6).

We performed an exhaustive search for such good constants. Condition (5)
depends only on ε and γ. An exhaustive search for this condition can be per-
formed with approximately 237 evaluations of (5), because for each value of ε,
only some of the bits in γ can have an influence. We found several values for ε
and γ for which more than 229 choices for W16 ensure that (5) is satisfied, for
instance

γ = 0000017cx , ε = 7f5f7200x . (9)

Conditions (6) and (8) depend on ε and β, which in turn depends on α through
(7). An interesting property is that condition (6) becomes independent of ε if
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we assume that condition (8) is satisfied. Indeed, since this assumption implies
that the bits of β are zero where ε and ε − 1 differ, (6) reduces to

σ1 (W ′
17 + 1) − σ1 (W ′

17) = β . (10)

Because of this, an exhaustive search for good values of α and β is feasible. There
are many of the optimal values for α and β which are consistent with (several
of) the optimal values for ε, thus yielding a global optimum. For instance, with γ
and ε as in (9), the following values for α and β are one of many optimal choices:

α = 00b321e3x , β = fcffe000x . (11)

There are 216 possible choices for W17 which satisfy (6) with these constants.
Thus, these values for α, β, γ and ε give us an additional freedom of 245 in
the choice of W16 and W17. This phase can be considered a precomputation,
or alternatively, one can reduce the effort spent in this phase by only searching
a smaller part of the available search space, which likely leads to less optimal
results. It may however be a worthwhile trade-off in practice.

Transforming into a Collision. Note that only 7 expanded message words, W11

until W17, are actually fixed to a certain value when constructing a semi-free-
start collision, ignoring the freedom left in W16 and W17 for now. The others
are chosen arbitrarily or computed from the message expansion when necessary.
Using this freedom, it is possible to construct many semi-free-start collisions with
only a negligible additional effort. But it is also possible to use this freedom in a
controlled manner to transform the semi-free-start collision into a real collision.

To this end, we first introduce an alternative description of SHA-256. In older
variants of the same design strategy, like MD5 or SHA-1, only a single state
variable is updated in every step. This naturally leads to a description where
only the first state variable is considered. Something similar can be done with
the SHA-2 hash functions, even though in the standard description, two state
variables are updated in every step.

From the state update equations (4), we derive a series of equations expressing
the inputs of the i-th state update transformation, Ai, . . . , Hi, as a function of
only Ai through Ai−7.

Ai = Ai , Bi = Ai−1 , Ci = Ai−2 , Di = Ai−3 ,
Ei = Ai−4 + Ai −Σ0(Ai−1) − fmaj(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1−Σ0(Ai−2) − fmaj(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2−Σ0(Ai−3) − fmaj(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3−Σ0(Ai−4) − fmaj(Ai−4, Ai−5, Ai−6) .

(12)

Substituting these into (4) yields an alternative description requiring only a
single state variable. This description can be written concisely as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) + Ai−7 + Wi . (13)

The function F (·) encapsulates (4) and (12), except for the addition of the ex-
panded message word Wi and the state variable Ai−7. From (12), it is clear
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that one can easily transform an internal state in the standard description,
〈Ai, · · · , Hi〉, to the corresponding internal state in the alternative description,
〈Ai, · · · , Ai−7〉, and vice versa. Analogous to what is done for MD5 and SHA-1,
the initial values can be redefined as A−7, · · · , A0.

This alternative description of SHA-256 can be used to transform a 23 step
semi-free-start collision for SHA-256 into a real collision. Since control over one
expanded message word Wi gives full control over one state variable Ai+1, control
over eight consecutive expanded message words gives full control over the entire
internal state.

1. Start from a 23-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values, in the alternative description. Make arbitrary choices
for W0, W1 and W2, and recompute the first three steps.

2. The eight message words W3 until W10 are now modified such that A4 un-
til A11 remain unchanged. This implies that the internal state at step 11,
〈A11, · · · , H11〉 does not change, and thus we connect to the rest of the semi-
free-start collision. More specifically, for every step i, 3 ≤ i ≤ 10, the new
value of the i-th message word is computed as

Wi = Ai+1 − F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) − Ai−7 . (14)

In the message words W9 and W10 there is an additive difference of 1 and
−1, respectively. This does not pose a problem since the construction of the
semi-free-start condition guarantees that these will have the intended effect,
regardless of the values of W9 and W10, see Appendix A.

3. Now we need to verify again if conditions (5) and (6) are still satisfied, since
they depend on W16 and W17, which may have changed. If the conditions are
not satisfied, simply restart and make different choices for W0, W1 and/or
W2.
Recall however that we have spent extra effort in the first phase of the
attack to choose the constants α, β, γ and ε such that there are many values
for W16 and W17 that satisfy the conditions. For the constants given in (9)
and (11), there are 245 allowed values for these two expanded message words.
This translates into a probability of 2−19 that the conditions (5) and (6) are
indeed still satisfied. We hence expect to have to repeat this procedure about
219 times. Every trial requires an effort equivalent to about 10 steps of SHA-
256.

4. After a successful modification of the first message words, the expanded mes-
sage words W18 until W22 need to be recomputed, and also the corresponding
steps need to be redone. The construction of the semi-free-start collision still
guarantees that no differences will be introduced.

If we consider the first phase to be a precomputation, the overall attack com-
plexity is about 218 evaluations of the compression function of SHA-256 reduced
to 23 steps. An example collision pair for 23-step reduced SHA-256 is given in
Table 4.
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Table 4. Example colliding message pair for 23-step reduced SHA-256

M 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d7 3b10201d 39953548 8e127f2b 0304fc01 e7118577 43b12ca7

M ′ 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d8 3b10201c 3995d548 91129f2a 0304fc01 e7118577 43b12ca7

H c77405ea 8bfe2016 ff0531b6 a89b81f6 e98cf052 491a6c62 fd009a40 3969dc83

4.2 24-Step Collision

The same approach can be extended to 24 steps of SHA-256, using the 24-step
semi-free-start collision attack given in detail in Sect. 4.3. Simply put, the 23-step
attack is simply shifted down by a single step, and no difference is introduced
into W0 by the message expansion in the backward direction.

When turning the semi-free-start collision into a collision, however, the value
of the expanded message word W16 (which was the non-expanded message word
W15 in the 23-step attack) should not change. In a straightforward extension
of the 23-step collision attack to 24 steps, this extra condition would only be
satisfied with a probability of 2−32. Using the available freedom in a better way,
this can be improved substantially.

1. Start from a 24-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values. Make an arbitrary choice for W0 and recompute the
first step. Now, it follows from (4) that (A2 − W1) is a constant:

c1 = A2 − W1 . (15)

2. The new value of W9 is determined from (14), i.e., it depends on A2 through
A10. The state variables A5 through A10 have already been fixed in the semi-
free-start collision. If we additionally fix A4 and A3 to arbitrary values, it is
possible to compute the sum of W9 and A2,

c2 = W9 + A2 = A10 − F (A9, · · · , A3) . (16)

3. Combining (1) and (15)–(16), results in

W16 − σ1(W14) − c2 + c1 − W0 = σ0(W1) − W1 . (17)

It is easy to find a suitable value for W1 that ensures that W16 has the proper
value, if it exists. It suffices to guess the 15 least significant bits of W1 to
compute all 32 bits of W1, satisfying the above condition with probability
2−14. A conservative estimate is that each trial requires an effort equivalent
to one step update of SHA-256.

4. Now all the internal state variables have been fixed. The corresponding mes-
sage words can be found from (14) and the message expansion. Just as in
the 23-step collision attack, however, there are still some conditions left. As
explained in Sect. 4.1, these are satisfied with a probability of 2−19.
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Table 5. Example colliding message pair for 24-step reduced SHA-256

M 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af09 5b28721d 1be35597 7ff22aa1 e807a758 c1519aaa

M ′ 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af0a 5b28721c 1be3f597 82f24aa0 e807a758 c1519aaa

H 1584074c 8b810a94 01ea31b1 81bffd02 d29c817d e4e04b51 b9f5ac4f 6b34d1f8

Hence, the overall expected time complexity is equivalent to about 219 ·(214+10)
SHA-256 step computations, or about 228.5 evaluations of the SHA-256 compres-
sion function reduced to 24 steps. An example collision pair for 24-step reduced
SHA-256 is given in Table 5. An extension of this attack method beyond 24 steps
fails, because then a difference in the first or in the last message word becomes
unavoidable. In [14], another differential than the one shown in Table 3 is used
to find 22-step collisions for SHA-256. We tried to use this differential in our
extended attacks, but even for 23 steps, using this differential fails.

4.3 Further Extensions

This section discusses further extensions using weaker attack models. The start-
ing point is the 23-step semi-free-start collision attack of Nikolić and Biryukov
[10], which was described in Sect. 3.

Semi-Free-Start Collisions for 24 Steps of SHA-256. We keep the entire attack
algorithm from Sect. 3 unchanged, but shift everything down by a single step.
Because of this, one more message word, W0, needs to be computed from the
message expansion in the reverse direction. From (1), it follows that the additive
difference in this word is

δW0 = δW16 − δσ1 (W14) − δW9 − δσ0 (W1) . (18)

None of these expanded message words has a difference, so also δW0 = 0. This
yields 24-step semi-free-start collisions of SHA-256 with the same complexity of
217 compression function evaluations.

Free-Start Collisions for 25 Steps of SHA-224. SHA-224 differs from SHA-256
in two ways. First, it has different initial values, and second, the output is trun-
cated to the leftmost 224 bits. We can thus extend the 24-step semi-free-start
collision of SHA-256 to a 25-step free-start collision of SHA-224 by simply shift-
ing the same attack down one more step. Now a difference will inevitably appear
in W0, which propagates to the initial value H0. The other initial values, A0

through G0 still have a zero difference. Because the word H is truncated away
in SHA-224, this results in free-start collisions for 25 steps of SHA-224, with the
same complexity. Note that this attack would not apply if a different method of
truncation would have been chosen in the design of SHA-224.
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Table 6. Experimental results of the free-start near-collision attack on SHA-256. For
each number of steps, only the combination of forward/backward steps that gave the
best results is shown. For comparison, the expected numbers of solutions for a generic
birthday attack with an equal effort are also given.

steps fwd. bwd. kmin 2-logarithm of the number of solutions with k
≤ 8 ≤ 16 ≤ 24 ≤ 32 ≤ 40 ≤ 48 ≤ 56 ≤ 64

25 1 1 2 31.95 32.00 32.00 32.00 32.00 32.00 32.00 32.00
26 1 2 8 24.17 31.55 31.99 32.00 32.00 32.00 32.00 32.00
27 1 3 11 −∞ 15.41 26.20 30.65 31.89 32.00 32.00 32.00
28 1 4 18 −∞ −∞ 8.77 20.41 27.24 30.63 31.80 31.99
29 1 5 32 −∞ −∞ −∞ 1.58 14.31 22.86 28.19 30.93
30 1 6 43 −∞ −∞ −∞ −∞ −∞ 10.73 19.58 25.68
31 2 6 53 −∞ −∞ −∞ −∞ −∞ −∞ 6.34 15.50

Birthday Attack 57 −143.41 −108.84 −80.49 −56.36 −35.51 −17.37 −1.57 12.14

Free-Start Near-Collisions of SHA-256. Extending the attack to more steps is
possible, provided that some differences are allowed both in the initial value and
in the hash result, i.e., when considering free-start near-collisions. The start-
ing point is again the 23-step semi-free-start collision attack from Sect. 3. It is
extended by adding a number of extra forward and backward steps.

As explained above, no difference is introduced in the first backward step. Note
that, in general, the diffusion of differences is slower in the backward direction
than in the forward direction. A difference introduced in an expanded message
word Wi affects both Ai+1 and Ei+1 in the forward direction, as opposed to only
Hi in the backward direction. Thus, in the forward direction, all state words can
be affected by a single difference in an expanded message word after only four
rounds. In the backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of 232 reduced
SHA-256 compression function evaluations. The results of our experiments are
summarised in Table 6. The first three columns give the total number of steps,
the number of extra forward and extra backward steps, respectively. The fourth
column gives kmin, the smallest Hamming distance found. The last eight columns
contain the 2-logarithm of the number of solutions with a Hamming distance k
of at most 8, 16, . . . , 64 bits.

For comparison, also the expected values for a generic birthday attack with
an equal effort of 232 is given. For a generic (free-start) near-collision attack on
an ideal n-bit hash function, using the birthday paradox with an effort of 2w

compression function evaluations, the lowest expected Hamming distance is the
lowest k for which

22w · ∑k
i=0 2−n

(
n
i

) ≥ 1 . (19)

For instance, with w = 32 and for SHA-256 (i.e., n = 256), this gives k = 57
bits. Our attack performs significantly better for up to 30 steps of SHA-256.
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For 31 steps, we still found 208 free-start near-collisions with a Hamming distance
of at most 57 bits, whereas a birthday attack is only expected to find one with
the same effort.

5 Collision Attacks on Step-Reduced SHA-512

SHA-512 is a 512-bit hash function from the SHA-2 family. Its structure is very
similar to SHA-256. The sizes of all words are increased to 64 bits and the
number of rounds is increased to 80. It uses a different initial chaining value,
and different step constants. Finally, the GF(2)-linear functions are redefined.
Refer to [11] for details on SHA-512. In this section, we extend the collision
attacks on SHA-256 that were described in Sect. 4.1 and 4.2 to SHA-512. The
first phase of the attacks needs to be adapted, since an exhaustive search as in
Sect 3.2 is no longer feasible.

Finding “Good” Constants for SHA-512. Recall from Sect. 3.2 that the goal of
the first phase of the attack is to find values for the constants α, β, γ, ε such
that the conditions (5)–(8) are satisfied for many values of the expanded message
words W16, W17. Since an exhaustive search for good constants is infeasible, we
suggest the following approach.

1. First, make a list L of additive differences δ for which the equation

σ1 (x + 1) − σ1 (x) = δ (20)

has many solutions x. This can be accomplished by picking several values
for x at random and computing the corresponding δ’s. This procedure is
likely to quickly find the “good” values for δ, since the more x’s correspond
to a δ, the more likely we are to find it. Using Appendix B, the number of
solutions x for a given δ can be counted efficiently.

2. Since all conditions (5)–(8) will need to be satisfied, we can use (10) instead
of (6). Hence, β should preferably be one of the “good” δ’s from the list L.
Knowing the value of β, we need to invert (7) to find α. This can, for instance,
be done by guessing the 36 most significant bits of α and determining the
other bits using (7). A guess succeeds with a probability of about 2−36. Note
that (7) cannot necessarily be inverted for all β’s.

3. Now we make an arbitrary choice for ε which satisfies (8). Denote by lβ the
length of the run of least significant “0”-bits in β. Then, (8) is satisfied if
and only if the least significant “1”-bit of ε lies within the lβ least significant
bits. Unfortunately, for SHA-512, this condition eliminates the best values
for β.

4. If we choose a “good” value for σ1 (W16 + 1)− σ1 (W16) from the list L, and
since ε has already been chosen, (5) can be rewritten as

C − fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 , (21)

where C is a known constant. The bits in which ε and (ε − 1) differ can be
corrected by a proper choice of γ. Hence it is advantageous to choose ε with
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Table 7. Example colliding message pair for 23-step reduced SHA-512

M 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce69 90561054da994c54 7262751c31b5bdd0

54b1d56610b9e802 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

M ′ 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce6a 90561054da994c53 7266551c31b5bd18

54b0b56610b9e801 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

H dd44d89f178803f5 136802b223c880ba bbb80917dda6a3e7 be1f118889bd5415

98adc37a0f32d151 83d35099922ee2c6 670ac37463f224da e0835506fb66503d

a long run of least significant “0”-bits. This again constrains β, as explained
above. If no choice for γ can satisfy (21), retry with a different choice for ε
and/or β.

Unlike the exhaustive search in Sect. 3.2, this procedure does not guarantee to
find the optimal solution. However, experiments show that we can quickly find
many good solutions. We found many values for the constants α, β, γ and ε for
which the conditions (5) and (8) are satisfied for 249.1 and 234 values for W16

and W17, respectively. Example values are

α = 3891fd20b54a8eb9x , β = 0001200000000000x ,
γ = 00000fff7f7fff46x , ε = 0000100000000000x .

(22)

23-step Collision. The second phase of the 23-step attack from Sect. 4.1 can
directly be applied to SHA-512. With the constants from (22), a single attempt
to turn a 23-step semi-free-start collision into a 23-step collision will succeed
with an expected probability of 2−44.9 and costs about half of a reduced SHA-
512 compression function evaluation. Hence, this results in a collision attack on
23-step SHA-512 with an expected time complexity of 243.9 reduced compression
function evaluations. An example collision pair for 23-step reduced SHA-512 is
given in Table 7.

24-Step Collision. Also the second phase of the 24-step attack from Sect. 4.2 can
be applied to SHA-512. One slight modification is required when determining
a suitable value for W0, due to the redefinition of the σ0-function in SHA-512.
Guessing the 8 least significant bits of W0 allows to compute all of W0, sat-
isfying (17) with probability 2−8. This results in a collision attack on 24-step
SHA-512 with an expected time complexity of 253.0 reduced compression func-
tion evaluations.

Further Extensions. The attacks on SHA-512 can also be extended, much like
the extensions described for the SHA-256 attacks in Sect. 4.3. Adding more
rounds trivially leads to several (semi-) free-start (near-) collision attacks. One
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noteworthy case is a free-start collision attack on 26 steps of SHA-384. It is
analogous to the 25-step free-start collision attack on SHA-224 from Sect. 4.3,
but as two words are truncated away in the case of SHA-384, the attack extends
to 26 steps.

6 Conclusion

Our results push the limit for cryptanalysis of step reduced but otherwise un-
modified SHA-256; we found practical collisions for up to 24 steps. For almost
half of the steps (31 out of 64) non-random properties of the compression func-
tion are detectable in practice. The results also apply to SHA-512, albeit with
higher time complexities.
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A Detailed Description of the Second Phase of the
Nikolić-Biryukov Attack

This appendix gives a detailed description of the second phase of the Nikolić-
Biryukov attack [10]. When given suitable values for α, β, γ, ε, W16 and W17

by the first phase, as described in Sect. 3.2, it constructs a pair of messages
and a set of initial values that lead to a semi-free-start collision for 23 steps of
SHA-256.

1. Start at step 11 by fixing the state variables in this step, A11, · · · , H11 as
indicated in Table 3. The constants α, β, γ and ε are given by the first phase
of the attack.

2. Calculate W11 such that A12 = α and W ′
11 such that A′

12 = α. Now E12 = β
only depends on α, and we find condition (7) from Sect. 3.1.

E12 = α − Σ0 (α) = β . (23)

3. In a similar way, calculate W12 such that E13 = β and W ′
12 such that

E′
13 = β. This also guarantees that A13 = A′

13 because the majority function
absorbs the difference in C12.

4. Calculate W13 such that E14 = −1 and set W ′
13 = W13. Now, see Table 3,

δE14 should be equal to 1. This yields the condition

δE14 = fch (β, β, ε − 1) − fch (β, β, ε) + 2 = 1 . (24)

It was given before as (8), and is satisfied by the first phase of the attack.
Note that this also ensures that δA14 = 0.

http://www.itl.nist.gov/fipspubs/
http://de.arxiv.org/abs/0803.1220
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5. Calculate W14 such that E15 = 0 and set W ′
14 = W14. Since the values of E14

and E′
14 were chosen in the previous step to be fixed points of the function

Σ1, δΣ1 (E14) = δE14 = 1 cancels with δH14 = −1. Also, fch absorbs the
difference in E14, so no new differences are introduced.

6. Calculate W15 such that E16 = −2 and set W ′
15 = W15. The difference in

F15 is absorbed by fch.
7. The value for W16 is computed in phase one of the attack. The difference

δW16 = 1 is cancelled by the output of fch. Indeed, since the binary represen-
tation of E16 = −2 is 111 · · ·10b, the fch function passes only the difference
in the least significant bit.

8. Also the value for W17 is computed in phase one of the attack. The difference
δW17 = −1 cancels with δH17 = 1, thereby eliminating the final difference
in the state variables. Thus, a collision is reached.

9. Now, go back to step 11 and proceed in the backward direction. Make an
arbitrary choice for W10. The differential from Table 3 is followed because
of the careful choice of the state variables in step 11.

10. Make an arbitrary choice for W9, and proceed one step backward. The dif-
ference δW9 = 1 cancels with δA10 and with δE10 such that there is a zero
difference in the state variables A9 through H9. Now randomly choose W8

down to W2 and calculate backward. Because no new differences appear in
these expanded message words, there is also a zero difference in the state
variables A2 through H2.

11. It is not possible to freely choose W0 or W1 as 16 expanded message words
have already been chosen, i.e., W2 until W17. Hence, these are computed
using the message expansion in the backward direction. Although some of the
message words used to compute W0 and W1 have differences, these differences
always cancel out.

12. Continuing forward from step 18 again, note that the collision is preserved as
long as no new differences are introduced via the expanded message words.
From the message expansion, it follows that

δW18 = σ1 (W16 + 1) − σ1 (W16) − Σ1 (ε − 1) + Σ1 (ε)
− fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 . (25)

This is condition (5), which is satisfied by the first phase of the attack.
13. Similarly, in step 19, we require that δW19 = 0, which results in

σ1 (W17 − 1) − σ1 (W17) − fch (β, ε − 1, 0) + fch (β, ε,−1) = 0 . (26)

This condition was given in (6), and is also satisfied by the first phase of the
attack.

14. In steps 20–22, the message expansion guarantees that no new differences
are introduced. In step 23, however, a difference of 1 is impossible to avoid,
hence the attack stops after 23 steps.

Every step in this procedure is guaranteed to succeed, provided that the first
phase of the attack supplied suitable constants. Thus, the complexity of the
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second phase of the attack is negligible. Since there is still a lot of freedom
left, many 23-step semi-free-start collisions can be found, with only a negligible
additional effort, by repeating this second phase several times.

B Solving L(x + δ) = L(x) + δ′

This appendix describes a generic method to solve equations of the form L(x +
δ) = L(x) + δ′ where δ and δ′ are given n-bit additive differences, and L is
an n-bit to n-bit GF(2)-linear transformation. This is similar to the problems
studied by Lipmaa and Moriai [6] and Lipmaa et al. [7].

Consider the modular addition x + δ and let Δ = (x + δ) ⊕ x. This addition
is described by the following equations, where xi is the i-th bit of x and the ci’s
are the carry bits:

(x + δ)i = xi ⊕ δi ⊕ ci

ci+1 = fmaj(xi, δi, ci)
c0 = 0

⇔
ci = δi ⊕ Δi

ci+1 = fmaj(xi, δi, δi ⊕ Δi)
c0 = 0

. (27)

Hence, once we fix both the additive difference δ and the XOR difference Δ,
all the carries ci are fixed. Some of the xi’s are also fixed: when Δi = 1 and
i < n − 1, it must hold that xi = ci+1 = δi+1 ⊕ Δi+1. The other xi’s can be
chosen arbitrarily. Thus, the allowed values for x lie in an affine space. Note
that not all additive differences are consistent with all XOR differences, i.e., the
following conditions must be satisfied

{
c0 = δ0 ⊕ Δ0 = 0
δi = δi+1 ⊕ Δi+1 when Δi = 0 and i < n − 1 . (28)

Solving an equation of the form L(x + δ) = L(x) + δ′ can be done as follows.
Let Δ′ = (L(x)+δ′)⊕L(x), i.e., the XOR-difference associated with the modular
addition L(x) + δ′. Since L(x + δ) = L(x) + δ′ and L is GF(2)-linear, it follows
that Δ′ = L(Δ). We can thus simply enumerate all the XOR-differences Δ
consistent with the given additive difference δ, compute Δ′ = L(Δ) and check
if this is consistent with the other additive difference δ′. If it is, both additions
restrict x to a (different) affine space. The intersection of these spaces, which
can be computed by solving a system of linear equations over GF(2), gives the
solutions x for the chosen XOR-difference Δ. Note that this intersection may
be empty. If no solutions are found for any value of the XOR-difference Δ, the
equation L(x+δ) = L(x)+δ′ has no solutions. Note that the number of solutions
of the equation can be counted efficiently using this method, as the number of
solutions of a linear system over GF(2) is straightforward to compute.

The time complexity of this method is proportional to the minimum of the
number of XOR differences consistent with the given additive differences δ or δ′.
This follows from the fact that one can easily modify the method to choose Δ′

instead of Δ.
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