
P. Foggia, C. Sansone, and M. Vento (Eds.): ICIAP 2009, LNCS 5716, pp. 816–824, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Connected Component Labeling Techniques on Modern
Architectures

Costantino Grana, Daniele Borghesani, and Rita Cucchiara

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Modena e Reggio
Emilia, Via Vignolese 905/b, 41100 Modena, Italy

{costantino.grana,daniele.borghesani,rita.cucchiara}@unimore.it

Abstract. In this paper we present an overview of the historical evolution of
connected component labeling algorithms, and in particular the ones applied on
images stored in raster scan order. This brief survey aims at providing a com-
prehensive comparison of their performance on modern architectures, since the
high availability of memory and the presence of caches make some solutions
more suitable and fast. Moreover we propose a new strategy for label propaga-
tion based on a 2x2 blocks, which allows to improve the performance of many
existing algorithms. The tests are conducted on high resolution images obtained
from digitized historical manuscripts and a set of transformations is applied in
order to show the algorithms behavior at different image resolutions and with a
varying number of labels.

Keywords: connected component labeling, comparison, union-find.

1 Introduction

Connected component labeling is a fundamental task in several computer vision
applications. It is used as a first step in the task chain in many problems, e.g for as-
signing labels to segmented visual objects, and for this reason a fast and efficient
algorithm is undoubtedly very useful. A lot of techniques have been proposed in lit-
erature in the past; most of them referred to specific hardware architectures to take
advantage of their characteristics, but nowadays, modern architectures do not suffer
anymore of such limitations that constitute a design priority of some of these algo-
rithms. In this paper, a brief survey of traditional and new labeling techniques is pre-
sented and a comparison of some labeling techniques is reported in order to find out
the real performances of these proposals on modern computer architectures.

Moreover, Intel has released a precious set of libraries as an open source project
named OpenCV. These libraries contain an implementation of all the main algorithms
useful in computer vision applications and include two strategies for connected com-
ponent analysis: a contour tracing (cvFindContours) followed by a contour filling
(cvDrawContours), or a flood fill approach (cvFloodFill) which can be applied se-
quentially to all foreground pixels. We will also consider these two approaches in the
comparison.

 Connected Component Labeling Techniques on Modern Architectures 817

a) b) c)

Fig. 1. Example of binary image depicting text (a), its labeling considering 4-connectivity (b),
and 8-connectivity (c)

Beside an extensive review of labeling algorithms, the main contribution of this
work is a new block based scanning strategy, which allows to substantially improve
the performance of the most common class of algorithms, namely the raster scan one.

We will exclude two wide classes of algorithms from our analysis. The first one is
the class of parallel algorithms which has been extensively studied up to the first half
of the ‘90s. These algorithms were aimed to specific massively parallel architectures
and do not readily apply to current common workstations, which provide more and
more parallelism (instruction level, thread level and so on), but substantially different
from the parallelism exploited in those algorithms. The second class is given by algo-
rithms suitable for hierarchical image representations (for example quadtrees) initially
studied for accessing large images stored in secondary memory. We excluded them
because the vast majority of images is currently stored in sequential fashion, since
they can often be fully loaded in main memory.

After formalizing the basic concepts needed, we review of some of the most used
labeling algorithms, the newest ones and then we detail our proposal. The different
algorithms performance are evaluated on a high resolution image dataset, composed
of documental images with a large number of labels. Different modifications are per-
formed to test these algorithms in several situations in order to show which is the
most effective algorithm in different conditions.

2 Neighborhood and Connectivity

Two pixels are said to be 4-neighbors if only one of their image coordinates differs of
at most one, that is if they share a side when viewed on a grid. They are said to be 8-
neighbors if one or both their image coordinates differ of at most one, that is if they
share a side or a corner when viewed on a grid.

A subset of a digitized picture, whose pixels share a common property, is called
connected if for any two points P and Q of the subset there exists a sequence of points

0 1, , , ,i n nP P P P P Q−= =K of the subset such that iP is a neighbor of 1 ,1iP i n− ≤ ≤

[1].
The common choice in binary images, where the property of interest is to be part of

the “foreground” with respect to the “background”, is to choose 8-connectivity, that is
connectivity with 8-neighbors, for the foreground regions, and 4-connectivity for
background regions. This usually better matches our usual perception of distinct ob-
jects, as in Fig. 1.

818 C. Grana, D. Borghesani, and R. Cucchiara

Multiscan

Two scans

Contour tracing

1999
Di Stefano

1985
Schwartz

2005
Wu

2003
Chang

2007
He

1986
Samet

1966
Rosenfeld

1961
Freeman

2008
He

1982
Pavlidis

2003
Suzuki

1983
Lumia

1981
Haralick

2005
Wu

1996
(Fiorio)

Fig. 2. Timeline showing the evolution of the labeling algorithms

In binary images, the “labeling” procedure is the process of adding a “label” (an in-
teger number) to all foreground pixels, guaranteeing that two points have the same
label if and only if they belong to the same connected component.

3 The Evolution of Labeling Algorithms

The problem of labeling has been deeply studied since the beginning of Computer
Vision science. In the following we try to provide a historical view of the different
approaches, discussing how they contributed to current approaches and if their pur-
poses are still applicable to modern architectures.

The first work proposed for image labeling date back to Rosenfeld et al. in 1966
[1], and this can be considered the very classical approach to labeling. It is based on a
raster scan of the image and, rather than generate an auxiliary picture, the “redundan-
cies” of the labels are stored in an equivalences table with all the neighborhood refer-
ences. The redundancies are solved processing the table by repeatedly using an un-
specified sorting algorithm and removing redundant entries, consequently requiring
an high amount of CPU power. Finally the resulting labels are updated in an output
image with a single pass, exploiting the solved equivalences table.

A problem of the original algorithm is the use of a second image to store labels and
of another structure to store equivalences. To tackle this problem an improvement has
been proposed by Haralick et al. [2]. This algorithm does not use any equivalences
table and no extra space, by iteratively performing forward and backward raster scan
passes over the output image to solve the equivalences exploiting only local
neighborhood information. This technique clearly turns out to be very expensive
when the size of the binary image to analyze increases.

Lumia et al. [3] observe that both previous algorithms perform poorly on ’83
virtual memory computers because of page faults, so they mix the two approaches
trying to keep the equivalences table as small as possible, saving memory usage. In
this algorithm a forward and a backward scan are sufficient to complete the labeling,
but at the end of each row the collected equivalences are solved and another pass

 Connected Component Labeling Techniques on Modern Architectures 819

immediately updates that row labels. This suggests that four passes over the data are
indeed used by this algorithm. The technique to solve label equivalences is left un-
specified.

Schwartz et al.[4] further explored on this approach, in order to avoid the storage
of the output image, which would have required too much memory. Thus they use a
sort of run length based approach (without naming it so), which produces a compact
representation of the label equivalences. In this way, after a forward and a backward
scan, they can output an auxiliary structure which can be used to infer a pixel label.

Samet and Tamminen [5] are the first researchers who clearly named the equiva-
lence resolution problem as the disjoint-set union problem. This is an important
achievement, since a quasi linear solution for this problem is available: the so called
union-find algorithm, from the name of the basic operations involved. The algorithm
is executed in two passes. The first pass creates an intermediate file consisting of
image elements and equivalence classes while the second pass processes this file in
reverse order, and assigns final labels to each image element. Their proposal is defi-
nitely complex, since it also targets quad-tree based image representations and is
aimed at not keeping the equivalences in memory. In particular in [6] a general defini-
tion of this algorithm for arbitrary image representations has been proposed.

The Union-Find algorithm is the basis of a more modern approach for label resolu-
tion. As a new pixel is computed, the equivalence label is resolved: while the previous
approaches generally performed first a collection of labels and at the end the resolu-
tion and the Union of equivalence classes, this new approach guarantees that at each
pixel the structure is up to date.

A relevant paper in this evolution is [7] where Di Stefano and Bulgarelli proposed an
online label resolution algorithm with an array-based structure to store the label equiva-
lences. The array-based data structure has the advantage to reduce the memory required
and to speed up the retrieval of elements without the use of pointer dereferencing. They do
not explicitly name their equivalences resolution algorithm as Union-Find, and their solu-
tion requires multiple searches over the array at every Union operation.

In 2003, Suzuki [8] resumed Haralick’s approach, including a small equivalence
array and he provided a linear-time algorithm that in most cases requires 4 passes.
The label resolution is performed exploiting array-based data structures, and each
foreground pixel takes the minimum class of the neighboring foreground pixels
classes. An important addition to this proposal is provided in an appendix in the form
of a LUT of all possible neighborhoods, which allows to reduce computational times
and costs by avoiding unnecessary Union operations.

In the same year, Chang et al. [9] proposed a radically different approach to con-
nected components labeling. Their approach is an improvement of [10] and [11], and
it is based on a single pass over the image exploiting contour tracing technique for
internal and external contours, with a filling procedure for the internal pixels. This
technique proved to be very fast, even because the filling is cache-friendly for images
stored in a raster scan order, and the algorithm can also naturally output the connected
components contours.

In 2005, Wu in [12] proposed a strategy to increase the performances of the
Suzuki’s approach. He exploited a decision tree to minimize the number of neighbor-
ing pixels to be visited in order to evaluate the label of the current pixel. In fact in a
8-connected components neighborhood, often only one pixel is needed to determine the

820 C. Grana, D. Borghesani, and R. Cucchiara

label of the new one. In the same paper, Wu proposed another strategy to improve the
Union-Find algorithm of Fiorio and Gustedt [13] exploiting an array-based data struc-
ture. For each equivalence array a path compression is performed to compute the root,
in order to directly keep the minimum equivalent label within each equivalence array.

In 2007, He (in collaboration with Suzuki) proposed another fast approach in the
form of a two scan algorithm [14]. The data structure used to manage the label resolu-
tion is implemented using three arrays in order to link the sets of equivalent classes
without the use of pointers. By using this data structure, two algorithms have then
been proposed: in [15] a run-based first scan is employed, while in [16] a decision
tree is used to optimize the neighborhood exploration and to apply merging only when
needed. The He and the Chang proposals can be considered the state-of-the-art meth-
ods for connected components labeling, being the latest evolution of two different
approaches to solve the problem, and obtaining similar performances in terms of
computation time. With the dataset used by He in [16], the Chang algorithm was
shown to be slightly slower.

4 Speeding Up Neighbors Computation

The algorithms analyzed so far differ each other on the way neighboring pixels are
analyzed, how many passes are performed and in the way the resolution of equiva-
lences is managed. While the number of passes depends on the underline idea of the
algorithm, and the label resolution is based on a limited amount of data structures and
optimization proposed in literature, there is still something to say about the neighbor-
hood computation. In [16], besides the efficient data structure used for label resolu-
tion, He proposed an optimization of the neighborhood computation deeply minimiz-
ing the number of pixel needed to access.

In this paper, we provide another optimization for the neighboring computation
based on a very straightforward observation: when using 8-connection, the pixels of a
2x2 square are all connected to each other. This implies that they will share the same
label at the end of the computation. For this reason we propose to logically scan the
image moving on a 2x2 pixel grid. To allow this, we have to provide rules for the
connectivity of 2x2 blocks.

P Q R

S X

 c d e f

 b y z
 a x

 Blocks Pixels in blocks

Referring to the figure, we can define the following rules:

• P is connected to X if c and y are foreground pixels
• Q is connected to X if (d or e) and (y or z) are foreground pixels
• R is connected to X if f and z are foreground pixels
• S is connected to X if (a or b) and (y or x) are foreground pixels

 Connected Component Labeling Techniques on Modern Architectures 821

1.087

512 489
421

177 164 154

0

200

400

600

800

1000

1200

cvFindContours SuzukiMask DiStefano cvBlobFinder Chang He Our proposal

m
s

Fig. 3. Results of Test 1

By applying these connectivity rules, we obtain two advantages: the first one is that
the number of provisional labels created during the first scan, is roughly reduced by a
factor of four, and the second is that we need to apply much less unions, since
equivalences are implicitly solved within the blocks. Another advantage is that a sin-
gle label is stored for the whole block. On the contrary the same pixel needs to be
checked multiple times, but this is easily solved by the use of local variables and
caching, and the second scan requires to access again the original image to check
which pixels in the block require their label to be set. Overall the advantages greatly
overcome the additional work required in the following stage.

This method may be applied to different connected component labeling algorithms,
and, depending from the algorithms, can improve performances from 10% to 20%
based on the way they consider the neighborhood of the current pixel.

5 Comparison

The main focus of this comparison is to evaluate the performance of the algorithms
under stress, that is when working with high resolution images with thousands of
labels. Besides, we also tested their scalability, varying the image sizes and the num-
ber of labels.

To this purpose, we produce three datasets coming from the binarized version of
high resolution documentary images. The first dataset is composed by 615 images,
with a resolution of 3840x2886 pixels. For each algorithm, a mean value of the proc-
essing times will indicate which one has the best overall performance. The second
dataset is composed by 3,173 images derived by the first dataset by a sequence of 10
subsequent dilations with a 3x3 pixels square structuring element. In this way we
preserve the image size (total amount of pixel processed) but we decrease the number
of labels thanks to the dilations (that merges little by little an increasing amount of
blobs). This test will show which algorithm has the best scalability varying the num-
ber of labels, and at the same time which algorithm performs better with lower and
higher amount of labels. Finally the third dataset is composed by 3807 images ob-
tained from a 160x120 downscaled version of the first dataset, increasingly upscaled
with 11 4:3 formats (up to the original image size). This dataset will be useful to

822 C. Grana, D. Borghesani, and R. Cucchiara

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

m
s

thousands of labels

SuzukiMask

DiStefano

cvFindContours

Chang

He

Our proposal

cvBlobFinder

Fig. 4. Results of Test 2

evaluate the scalability of these algorithms with a small fixed number of blobs, but a
larger number of pixels.

In all tests we applied our 2x2 block optimization to a raster scan algorithm which
uses He’s technique for handling equivalences and applies a union operation every
time two different labeled blocks are connected.

The results of the first test are shown in Fig. 3. On high resolution images, our
approach provides the best performances, by using the block optimization. Suzuki and
DiStefano proposals are superior to the OpenCV standard contour tracing method, but
cannot beat the other technique based on flood fill. After our proposal, the overall best
techniques are Chang’s and He’s.

The results of the second test are shown in Fig. 4. Even in this case, the performace
of OpenCV algorithms, as well as Suzuki and DiStefano ones, result to be not quite
good (even if their proposal proves to have a good scalability). Chang’s and He’s
algorithms and our proposal are still the approaches with the best performances. It is
important to highlight that the behaviour of these algorithms is somehow different
below and above the 150 labels: in this case the OpenCV contour tracing technique
stays close to the other techniques. Chang algorithm is a clear winner with less then
10000 labels, while our proposal has the best performance in other cases.

Finally the results of the latest test are shown in Fig. 5. In this case, where the
average number of labels is 473, OpenCV contour tracing proved to have a great
scalability increasing the size of the image, while Chang and our method still perform
very well. Nevertheless, zooming in at lower images sizes, up to 1024x768, we can
notice that our approach and Chang’s provide the best performance.

 Connected Component Labeling Techniques on Modern Architectures 823

Fig. 5. Results of Test 3. The lower figure shows an enlargement of the area of images with
widths below 1500 pixels.

6 Conclusions

We have given a comprehensive overview of the different strategies which have been
proposed for the connected component labeling problem, pointing out relations and
evolution of the single optimization proposals.

A new strategy for label propagation has been proposed, based on a 2x2 block sub-
division. This strategy allows to improve the performance of many existing algo-
rithms, given that the specific connection rules are satisfied.

Experimental results have stressed a few points of the different algorithms, in par-
ticular showing how the Cheng approach is a clear winner when the number of labels
is small, compared to the image size, while our proposal can obtain around 10% of
speedup when the number of labels is high.

824 C. Grana, D. Borghesani, and R. Cucchiara

References

1. Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing. Journal of
the ACM 13(4), 471–494 (1966)

2. Haralick, R.M.: Some neighborhood operations. In: Real Time Parallel Computing: Image
Analysis, pp. 11–35. Plenum Press, New York (1981)

3. Lumia, R., Shapiro, L.G., Zuniga, O.A.: A New Connected Components Algorithm for
Virtual Memory Computers. Computer Vision Graphics and Image Processing 22(2),
287–300 (1983)

4. Schwartz, J.T., Sharjr, M., Siegel, A.: An efficient algorithm for finding connected com-
ponents in a binary image. Robotics Research Technical Report 38. New York Univ.
New York (1985)

5. Samet, H., Tamminen, M.: An Improved Approach to connected component labeling of
images. In: International Conference on Computer Vision And Pattern Recognition,
pp. 312–318 (1986)

6. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component
labeling for arbitrary image representations. Journal of the ACM 39(2), 253–280 (1992)

7. Di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algo-
rithm. In: 10th International Conference on Image Analysis and Processing, pp. 322–327
(1999)

8. Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-component labeling based on se-
quential local operations. Comput. Vis. Image Underst. 89(1), 1–23 (2003)

9. Chang, F., Chen, C.J.: A component-labeling algorithm using contour tracing technique.
In: 7th International Conference on Document Analysis and Recognition, pp. 741–745
(2003)

10. Freeman, H.: Techniques for the Digital Computer Analysis of Chain-Encoded Arbitrary
Plane Curves. In: 17th National Electronics Conference, pp. 412–432 (1961)

11. Pavlidis, T.: Algorithms for graphics and image processing. Computer Science Press,
Rockville MD (1982)

12. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. In:
SPIE Conference on Medical Imaging, vol. 5747, pp. 1965–1976 (2005)

13. Fiorio, C., Gustedt, J.: Two Linear Time Union-Find Strategies for Image Processing.
Theor. Comput. Sci. 154, 165–181 (1996)

14. He, L., Chao, Y., Suzuki, K.: A Linear-Time Two-Scan Labeling Algorithm. In: IEEE In-
ternational Conference on Image Processing, vol. 5, pp. 241–244 (2007)

15. He, L., Chao, Y., Suzuki, K.: A Run-Based Two-Scan Labeling Algorithm. IEEE Transac-
tions on Image Processing 17(5), 749–756 (2008)

16. He, L., Chao, T., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recog-
nition (2008) (in press)

	Connected Component Labeling Techniques on Modern Architectures
	Introduction
	Neighborhood and Connectivity
	The Evolution of Labeling Algorithms
	Speeding Up Neighbors Computation
	Comparison
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

