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Abstract. Establishing correspondences among object instances is still
challenging in multi-camera surveillance systems, especially when the
cameras’ fields of view are non-overlapping. Spatiotemporal constraints
can help in solving the correspondence problem but still leave a wide
margin of uncertainty. One way to reduce this uncertainty is to use ap-
pearance information about the moving objects in the site. In this paper
we present the preliminary results of a new method that can capture
salient appearance characteristics at each camera node in the network.
A Latent Dirichlet Allocation (LDA) model is created and maintained
at each node in the camera network. Each object is encoded in terms of
the LDA bag-of-words model for appearance. The encoded appearance
is then used to establish probable matching across cameras. Preliminary
experiments are conducted on a dataset of 20 individuals and comparison
against Madden’s I-MCHR is reported.

1 Introduction

In a typical video-surveillance system, the tasks of object detection and tracking
across the site are crucial for enabling event retrieval and a posteriori activity
analysis. Detection and tracking can be quite challenging, depending on the type
of setup available. In particular, for a multi-camera system the main problem
is to establish correspondences among the observations from different cameras
and consistently label the objects. When the cameras have overlapping fields of
view, information about the geometrical relations among the camera views can
be estimated and used to establish correspondences [1,2]. In the case of disjoint
views, other information about the moving objects must be used to automatically
identify multiple instances of the same object [3,4].

In a distributed video-surveillance system the detected objects should be rep-
resented by compact descriptors in order to allow efficient storage of the system
state and compact communication between cameras to share knowledge and ap-
ply some cooperative strategy. Compact descriptors also enable event retrieval.
One possible scenario is the search of all the nodes where a certain person ap-
pears; i.e., the identification of multiple instances of the same object in different
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locations and time instants. To be effective, the descriptor must also be suffi-
ciently robust to the changes in resolution and viewpoint that occur as moving
object’s orientation and distance from the camera continuously change.

A number of approaches, e.g., [5,6], learn the network topology or the activity
patterns in the site to predict probable correspondences among detected objects.
These systems simply use the probability that an action/event will be repeated
in the site during a predicted time period, and may perform not well in the case
of anomalies. These approaches do not consider that multi-camera system should
have a distributed knowledge of all the existent moving objects. This means that
every time an object is detected for the first time, all cameras in the system are
alerted about its presence in the site and wait for it reappears somewhere with
characteristics quite similar to those already observed.

In a distributed system, the nodes should work like independent and au-
tonomous agents monitoring their own FOV. Communications among nodes
should be done just when objects go outside the FOV and should consist of
a simple and compact appearance description related, for example, to the dress
of the detected person or his identity – when possible/applicable. This approach
does not require knowledge of the camera network’s topology, although such
information could be used to limit the number of data transmissions in the net.

Appearance is difficult to represent. Detecting objects in a well-defined way
is often challenging, particularly in a cluttered environment; as a result, the in-
formation about an object is generally partial and noisy. As the object moves
continuously, its appearance depends on the object’s orientation with respect
to the camera. Moreover, objects can move in a non-rigid way and can be
self-occluded, resulting in a loss of detail.

In this paper, we present a preliminary system to model object appearance
using latent features. Each object is assigned an “appearance topic” distribution
from a Latent Dirichlet Allocation (LDA) model that is maintained at each cam-
era node. The object appearance models are propagated in the network and used
both to describe incoming objects and to establish correspondences. The result-
ing probable correspondences can be useful in constructing hypotheses about the
paths of objects in the site. These hypotheses can be pruned by using the ac-
cumulated information during the life of the system or by using spatiotemporal
constraints to guarantee consistency of hypotheses.

In Section 2 we describe works that use appearance information to establish
object correspondences. In Sections 3 and 4 we review the LDA model and
then formulate an LDA-based method that can describe objects and perform
matching. Finally, in Section 5 we report experiments and compare our method’s
performance with that of [3].

2 Related Work

There are many kinds of approaches to establish correspondences among objects
in a multi-camera system. Some of these [1,2] are based on geometrical con-
straints, particularly for the case of calibrated cameras and overlapping FOVs.
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Other approaches instead try to find correspondences by accumulating statistics
about probable associations between cameras in the network.

In [5,6,8] first the topology is estimated, then transition probabilities are used
to identify where/when an object can reappear in the camera network. In this
kind of system, object correspondences are strongly related to the speed at which
an object moves in the site. This can result in poor performance in anomalous
cases, e.g., when people do not follow the expected trajectories in the site.

Some approaches perform consistent labeling by matching features as color
or texture. In [3], correspondences are found by comparing compact color his-
tograms of the major RGB colors in the image. To make the descriptors more
robust, the histogram is computed on successive frames. More details about this
method will be provided in Section 5.

In [7], a content-based retrieval system for surveillance data is presented. This
system looks for all the sequences of a certain person by using tracking infor-
mation and appearance model similarity. By using the estimated homographic
relation among the camera FOVs, consistent labeling among all the tracks is per-
formed by assigning to each unlabeled object the label of the nearest one with
the highest appearance similarity. For each observation, the ten major modes
are extracted from a color histogram; then the appearance model is computed
by training a mixture of Gaussian on these modes.

In [4], each object is represented as a “bag-of-visterms” where the visual
words are local features. A model is created for each individual detected in
the site. When a new individual is detected, classification is performed to es-
tablish a potential match with previously seen objects. Descriptors consist of
128-dimensional SIFT vectors that are quantized to form visual words using a
predefined vocabulary. The vocabulary is constructed during a training step by
k-means clustering and organized hierarchically so to speed up the search. Ob-
ject classification is performed by an incremental version of Adaboost in which,
as new data is available, classifiers are added and trained. One-vs-one SVM clas-
sifiers are added at each round; thus, the number of classifiers can grow as a
quadratic function of the number of observed objects. Furthermore, the system
is centralized; making it distributed requires significant communication among
the nodes with a master node tasked with continuously updating the object
model.

In this paper, we adopt the strategy of modeling objects as bags of words in
which a latent structure of features exists and must be discovered. This struc-
ture can enable compact object description and efficient object comparison. In
our distributed system, each node processes individually and autonomously the
data acquired by its own camera. Communications among nodes enable knowl-
edge sharing and are performed every time a new object exits the camera FOV.
Knowledge of the camera network topology is not required. During the start-up,
each node detects people and trains an LDA model. The model is then used to
describe objects appearing in the FOV. Correspondences with previously seen
objects are computed by comparing the stored descriptors.
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3 LDA Model

Latent Dirichlet Allocation (LDA), first introduced by Blei [9], is a generative
model that can be used to explain how documents are generated given a set
of topics and a vocabulary of words. In the LDA model, words are the only
observable variables and they implicitly reflect a latent structure, i.e., the set
of T topics used to generate the document. Generally speaking, given a set of
documents, the latent topic structure lies in the set of words itself. Fig. 1(a) shows
the graphical model for LDA. As the figure shows, in generating the document
for each word-position a topic is sampled and, conditioned from the topic, a
word is selected. Each topic is chosen on the basis of the random variable θ that
is sampled – for convenience – from a Dirichlet distribution p (θ; α) where α is
a hyperparameter. The topic z conditioned on θ and the word w conditioned
on the topic and on φ are sampled from multinomial distributions p (zn|θ) and
p (wn|zn; φ) respectively. φ represents the word distribution over the topics. The
probability of a document can be computed as

p(w) =
∫

θ

[
N∏

n=1

k∑
zn=1

p (wn|zn; φ) p (zn|θ)
]

p (θ; α) dθ. (1)

There are a number of different implementations of LDA. In [9], Blei, et al.
present a variational approach to approximate the topic posterior with the lower
bound of a more simple and computable function. In their implementation, α
and φ are learnt by variational inference so to maximize the log likelihood of the
data.

In another approach [10] a simple modification to the model enables easier
computation of the posterior (cfr. Fig. 1(b)). A Dirichlet prior is introduced on
the parameter φ, with hyper-parameter β. Despite this modification, computa-
tion of the conditional probability p(z|w) is still unmanageable. They propose
to approximate it by Gibbs sampling based on the following distribution:

p(zi = j|z−i,w) ∝
n

(wi)
−i,j + β

n
(·)
−i,j + Wβ

n
(di)
−i,j + α

n
(di)
−i + Tα

. (2)

This distribution represents the probability that word wi should be assigned
to topic j given all the other assignments z−i. The quantities n

(wi)
−i,j and n

(·)
−i,j

represent respectively the number of times word wi has been already assigned
to topic j and the total number of words assigned to topic j. The quantities
n

(di)
−i,j and n

(di)
−i represent respectively the number of times the word wi in the

document di has been already assigned to topic j and the number of words in
document di that are assigned to topic j. The hyperparameters α and β are
computed using the method described in [10] (β = 0.01, α = 50/T ).

LDA has been applied with success in a number of computer vision scenarios.
For instance, in [12] LDA is used in object segmentation and labeling for a large
dataset of images. For each image in the dataset multiple segmentations are
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(a) (b)

Fig. 1. Graphical models for LDA: (a) Blei’s approach, (b) Griffiths’ approach. In (b)
a Dirichlet prior is introduced on φ.

obtained via different methods – these are treated as documents for LDA. An
histogram of visual words (SIFT descriptors) is then computed for each segment-
document. They then train an LDA model in order to discover topics in the set
of documents. Segments corresponding to an object are those well explained by
the discovered topics.

In other work [13], LDA is used for activity analysis in multi-camera systems.
Activities are represented as motion patterns and the camera network topology
is unknown. In this application, the documents are trajectory observations. Each
trajectory is a set of words and a word is a tuple representing the camera, the
position and the direction of motion for the observed object. Topics represent
clusters of trajectories and, then, activities.

Our system detects and segments moving objects yielding their tracks in the
monitored site. We define an object instance as the object segmented by back-
ground suppression from which a set of features can be extracted. Each track
is a sequence of frames representing a particular instance of the object seen in
different conditions, for example under different viewpoints. Indeed, during the
track, objects approach or move away from the camera, are partially visible and,
generally, they change their pose and/or orientation with respect to the camera.

We want to realize a system that can learn – in an unsupervised way – the
appearance of the object from its track by using an LDA model. For this purpose,
we treat each object instance as a document and each extracted feature as a
word. In this manner, each track is just a set of documents regarding the same
object. With this analogy, each object instance has been generated first choosing
a mixture of features – that is a topic – then choosing a particular feature on
the basis of the underlying word-topic distribution.

An example of a feature-word that can be used in our model is the pixel
color. Many representations in color space can be used: HSI, RGB, normalized
RGB or invariant spaces. For the sake of demonstrating the general approach,
we used RGB space. Other more sophisticated features as SIFT[14] or SURF[15],
could be used too but, whilst they are locally scale and rotation invariant, they
are not invariant to non-rigid transformations that are commonplace in human
motion patterns. Instead, using many instances of the object while it is moving
should permit to capture its appearance under different viewpoints and at several
distances from the camera increasing the descriptor robustness to scale changes.
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Fig. 2. Example images from the training set acquired with two different cameras. The
images tend to be noisy and object resolutions differ significantly.

So, in our system each camera node computes an LDA model to capture the
latent structure for the data it observes. We use the LDA method implemented by
Griffiths[10]. Considering the full range of RGB colors could yield a vocabulary
that is too broad; therefore, we restricted the set of words by scaling the RGB
color resolution producing an 8x8x8 partition of the space. We have found in
practice that this coarse uniform RGB partition tends to make the descriptor
more robust to small illumination changes.

Once the model has been trained, a descriptor can be computed for every
new object, based on the observed instances for the object in that camera view.
As we can know the topic distribution for each object instance, we define the
descriptor as the expected value of the topic distribution given the instance f .
Assuming that the number of known instances is N , then our descriptor will be:

p(z|Object) = E[p(z|f)] =
1
N

N∑
i=1

p(z|fi). (3)

Fig. 2 shows example images from the training set that we use as documents
to train the LDA model. Each frame contains one object instance and has been
obtained by background suppression with hysteresis thresholding. As the figure
shows, the images are quite noisy and part of the background is detected.

4 Matching Object Appearances

Every time a new object is seen, a distribution of the topics must be computed
for that object. Given an object and an initial topic-assignment for it, the topic
distribution can be estimated by appling a Gibbs sampler to Eq. 2 where, this
time, the variables n

(wi)
−i,j , n

(·)
−i,j , n

(di)
−i,j and n

(di)
−i are updated so to consider also

the current topic-word assignment in the analyzed document.
Each node estimates its own LDA model independently from the others on

different training sets, and each camera can see different object views. Therefore,
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a topic association among LDA models is required in order to compare two topic
distributions computed in different camera nodes. To do this, after the training
is completed, the nodes propagate their own model over the camera network and
then compute the topic association with each other.

Topic Association among Two LDA Models. In order to compute the topic
association we consider two models, LDA1 and LDA2, with the same number of
topics T and for each topic j we perform the following steps:

– we generate a document dj by the model LDA1 using just the j-th topic; so,
given δi,j is the Dirac’s delta function, the topic distribution for dj shall be

pLDA1(z = i|dj) = δi,j i = 1..T (4)

– we compute the topic distribution of the previously generated document by
using LDA2 in the manner described at the beginning of this section; i.e.,
we estimate pLDA2(z|dj).

Assuming a linear relation among the topics in the two models, performing the
second step for each of the T generated documents results in a topic association
matrix M. In this manner, given a document doc the matrix M permits us to
transform a generic topic distribution computed by the model LDA1 into a topic
distribution p∗LDA2(z|doc) valid for the model LDA2:

p∗LDA2(z|doc) = M · pLDA1(z|doc) with M =

⎡
⎢⎣

pLDA2(z|d1)
...

pLDA2(z|dT )

⎤
⎥⎦

T

. (5)

Given this relation, for each object it is possible to compute two comparable dis-
tributions. Comparison is performed using the Jensen-Shannon (JS) divergence,
which is a symmetric and normalized measure based on the Kullback Leibler
divergence[11]. Defining p = pLDA2(z|doc) and q = p∗LDA2(z|doc), then the JS
divergence

JS(p, q) =
1
2

[
D(p,

p + q

2
) + D(q,

p + q

2
)
]

, (6)

where D is the Kullback Leibler divergence

D(p, q) =
T∑

j=1

pj · log2(
pj

qj
). (7)

5 Experiments

To test our system we collected data using two cameras with non-overlapping
fields of view. The training set comprises many different tracks of 20 different in-
dividuals acquired at approximately 15 fps, for a total of 1003 and 1433 frames
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for each camera. The test set comprises many different tracks of 20 individu-
als acquired at different time instants, for a total of 1961 and 2068 frames per
camera. None of these individuals is in the training set. Among all the possible
pairs, just 10 are true matches. The number of frames per track can vary consid-
erably, ranging from 29 to 308 frames for both the test and training set. Fig. 2
shows example images used to train the models in our experiments. As can be
seen, the images tend to be rather noisy and no shadow suppression has been
applied. In the images of the training and test set, the object resolution varies
greatly (examples are shown in Fig. 2 ). In acquiring the images, the cameras’
auto-focus function has been disabled as it contributes to changes in the object’s
appearance.

Comparison. Comparison has been conducted against the I-MCHR method of
Madden [3]. As explained in Sec. 2, this method computes an incremental his-
togram of the object’s major colors. Given the first object instance, the method
computes the bin centers of the color histogram in order to obtain a rough
non-uniform partition of the RGB color space; this partition is then refined by
k-means clustering. Only the modes that can represent 90% of the image pixels
are retained. This RGB space partition is then used to compute an incremental
histogram on all the successive frames. The authors utilize a symmetric similarity
measure to compare two I-MCHR descriptors by considering the probabilities of
the modes with distance less than a certain threshold. Distance among clusters
is computed using a normalized distance metric in the RGB space. To address
the problem of illumination changes, an intensity transformation is applied sepa-
rately to each image channel, thereby yielding a “controlled equalization” of the
image. This transformation scales and translates the histogram modes towards
the lightest part of the intensity scale. The I-MCHR method gave us an accuracy
of 84% on our dataset.

Results. We tested our system with different values of the hyperparameters α
and β and different numbers of topics T. In this paper we report results obtained
for several values of T; β and α have been set to 0.01 and 50/T respectively as
proposed in [10]. Figure 3(a) shows the accuracy value obtained by changing the
number of topics in the range [10; 50]. The best results are obtained by using
15 topics, which yields an accuracy of 94%. For values of T greater than 15, the
accuracy decreases.

Fig. 3(b) shows the ROC curves computed for our method and Madden’s
I-MCHR on the test set. As the figure shows, performance of our method is gen-
erally better than that of Madden’s method. As expected, the worst results are
obtained for the nosiest images, for which correspondence is particularly ambigu-
ous (many noisy objects tend to look similar). In addition, when people dress
with almost the same colors, the system cannot reliably discriminate between
these individuals. In such cases, additional information could be used by the
system to make a decision – for instance body proportions, distinctive gait pat-
terns, temporal constraints, etc. The matching errors can generally be ascribed
both to illumination changes and to the scaled RGB resolution of the colors we
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Fig. 3. (a)Accuracy of the method while the number of topics is changing; (b)ROC
curves for our LDA based approach and for Madden’s I-MCHR
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(c)

Fig. 4. Example of outputs from our method: a) the original image, b)the topic inter-
pretation and c) the expected topic distribution (15 Topics)

used as input features to the model. Accounting for illumination variation, for
instance with invariant descriptors, remains a topic for future investigation.

Nonetheless, taking into consideration that images are poorly processed and
nothing is done to compensate for shadows, changes in the illumination and
differences in the camera color calibrations, these preliminary results are quite
promising. No doubt, further changes to the system to account for these issues
can improve its overall performance.

Finally, in Figure 4 we present an example from the test set, the corresponding
expected topic distribution and its topic interpretaton in false color. The latter
image was obtained by associating at each pixel the most probable topic and so
this image does not reflect the estimated topic distribution.
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6 Conclusion and Future Work

In this paper we report the preliminary results obtained by considering an object
as a bag of words and using a LDA model to infer the “appearance topic”
distribution by which the object has been generated. This distribution is used
to describe the object and also to establish probable correspondences among
objects moving within the camera network.

Our LDA-based method performs better than Madden’s I-MCHR in our ex-
periments. Based on the preliminary study, we believe that the LDA model
for appearance is promising. The formulation can be extended to include other
features that describe an object’s appearance, e.g., texture. In future work we
intend to investigate the performance of the method in a more complex system
setup with more than two cameras. We also plan to investigate the use of ap-
pearance topic distributions within a probabilistic framework for inferring likely
trajectories of objects moving within the camera network.
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