
P. Foggia, C. Sansone, and M. Vento (Eds.): ICIAP 2009, LNCS 5716, pp. 434–442, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Experimental Analysis of the Relationship between
Biometric Template Update and the Doddington’s Zoo:

A Case Study in Face Verification

Ajita Rattani, Gian Luca Marcialis, and Fabio Roli

University of Cagliari – Department of Electrical and Electronic Engineering
{ajita.rattani,marcialis,roli}@diee.unica.it

Abstract. The problem of biometric template representativeness has recently
attracted much attention with the introduction of several template update meth-
ods. Automatic template update methods adapt themselves to the intra-class
variations of the input data. However, it is possible to hypothesize that the ef-
fect of template updating may not be the same for all the clients due to differ-
ent characteristics of clients present in the biometric database. The goal of this
paper is to investigate this hypothesis by explicitly partitioning clients into
different groups of the “Doddington’s zoo” as a function of their “intrinsic”
characteristics, and studying the effect of state of art template “self update”
procedure on these different groups. Experimental evaluation on Equinox da-
tabase with a case study on face verification system based on EBGM algorithm
shows the strong evidence of non-uniform update effects on different clients
classes and suggest to modify the update procedures according to the client’s
characteristics.

1 Introduction

Recently, template representativeness has attracted much attention in the field of
biometrics [1]. Often, the online operation of the biometric system encounters sub-
stantial intra-class variations in the input biometric data, due to the presence of sev-
eral factors; like human-sensor interaction, environmental conditions, temporal
variations (short term like scars in fingerprint surface and long term like aging in
face) and other temporary variations like changes in facial expressions or rotation in
fingerprint [2]. These variations make the initial enrolled templates, often captured
in controlled environment, non-representative, thus resulting in degradation of the
performance of the system.

To deal with this issue, novel solutions in the form of template update procedures
have been introduced. Their aim is to adapt the enrolled templates to the intra-class
variations of the input biometric data, on the basis of some learning methodologies
like supervised [3] and semi-supervised learning [4-9]. Among these, supervised
methods require the intervention of human experts for updating, thus making update
procedure time consuming and inefficient task [3].

On the other hand, semi-supervised methods are automated systems that adapt
themselves to the intra-class variations of the input biometric data. They derive their

 An Experimental Analysis of the Relationship 435

name from the machine learning technique of semi-supervised learning that adapt the
classifier through the joint use of initial labelled (templates) and unlabelled input
biometric data. These data are available during the online operation, without the in-
tervention of human supervisor [4-9]. Among others, self update is based on the self-
training concept of semi-supervised learning, in which the input data recognized as
highly confident are added iteratively to the template gallery set of the respective
client [4-7].

Recently, self update procedure has gained much focus and the overall effective-
ness of it has been proved experimentally in [4-7]. Also a serious issue of impostor’s
intrusion or “creep-in” errors, causing counter-productive effect, as an open issue has
been pointed out in [9]. This problem of “creep-in” errors has also been recently in-
vestigated in detail [10] where the relationship between update errors due to impos-
tor’s introduction and performance degradation has been established. Ref [10] also
suggested that the existence of creep-in of errors is also a function of user population
characteristics apart from the basic FAR of the system or incorrect estimation of
threshold parameters. Specifically in [10], the intrusion of impostors has been also
correlated to clients which are intrinsically easy to “imitate”, and clients “capable” to
confuse themselves with other clients. These two groups have been called “lambs”
and “wolves”, respectively, according to the well-known concept of “Doddington’s
zoo” [11]. But their “presence” has not been recognized by using the rigorous defini-
tion given by Doddington et al. [11]. The presence of wolves, for example, has been
detected by their repeated presence in different client’s galleries at varying thresholds.
Lambs have been identified by being attacked repeatedly at varying acceptance
thresholds [10].

The aim of this paper is to extensively investigate the hypothesis that different
types of clients as lambs, goats, wolves and sheeps [11] result in different updating
effect on the application of self update procedure on the database, thus suggesting
adaptation of template update methodology for each group of clients.

To this aim, user population is explicitly partitioned into different animal groups
i.e., sheeps, lambs, wolves and goats using the definition of Doddington Zoo [11].
Then, the effect of global application of self update procedure has been studied on
these classes of clients. Experimental evaluations are done on Equinox Database with
57 clients and 129 frontal face images per client [12]. The self update based technique
has been used as a case study on face verification system based on Elastic Bunch
Graph Matching (EBGM) [13]. Results pointed out that the effect of template update
is different for each group, which confirms our hypothesis. This paper also mentions
the counter-measures which may help to avoid the non-uniform effect of template
update on these clients.

In Section 2, Self Update and its relation with Doddington zoo is described in de-
tail. Section 3 reports the experimental results, and preliminary conclusions are drawn
in Section 4.

2 Template Self Update and Doddington’s Zoo

In the “online” template self update algorithm [4-7], a matcher adapts itself to the
variations of the input data, available during the normal system’s operation. The aim

436 A. Rattani, G.L. Marcialis, and F. Roli

of these methods is to capture the temporal and temporary intra-class variations of the
input data by modifying the templates, thus enhancing the generalization performance
on the novel unseen data.

The general “online” self update method may involve two steps: 1. Initialization:
where each user is enrolled with its templates to build the initial gallery and the initial
system parameter (“updating threshold”) is set; 2. Updating: where the input data is
compared with the template(s) of the claimed identity’s gallery to compute the match-
ing score. If matching score is greater than the threshold, the template set of the re-
spective client is updated by either fusing with the current template or adding that
sample as another instance into the gallery set of the claimed identity. If the matching
score is less than the threshold, that sample is rejected. The described process is re-
peated on each availability of input sample.

Self update techniques usually operate at stringent acceptance threshold and exploit
(i.e. add to the clients’ galleries) only the confidently classified samples in order to
avoid the introduction of impostors into the gallery set of the client. But avoiding this
problem is very difficult in a realistic verification system, and the impostor’s intro-
duction leads to the so-called “creep in” error which strongly decreases the effective-
ness of the update procedure.

Apart from incorrect threshold estimation conditions, these creep-in errors are also
due to the presence of variable clients, like wolves, lambs and goats, present in the
Doddington zoo as identified and reported in [10]. The Doddington’s definition of
Wolves, Lambs, Goats are stated as follows [11]:

• Goats are clients intrinsically difficult to recognize: they exhibit a very high FRR;
• Lambs are clients easily imitable by other users: they exhibit a very high FAR;
• Wolves are the users (not necessarily clients) which have the capability to imitate

other clients: i.e., when a wolf try to access as a certain client, it has a very high
probability of success causing impostor’s introduction [11].

Even with the operation at stringent threshold conditions, presence of wolves and
lambs do result in impostor’s intrusion. Work reported in [10] have discussed the
threat of impostor’s introduction into the client’s galleries and highlighted that the
presence of wolves and lambs cause the introduction of impostors into the gallery set
of the clients even at the stringent threshold conditions. However, the presence of
wolves and lambs have been shown on the basis of experimental evaluations, where
wolves were determined by their repeated presence in the gallery set of other clients
and lambs were identified by their repeated vulnerability to impostors at various
threshold conditions. It was concluded that even with the operation at stringent
threshold conditions, the intrusion of impostors is unavoidable due to the presence of
clients like lambs and wolves in the biometric database [10]. Even, the unseen impos-
tor input sample may also have the wolf characteristic apart from their presence in the
database.

In this paper, we extend the above study and show explicitly the effect of update
procedures not only for lambs and wolves but also for sheeps and goats. It has been
hypothesized that due to the presence of these characteristic people in the database
and the operation of the uniform self update procedure on them, goats may not be
updated at the same strict threshold and lambs and wolves may attract impostors even

 An Experimental Analysis of the Relationship 437

at the strict threshold conditions. Thus the effect of self update is studied specifically
for each group by the prior division of database into different animal groups accord-
ing to the definition of Doddington zoo [11].

3 Experimental Results

3.1 Data Set

Equinox Corporation Database [12] consisting of 56 individuals with 129 face images
per person with significant intra-class variations like illumination changes and varia-
tions in facial expressions etc, are used for experimental evaluation. The time span of
the collected data sets is over one year. The self update based mechanism is used as a
case study on face verification system based on Elastic Bunch Graph Matching [13].
Other face matching algorithm could be used as well.

3.2 Experimental Protocol

In a typical personal verification system, a different batch of unlabelled set (Du),
owing to different access attempts, is collected for each client over a period of time.
In order to respect this simple evidence, the following protocol has been adopted in
the literature [9-10]. We have also followed this protocol for our study.

(1) 56 initial templates are selected (one template for each client T). These are the
initial template set consisting of a neutral image per client (Tca). The threshold for self
updating is always evaluated on this set, being the only set available in real
environments. Threshold is evaluated on this template set by comparing each template
to the templates (T) of all the other clients (Tca) thus estimating the impostor
distribution and selecting a threshold value at 0%FAR. These stringent starting
conditions simulate the real environment where very less labelled data is available to
set the system parameters.

(2) Remaining client images are subdivided in three sets with 25 images per client in
in the prediction set and 25 in unlabelled set and remaining 78 face images in the test
set. Prediction dataset is used to partition the database clients into different animal
groups.

(3) The whole dataset (except for templates) is then randomly partitioned into 56 parti-
tions, such that the c-th partition does not contain images of the c-th client. Each of
these partitions, consisting of 128 images, represent the “impostor set” for the c-th cli-
ent: 25 images are added to unlabelled set, 25 images to the prediction set and 78 face
images in the test set. The same number of genuine and impostors are added to the unla-
beled, prediction and test set to have equal priors for both the classes, i.e., genuine and
impostor. The database is partitioned into different animal groups of Doddington’s zoo
using the samples from the prediction set. Then the unlabelled data set is used to update
the enrolled templates using the self update procedure irrespective of the database parti-
tion. Then the test set is used to evaluate the actual improvement in performance gained

438 A. Rattani, G.L. Marcialis, and F. Roli

by the template self update algorithm. Then the performance of the updated system is
evaluated using the test set for each partitioned group.

3.3 Rules for Identifying Different Animal Groups of Doddington’s Zoo

This section presents the rules followed using the prediction set to divide the database
into specific animals groups. Each client is enrolled using a single initial template.
Note Ref [14] also partitions the database clients into different groups exhibiting
variability on the basis of “sheepiness index” (sheeps are “well behaved” clients in the
Doddington’s zoo). However, the technique does not explicitly identifies which parti-
tion belongs to which specific animal group. It just partitions the database into differ-
ent groups sharing the common characteristics. By considering the aim of this paper,
we partitioned the database clients into specific animal groups according to the defini-
tion given by Doddington [11]. Thus:

• Goats are identified by evaluating FRR for each client at zeroFAR, which
guarantees that no impostors are accepted. zeroFAR is calculated by matching
each client’s enrolled template to the relative impostor images of the prediction
set. For each client, genuine samples belonging in the prediction set (25 samples)
are matched with the initial enrolled template and FRR is evaluated for each
client. Then, clients whose FRR exceeds a threshold value more than 0.5 are
considered as “Goats”.

• Lambs are identified by evaluating their FAR under an operational point of
zeroFRR (zeroFRR is calculated by matching each enrolled template to the
genuine samples of that client in the prediction set), which guarantees that no
genuine users are rejected. Then for each client, a batch of impostor samples (25)
from the prediction set are matched with the enrolled template and FAR is
evaluated accordingly. Then, clients whose FAR exceeds a threshold value more
than 0.5 are considered as “Lambs”.

• Wolves are identified as follows. Each potential wolf (client) attacks all genuine
samples (all 25 samples) of all the other clients in the prediction set. The
operational point for each client is estimated at zeroFAR, calculated similarly as
that for Goats. Candidate clients which are accepted even under this very
stringent condition for more than 50% of the users are considered as “real” wolf.

• Sheeps are the clients which do not belong to any of the above presented group
i.e., Lambs, Goats and Wolves.

Estimating zeroFRR is very difficult because of the small sample size affecting the
data. However, by considering the goal of our study, the database partitioning has
been made by considering quite large number of samples in order to have a good
estimation of wolves, lambs and goats.

3.4 Results

The goal of the paper is to study the effect of template update procedure for different
clients termed as members of Doddington’s Zoo. Accordingly, first the biometric
database is partitioned into different characteristics group of clients on the basis of

 An Experimental Analysis of the Relationship 439

definition of Doddington Zoo [11] (section 3.3) and then the effect of self update
procedure (section 2), updating threshold is set at zeroFAR, is analyzed on these cli-
ent’s group.

Table 1 reports the statistics about the percentage of specific “animals” present in
the database, found using the prediction set of the Equinox database (section 3.3).

Table 1. Percentage of different characteristic clients in the database

% Lambs % Wolves % Sheeps % Goats

12 2 56 30

Table 1 shows that Equinox database comprises of 12% lambs, 2% wolves, 56%

sheeps and 30% goats. It is worth noting that the most frequent class is that of
“sheeps”, that is, clients “easy” to recognize and also difficult to imitate. Goats ap-
peared as the second most frequent class. This contradicts results found in other
works [14-15] (Ref. 15 is about fingerprints), and pointed out how the frequency of
these classes strongly depend on the variety of the user population, prediction rules
adopted and cannot be referred to general “frequency rules”. Lambs and wolves are
the least frequent classes.

As second step, we evaluated the effectiveness of self update method for each
group of clients. We computed the average % of unlabelled samples exploited from
the batch of unlabelled set (section 3.2) and the average % of impostors introduced for
each group (available in the same unlabelled set). These statistics, presented in Table
2, help to evaluate the behaviour of self update on different client’s group.

Table 2. Average percentage of samples added to clients galleries, impostors introduced, and
successful % of wolves attacks after self updating

Animal
Type

(%) Samples Exploited
(added to clients gallery)

(%) Impostors
Introduced

(among samples
exploited)

(%) Wolves attacked

(attack by all the detected
wolves with 25 samples per

wolf)

Wolves 56.0 37.0 -

Lambs 65.7 43.2 65.9

Goats 23.3 11.8 26.3

Sheeps 72.6 16.4 41.0

Table 2 shows the different percentage of impostors and available samples ex-

ploited, from the unlabelled batch, for each partitioned group. According to the statis-
tics presented in Table 2, the following analysis can be done:

440 A. Rattani, G.L. Marcialis, and F. Roli

1) lambs, i.e. clients vulnerable to impostors, have introduced a high percentage of
unlabelled samples, but about half of them are impostors. They are also strongly
affected by detected wolves;

2) goats, i.e. clients difficult to be recognized, have exploited the lowest number of
available samples, thus confirming their intrinsic characteristic according to the
definition of Doddington. On the other hand, they are much less prone to impos-
tors introduction (only 11.8% of added samples are impostors) than other classes
of clients, and also are less prone to wolf attacks;

3) sheeps, i.e. well behaved clients, have exploited the largest number of samples
and the % impostor introduction is also minimum for these clients. Even % of
wolf attacks is minimum for these clients ;

4) wolves too are intruded by impostors. This class exhibits the additional feature
that can attack other clients, namely, lambs, and can be confused with other im-
postors, even lambs. This confirms evidences in previous work [10], where it is
stated that certain “lambs” may be “wolves” for other clients too [11].

3.5 Performance Enhancement Reported for Each Group of Clients

According to the statistics reported in section (3.5), it is evident that the effect of self
update is different for each partitioned clients group. To provide a further evidence,
the average performance attained due to updated templates after the self update pro-
cedure for each group of clients is reported in Fig. 1. Fig. 1 presents the ROC curves
on test set, before (straight line) and after updating process (dotted line), for each
group of clients. In ROC curves, x axis is % FAR and y axis % FRR.

As can be seen from Fig. 1, initial performances of the verification system for each
client group (straight lines) is different and after the update procedure, the impact is
different for each group of clients (dotted lines). Lambs (subplot 1), the clients vul-
nerable to impostors, have shown no substantial improvement, because of the large
amount of impostors introduction into the galleries (table 2, second row, column 1).
Sheeps, as expected, being well behaved clients, have upgraded in the performance
after updating process. Nevertheless, they too have attracted impostors into galleries,
but because of much more percentage of genuine samples introduced, the impact of
impostors is less, hence the performance is upgraded (table 2, fourth row, column
1&2). Goats, difficult to recognize clients, have shown slight improvement in per-
formance due to less capture of genuine samples, although very less percentage of
impostor samples are added to the related gallery (table 2, third row, column 1&2).
Finally, wolves appears to benefit from self update only at threshold value set at high-
security level, where low FAR is expected. Different performances after updating and
the statistics presented in table 2 clearly showed the different behaviour of self update
procedure for the investigated groups of clients.

These evidences suggest that adjustable update procedures have to be adopted, de-
pending on the clients class. In the following, we give some preliminary guidelines:
(1) firstly, a user-specific update threshold can be adopted for each group of clients
[10]; (2) lambs and wolves could be updated by adopting supervised methods, as even
with the operation at stringent acceptance threshold, they are prone to impostors in-
troduction. Thus, the manual assignment of labels to the samples utilized for updating
may minimize the probability of impostors introduction [3]. We believe that manual

 An Experimental Analysis of the Relationship 441

assignment of label can be suitable, due to their small percentage in the user popula-
tion: the cost of updating should be compensated by benefits in improving the
performance; (3) goats may operate at relaxed updating threshold, say 1%FAR, for
better capturing large intra-class variations [9], since they are less prone to impostors
introduction.

0 50 100
0

50

100
1. Lambs

(%) FAR

(%
)

F
R

R

After Updating

Before Updating

0 50 100
0

50

100
2. Sheeps

(%) FAR

(%
)

F
R

R

After Updating

Before Updating

0 50 100
0

50

100
3. Goats

(%) FAR

(%
)

F
R

R

After Updating

Before Updating

0 50 100
0

50

100
4. Wolves

(%) FAR

(%
)

F
R

R

After Updating

Before Updating

Fig. 1. ROC Curves showing the initial performance (straight line) and after template updating
(dotted lines), on the test set, for each partitioned class of clients

4 Conclusions

This paper studied the hypothesis of different behaviour of the self update algorithm
due to the presence of different characteristics of clients in the database. Accordingly
using the Doddington’s classification, the database is partitioned and self update proc-
ess is applied. Our hypothesis has been confirmed by reported experimental results.

These preliminary results pointed out that the suitability of self update must be
carefully analysed on the target user population, although no significant performance
degradation have been noticed on the four identified groups of users, especially for
“anomalous” clients (lambs and wolves). On the other hand, performance improve-
ment for the most frequent classes, namely, sheeps and goats, has been pointed out.
Since they result in covering about 80% of user population, applying update algo-
rithms to these user appears to be worth-while. On the other hand, adjustable updating
procedures may be taken into account for wolves and lambs. We suggested some
“guide-lines” by considering the consistence of wolves, lambs, goats and sheeps in
the user population at hand.

442 A. Rattani, G.L. Marcialis, and F. Roli

In our opinion, with regard to above guide-lines and their suitability, the main
problem to solve is to clearly understand if frequency of users classes, which in our
study did not partially agree with other achievements at the state of the art, is general.
It can be easily supposed, and maybe verified, that this frequency may change as
function not only of users, but also of selected biometric and prediction rules and the
set used for clients partitioning. But, although frequency of different classes may
change, the behaviour of self update for each partitioned class may remain consistent.

References

1. Roli, F., Didaci, L., Marcialis, G.L.: Adaptative Biometric Systems that Can Improve with
Use. In: Ratha, N., Govindaraju, V. (eds.) Advances in Biometrics: Sensors, Systems and
Algorithms, pp. 447–471. Springer, Heidelberg (2008)

2. Jain, A.K., Flynn, P., Ross, A.: Handbook of Biometrics. Springer, New York (2007)
3. Uludag, U., Ross, A., Jain, A.K.: Biometric template selection and update: a case study in

fingerprints. Pattern Recognition 37(7), 1533–1542 (2004)
4. Jiang, X., Ser, W.: Online Fingerprint Template Improvement. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 24(8), 1121–1126 (2002)
5. Ryu, C., Kim, H., Jain, A.K.: Template Adaptation based Fingerprint Verification. In: 18th

ICPR 2006, vol. 4, pp. 582–585. IEEE Computer Society, Los Alamitos (2006)
6. Roli, F., Marcialis, G.L.: Semi-supervised PCA-based face recognition using self-training.

In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR
2006. LNCS, vol. 4109, pp. 560–568. Springer, Heidelberg (2006)

7. Liu, X., Chen, T.H., Thornton, S.M.: Eigenspace updating for non-stationary process and
its application to face recognition. Pattern Recognition, 1945–1959 (2003)

8. Roli, F., Didaci, L., Marcialis, G.L.: Template co-update in multimodal biometric system.
In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1194–1202. Springer,
Heidelberg (2007)

9. Rattani, A., Marcialis, G.L., Roli, F.: Capturing large intra-class variations of biometric
data by template co-updating. In: IEEE Workshop on Biometrics, International Conference
on Vision and Pattern Recognition, Anchorage, Alaska, USA (2008)

10. Marcialis, G.L., Rattani, A., Roli, F.: Biometric template update: an experimental investi-
gation on the relationship between update errors and performance degradation in face veri-
fication. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M.,
Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 684–693.
Springer, Heidelberg (2008)

11. Doddington, G., Liggett, W., Martin, A., Przybocki, M., Reynolds, D.: Sheep, goats, lambs
and wolves: A statistical analysis of speaker performance, NIST 1998 speaker recognition
evaluation. In: Proceedings of ICSLP 1998 (1998)

12. http://www.equinoxsensors.com/products/HID.html
13. Wiskott, L., Fellows, J.-M., Kruger, N., von der Malsburg, C.: Face Recognition by elastic

bunch graph matching, Tech. Report IR-INI 96-08 (1996)
14. Poh, N., Kittler, J.: A Methodology for Separating Sheep from Goats for Controlled En-

rollment and Multimodal Fusion. In: 6th IEEE Biometric Symposium, Tampa, Florida,
USA (2008)

15. Micklin, A., Watson, C., Ulery, B.: The Myth of Goats: how many people have finger-
prints that are hard to match?, Tech. Rep. NISTIR 7271, NIST (2005)

	An Experimental Analysis of the Relationship between Biometric Template Update and the Doddington’s Zoo: A Case Study in Face Verification
	Introduction
	Template Self Update and Doddington’s Zoo
	Experimental Results
	Data Set
	Experimental Protocol
	Rules for Identifying Different Animal Groups of Doddington’s Zoo
	Results
	Performance Enhancement Reported for Each Group of Clients

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

