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Abstract. Being able to find the silhouette of an object is a very im-
portant front-end processing step for many high-level computer vision
techniques, such as Shape-from-Silhouette 3D reconstruction methods,
object shape tracking, and pose estimation. Graph cuts have been pro-
posed as a method for finding very accurate silhouettes which can be
used as input to such high level techniques, but graph cuts are noto-
riously computation intensive and slow. Leading CPU implementations
can extract a silhouette from a single QVGA image in 100 milliseconds,
with performance dramatically decreasing with increased resolution. Re-
cent GPU implementations have been able to achieve performance of 6
milliseconds per image by exploiting the intrinsic properties of the lattice
graphs and the hardware model of the GPU. However, these methods are
restricted to a subclass of lattice graphs and are not generally applicable.
We propose a novel method for graph cuts on the GPU which places no
limits on graph configuration and which is able to achieve comparable
real-time performance in online video processing scenarios.

1 Introduction

Graph cutting is a technique that can be applied to energy minimization
problems that occur frequently in computer vision. One of the most common
applications of graph cuts is binary image segmentation, or object silhouette
extraction. The groundwork for solving the push relabel maximum flow across
graphs was laid through Goldberg and Tarjan’s [1] reasearch, but the applicabil-
ity to computer vision was not demonstrated until 1989 [2] and further expanded
by Boykov et. al [3,4]. However, graph cuts have consistently been difficult to
adapt to real-time scenarios due to the intensive computation required to con-
struct and cut even a single graph.

Improving the speed of finding the st -mincut of a graph has been the goal
of recent research on graph cuts. Research methods that have shown varying
degrees of success include algorithms that re-use previous search trees [5], re-use
of previous cuts to create a pseudo-flow which can be pushed and pulled through
the graph [6], and finally implementations of push-relabel algorithms have been
adapted to the GPU [7]. Currently, the fastest of these algorithms, presented by
Vineet and Narayanan [8] in 2008, demonstrates a GPU implementation that
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can compute the graph cut on a 640x480 image in approximately 6 milliseconds.
This implementation exploits properties of the lattice graphs created from the
input images and the hardware model in the graphics processor. Vineet and
Narayanan admit that this approach makes the method only applicable to such
graph types and not generally usable by any arbitrary maximum-flow calculation.
Furthermore, these papers make no mention of the computation required for
graph construction in the online video scenario.

In the case of online video, a graph must be constructed from each video
frame as it arrives at the CPU. In contrast, offline methods layer all of the video
frames into a 3D volume and cut once across the entire video sequence [9]. On
traditional computing platforms, this necessitates techniques which speed up
not only the cutting of the graph, but also the construction of the graph. One
proposed method uses a laplacian pyramidal structure of decreasing resolutions
of the input image to cut decreasingly coarse graphs [10]. This method works well
for generally round objects without holes, but has difficulty with other input.
We previously presented an online method for live video situations that uses
the silhouette of the previous segmentation as a mask for graph construction,
in effect shrinking the graph [11]. However, none of these methods compute
faster than 100 milliseconds per QVGA frame. To realize real-time applications
of graph cuts, large-scale parallel computing needs to be considered.

Recent advances in GPU hardware have given researchers access to low cost,
large SIMD arrays which allow data level parallelization of algorithms. Research
into how to harness the power of the graphics processor has lead to graphics card
manufacturer’s providing general purpose graphics processing unit (GPGPU)
frameworks such as CUDA [12] by NVIDIA. In the field of computer vision, two
such software libraries are CVGPU [13] and OpenVidia [14]. These libraries sup-
port many of the basic operations in computer vision with speed improvements
of up to 100x, particularly in linear filtering tasks. Research has shown that the
push-relabel algorithm is able to run in parallel due to the design of the method
and various CPU based approaches having already been presented [15,16].

In this paper we present a fast, generic implementation of the push-relabel
algorithm based on the lock-free method proposed by Hong [15] using the CUDA
framework and the power of the GPU. Using this method in the system we pro-
posed in [11], we are able to track images in online and offline video and obtains
the silhouette of the tracked object at each frame. Our method is adaptable to
any graph construction and runs at a 30 Hz frame rate for QVGA images and
4-5 Hz frame rate for HD TV images . By accepting any graph construction, the
method is not restricted to lattice graphs, allowing the technique to be applied
to maximum flow solutions in other problem spaces, such as graph cuts across
spaces of greater than three dimensions [17].

Section 2 presents the GPU framework provided by CUDA and describes
how programs are parallelized within this framework. In Section 3 we describe
our GPU implementation of a lock-less generic push-relabel graph cut algo-
rithm. Section 4 describes our experimental setup and discusses our experimental
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results. Finally, Section 5 gives concluding remarks and the direction for our fu-
ture work.

2 GPU Programming Framework

GPGPU research initially focused on representing computations as graphics ren-
derings. By encoding data arrays into textures and program kernels written in
fragment or vertex shaders, computation could be performed by rendering the
image. This method has limitations: read-back performance of the result was
poor for early hardware, kernel operations were limited, and data structure sizes
were limited to texture sizes [18]. To overcome these limitations, both NVIDIA
and AMD released new high-level programming interfaces named CUDA and
Stream SDK in 2007, respectively. These programming interfaces improved the
memory access interface and created an easier to use programming environment,
which led to an increase in popularity of porting existing programs to the GPU.

CUDA allows researchers to easily parallelize their computing task to take
advantage of the GPU. CUDA provides a software library to interface with the
graphics processor, and a specialized compiler to create executable code to run
on the GPU. CUDA presents programmers with two other types of memory
access, shared memory and global memory, on top of the texture cache units.
Being able to access all the memory on the GPU (albeit with varying access
speeds) has made it much easier to perform research into GPGPU computing.
The method presented in this paper was built using the CUDA architecture and
run on NVIDIA hardware. Vineet and Narayanan have previously explained the
CUDA framework in detail [8], and there are many technical resources available
on the NVIDIA CUDA homepage [19].

3 Graph Cuts

The traditional method for push-relabel graph cutting is outlined in [1]. The al-
gorithm consists of two main operations: discharge (also called push) and relabel
(also called raise). In push-relabel algorithms, vertices have two states: overflow-
ing and inactive. Vertices contain information concerning the amount of excess
and height. Edges hold information about their residual capacity. Typically a
queue of overflowing vertices is checked each iteration, with the first vertex in
the list being dequeued and either discharged or relabeled. The loop terminates
once there are no more viable discharge or relabel operations to perform.

Discharging a vertex causes some of the excess to be pushed to neighboring
vertices when the incident edge has not completely saturated (has residual ca-
pacity). The push decreases the excess in the current vertex, increasing excess in
the destination, and decreases the residual capacity of the edge. The destination
vertex is then enqueued into the overflowing list, along with the current vertex
if it is still overflowing.

A vertex must be relabeled when it is overflowing but has no valid neighbors.
A neighbor is valid if the edge incident to both vertices has remaining capacity,
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and the destination vertexs height is lower than the current vertex. The current
vertex’s height is increased to one more than the lowest neighbor, which allows
further discharging.

3.1 Novel GPU Graph Cut Technique

To develop a GPU implementation of a traditional algorithm, both data struc-
ture layout (the graph representation in memory) and concurrency bottlenecks
must be carefully considered before being able to realize the full potential of
the GPU. CUDA implementations of graph cuts for image segmentation have
traditionally paired the 2D lattice structure of graphs with the 2D grid struc-
ture of the CUDA programming model. However this leads to restrictions on
the types of graphs that can be processed by the routine. Furthermore, tradi-
tional graph cut algorithms contain branching and looping. In CUDA, divergent
code produces poor performance because the SIMD model cannot perform the
instructions in parallel, making new techniques for graph cuts necessary.

Graph Representation. Vineet and Narayanan presented a method of graph
cuts in CUDA which has shown improved performance by pairing the 2D lattice
graphs with the CUDA programming model. They conceded that this method
would not be feasible for other types of graphs [8]. We structure our graphs simi-
lar to the technique presented by Harish et. al [20] that improved performance in
distance calculations on arbitrary graphs using the GPU by representing graph
G(V, E) as a vertex array Va and an edge array Ea. Edges in the edge list will
be grouped so that all edges that originate at a vertex are contiguous, and the
vertex will contain a pointer to the first edge in the group, as in Figure 1. Each
edge structure holds information about its capacity, current flow, and destination
vertex.

GPU Maximum Flow. Due to the design of the traditional push relabel
algorithm (conditionals and the looping over a queue), the algorithm is not
immediately useable on the GPU. The first step is to convert the algorithm loop
to the CUDA grid. This is a fairly simple process of creating a CUDA kernel

(a) Original Graph (b) Vertex/Edge List Model

Fig. 1. Conversion of a direct graph into vertex and edge lists
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(a) 2-regular Original Graph (b) Vertex/Edge List Model

Fig. 2. Addition of null edges to achieve a k-regular graph

that will perform either a discharge or relabel for a given vertex each invocation,
and terminate once no discharging or relabeling is feasible. Another method is to
create multiple CUDA kernels, typically consisting of a kernel that will push all
possible flow from a vertex or mark it as needing relabeling, and another kernel
that updates all the labels of vertices previously marked. In this method many
different types of kernels must be coded and invoked many times.

3.2 Optimization Techniques

We improved upon the basic implementation of vertex and array lists. To make
our list based graph representation more SIMD friendly, we first make the input
graph regular by adding null edges to any vertex that has fewer edges than the
vertex with the highest degree. Second, we simplify the code by only having one
kernel, which performs both the discharging and relabeling steps.

Since the GPU is treated as an array of SIMD processors, it is important
that the algorithm is able to perform the same operation across multiple data
locations. However, we are assuming that any kind of graph configuration could
be used as input, requiring that each vertex be treated uniquely, as the vertex set
is not homogeneous. To overcome this problem, we propose adding extra edges
to the graph so that each vertex has the same degree. In Figure 2, the dotted
line of edge E4 is an example of a null edge. These null edges point back to the
originating vertex and have a capacity of zero. This would cause the null edges
to be ignored by the graph cut algorithm, as the destination of the edge would
never have a height lower than the origin (a condition for discharging), and the
capacity of the edge restricts the amount of flow discharged to zero.

Algorithm 1 details the steps of the computation that take place on the CPU.
The initialize function starts by discharging the maximum possible amount of
flow from the source to the neighboring vertices. Then the GPU kernel is invoked
so that one thread is excuted for each non-source and non-sink vertex. The CPU
continues to invoke the GPU kernel until no discharge or relabel operations can
be performed. The GPU kernel is detailed in Algorithm 2. Since our graph is
regular, the loop over the neighbors is fully unrolled. The null edges will be
ignored because the height of u will never be less than the current vertex’s
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Algorithm 1. GPU GraphCut(Graph G(V, E))
finished ← false
Initialize(V, E)
while not finished do

// GraphCutKernel() is performed in parallel on the GPU

finished ← GraphCutKernel(V,E)
end

Algorithm 2. GPU GraphCut KERNEL(G(V, E))
tId← GetThreadID()

amtPushed← 0
foreach Neighbor u of V[tId] do

if u.height < V[tId].height and
−−−−−−→
(V[tId], u) ∈ E has capacity > 0 then

amtPushed ← amtPushed + Discharge(V[tId], u)
end

end
if amtPushed > 0 and V[tId].excess > 0 then

V[tId].height = FindLowestNeighbor(V[tId]).height + 1
end

height (since they are equal). In addition the discharge can be modified to push
a conditionally assigned amount of flow. Conditional assignment allows us to use
the ternary operator, which prevents divergent code since it can be optimized to
a zeroing of either operand of an addition.

4 Experimental Results

To test the performance of our proposed technique, we performed a comparison
of a CPU implementation of image segmentation using graph cuts versus our
proposed GPU implementation. The CPU implementation uses the open source
library provided by Vladimir Kolmogorov [5], using OpenCV for data capture
and graph construction. The test computer used was running Windows XP. The
CPU implementation ran on an Intel Quad Core Xeon processor, and the GPU
implement ran on an NVIDIA GTX 280 graphics card. All of these components
are regularly available at any electronics retailer. A video sequence scaled to four
different resolutions (QVGA, VGA, HD720, and HD1080) was used in testing
the speed for video object silhouette extraction.

The speed for the cut only is presented in Figure 3. At higher resolutions
the parallelism achieved by the GPU significantly increases the performance, as
much as 2.5x. However, we begin to see real performance gains when the whole
process, from frame acquisition to graph building and finally silhouette recovery,
is considered. Since all of these steps can be done in parallel, we see major
speed improvements of up to 10x times in full HD 1080 resolution (1920x1080),
as shown in Figure 4. This emphasizes the overhead caused by the non-cut
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Fig. 3. Speed of graph cut (max-flow) calculation versus graph size

Fig. 4. Speed of frame silhouette retrieval versus graph size

operations, such as graph construction, in the cutting of image sequences. It
is important to note that these tests do not use any kind of graph shrinking
techniques, and that both implementations are cutting across the full HD TV
image, which consists of over 2 millions vertices and 37 million edges.

In addition we chose a subset of images from the Berkeley Segmentation
Dataset [21] to test the accuracy of the results between the two implementa-
tions. The dataset contains segmetations proposed by a set of human subjects,
which we converted to silhouettes of the desired object so that they could be
compared to our graph cut output. The test is designed to make sure that the
silhouettes obtained are within a reasonable margin of error, and that the GPU
algorithm is not returning erroneous results. Figure 5 gives three examples of
the output from both the GPU and the CPU implementations. The border of
the result silhouette is highlighted in cyan. Simple observation shows the cuts
to be approximately visually equivalent.
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Table 1. Accuracy of Graph Cut implementations

Error StdDev Fp Fn

GPU 4.3% 0.9% 2.3% 2.0%
CPU 3.4% 0.4% 1.9% 1.7%

(a) (b) (c)

(d) (e) (f)

Fig. 5. GPU (top) and CPU (bottom) output (border highlighted)

For a numerical comparison of the silhouettes, Table 1 shows the percentage
of mislabeled pixels (the ratio of mislabeled pixels to total image pixels), the
standard deviation (StdDev) of mislabeled pixels, as well as the mean rate of false
positives and false negatives. The results demonstrate that both implementations
give the same highly accurate segmentations.

5 Conclusions and Future Works

In this paper we have presented a new method for performing graph cuts on
the GPU using CUDA. The method described is capable of handling arbitrary
graph structures and is able to optimize them for the SIMD processing model
employed on the GPU. We have shown that this technique enables large speedups
in processing time, particularly for graphs with millions of vertices, achiev-
ing 10 frames-per-second processing High Definition video. Our future research
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directions include finding ways to use the results of this technique in higher end
vision processing systems.
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