Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 107))

Abstract

Conventionally, two types of wall boundary condition are available for the solution of turbulence transport equations in CFD. These exhibit very different requirements on the wall normal distance of the first grid point and any violation of these requirements leads to a drastic degeneration in the solution quality. This places a very high level of importance on the design of the numerical grid, and contributes to the excessive human resources typically spent on this task. Furthermore, these criteria depend strongly on the local flow field quantities, which means that prior knowledge of the solution is required for correct grid design. In practice this often means that an iterative grid design process is required, causing further grid generation expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A., Dias, J., Cabello, J.: REMFI: Rear-fuselage and empennage flow investigation. In: Proc. Council of European Aerospace Societies / Thematic Network on Key Aerodynamic Technologis (CEAS-KATnet) Conference, Bremen (2005)

    Google Scholar 

  2. Casey, M., Wintergerste, T.: Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD (2000)

    Google Scholar 

  3. Cook, P., McDonald, M., Firmin, M.: Aerofoil RAE 2822 – Pressure Distributions and Boundary Layer Wake Measurements. In: AGARD AR-138 (1979)

    Google Scholar 

  4. Kim, J., Moin, P., Moser, R.: Turbulence statistics of a fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  5. Launder, B., Spalding, D.: Lectures in mathematical models of turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  6. Mockett, C., Frederich, O., Schmidt, T., Thiele, F.: Numerical prediction of the aerodynamic interference of twin-sting model supports on empennage measurements. Submitted to 7th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Cyprus, Greece (2008)

    Google Scholar 

  7. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Rung, T., Luebcke, H., Thiele, F.: Universal wall-boundary conditions for turbulence-transport models. Zeitschrift für angewandte Mathematik und Mechanik 81(1), 1756–1758 (2000)

    Google Scholar 

  9. Rung, T.: Entwicklung anisotroper Wirbelzähigkeitsbeziehungen mit Hilfe von Projektionstechniken. Dissertation, Technische Universität Berlin (2000)

    Google Scholar 

  10. Schlichting, H.: Grenzschichttheorie. Braun-Verlag, Karlsruhe (1982)

    Google Scholar 

  11. Schmitt, V., Charpin, F.: Pressure Distributions on the Onera M6 Wing at Transonic Mach Numbers. In: AGARD AR-138 (1979)

    Google Scholar 

  12. Wallin, S., Johannson, A.: An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows. J. Fluid Mech. 403, 89–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wilcox, D.: Turbulence modeling for CFD. DCW Industries Inc., La Cañada (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, T., Mockett, C., Thiele, F. (2009). Adaptive Wall Function for the Prediction of Turbulent Flows. In: Kroll, N., Schwamborn, D., Becker, K., Rieger, H., Thiele, F. (eds) MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04093-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04093-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04092-4

  • Online ISBN: 978-3-642-04093-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics