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Abstract. DNA microarrays are used in order to recognize the pres-
ence or absence of different biological components (targets) in a sample.
Therefore, the design of the microarrays which includes selecting short
Oligonucleotide sequences (probes) to be affixed on the surface of the
microarray becomes a major issue. This paper focuses on the problem of
computing the minimal set of probes which is able to identify each target
of a sample, referred to as Non-unique Oligonucleotide Probe Selection.
We present the application of an Estimation of Distribution Algorithm
(EDA) named Bayesian Optimization Algorithm (BOA) to this problem,
for the first time. The presented approach considers integration of BOA
and state-of-the-art heuristics introduced for the non-unique probe se-
lection problem. This approach provides results that compare favorably
with the state-of-the-art methods. It is also able to provide biologists
with more information about the dependencies between the probe se-
quences of each dataset.

Keywords: Microarray, Probe Selection, Target, Estimation of Distri-
bution Algorithm, Bayesian Optimization Algorithm, Heuristic.

1 Introduction

Microarrays are the tools typically used for measuring the expression levels of
thousands of genes, in parallel. They are specifically applicable in performing
many simultaneous gene expression experiments [10]. Gene expression level is
measured based on the amount of mRNA sequences bound to their complemen-
tary sequences affixed on the surface of the microarray. This binding process is
called hybridization. The complementary sequences are called probes which are
typically short DNA strands about 8 to 30 bp [13]. Another important applica-
tion of miocroarrays is the identification of unknown biological components in a
sample [4]. Knowing the sequences affixed on the microarray and considering the
hybridization pattern of sample, one can infer which target exists in the sample.
These applications require finding a good design for microarrays. By microarray
design, we mean finding the appropriate set of probes to be affixed on the surface
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of microarray. The appropriate design should lead to cost-efficient experiments.
Therefore, while the quality of the probe set is important, the objective of finding
the minimal set of probes also should be considered.

Two approaches are considered for the probe selection problem, namely, unique
and non-unique probe selection. In the unique probe selection, for each single tar-
get there is one unique probe to which it hybridizes. It means that, in specified ex-
perimental conditions, the probe should not hybridize to other targets except for
its intended target. However, finding unique probes are very difficult, especially for
biological samples containing similar genetic sequences [4][5][6][8][10][11][12][13].

In the non-unique probe selection, each probe is considered to hybridize possi-
bly to more than one target. Our focus in this paper is on the non-unique probe
selection. We present a method to find the smallest possible set of probes capa-
ble of identifying the targets in a sample. It should be noticed that this minimal
probe set is chosen regarding a target-probe incidence matrix consisting of can-
didate probes and the pattern of hybridization of targets to them. Computing
the set of candidate probes (incidence matrix) among all the possible non-unique
probes is not a trivial task [4]. Many parameters such as secondary structure,
salt concentration, GC content, hybridization energy, and hybridization errors
such as cross-hybridization, self-hybridization, and non-sensitive hybridization
should be taken into account in computing the set of candidate probes for the
oligonucleotide probe selection [12]. We assume that the problem of computing
the target-probe incidence matrix has been solved, and our focus is minimizing
the design given by this matrix.

This paper is organized as follows. Section 2 provides a detailed description
of the non-unique probe selection problem. The related work is reviewed in
section 3. In section 4, we contribute our approach to solve non-unique probe
selection problem. A review on the main concepts of Bayesian Optimization Al-
gorithm (BOA) is also presented and its advantages over the Genetic Algorithms
(GA) are discussed. Also, the heuristics which we have integrated into the BOA
are discussed, and a new heuristic is presented. We discuss the results of our
experiments in section 5. Finally, we conclude this research work with discussion
of possible future research directions and open problems appears in section 6.

2 Problem Definition

We illustrate the probe selection problem with an example. Assume that we have
a target-probe incidence matrix H = (hij) of a set of three targets (t1,...,t3) and
five probes (p1,...,p5), where hij = 1, if probe j hybridizes to target i, and 0
otherwise (see Table 1). The problem is to find the minimal set of probes which
identifies all targets in the sample. First, we assume that the sample contains
single target. Using a probe set of {p1, p2}, we can recognize the four different
situations of ‘no target present in the sample’, ‘t1 is present’, ‘t2 is present’,
and ‘t3 is present’ in the sample. The minimal set of probes in this case is {p1,
p2} since {p1} or {p2} cannot detect these four situations. Consider the case
that multiple targets are present in the sample. In this case, the chosen probe
set should be able to distinguish between the events in which all subsets (of all
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Table 1. Sample Target-probe incidence matrix

p1 p2 p3 p4 p5

t1 0 1 1 0 0
t2 1 0 0 1 0
t3 1 1 0 0 1

possible cardinalities) of target set may occur. The probe set {p1, p2} is not good
enough for this purpose. With this probe set, we cannot recognize between the
case of having subset {t1, t2} and {t2, t3} in the sample. Moreover, the probe
set {p3, p4, p5} can distinguish between all events in this case. A more formal
definition of the probe selection problem is given below.

Given the target-probe incidence matrix H , and parameters smin ∈ N and
cmin ∈ N, the goal is to select a minimal probe set such that each target is
hybridized by at least cmin probes (minimum coverage constraint), and any two
subsets of targets are separated by means of at least smin probes (minimum
separation constraint) [5] [4]. A probe separates two subsets of targets if it hy-
bridizes to either one of them. The probe selection is proven to be a NP-hard
problem [2], and is considered as a variation of the combinatorial optimization
problem minimal set covering problem.

The smallest incidence matrix in the literature contains about 256 targets and
2786 probes. The non-unique probe selection problem can be approached as an
optimization problem. The objective function to be minimized is the number of
probes (variables of the function), and the search space of the problem consists
of 2numberofprobes possible solutions which makes this problem very difficult to
solve, even with powerful computers [8]. In this paper, we solve the single target
case, and an EDA (Estimation Distribution Algorithms), named BOA (Bayesian
Optimization Algorithm) integrated with some state-of-the-art probe selection
heuristics, is used to design an efficient algorithm.

3 Previous Work

Several research works have been conducted in both unique and non-unique
probe selection. Rash et al. [9] focused on the assumption of single targets in
the sample. Considering the probes as substrings of original strings (genes), they
used suffix tree method and Integer Linear Programming. Assuming the presence
of multiple targets, Schliep et al. [10] introduced a fast heuristic which guaranteed
the separation of up to a randomly chosen number N (e.g. N = 500000) of pairs
of targets set. In this work, cross-hybridization and experimental errors were
explicitly taken into account for the first time. Klau et al. [5] extended this
work, and presented an ILP (Integer Linear Programming) formulation and a
branch-and-cut algorithm to reduce the size of the chosen probe set.

The ILP formulation extended to a more general version which also includes
the group separation [4]. Meneses et al. [6] used a two-phased heuristic to con-
struct a solution and reduce its size for the case of single target. Ragle et al.
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[8] applied a cutting-plane approach with reasonable computation time, and
achieved the best results for some of the benchmark datasets in case of single
target. It does not use any a priori method to decrease the number of initial
probes. Wang et al. [12] focused on the single target problem, and presented
deterministic heuristics in order to solve the ILP formulation, and reduce the
size of final probe set. They applied a model-based approach for coverage and
separation in order to guide the search for the appropriate probe set in case
of assuming single target in the sample. Recently, Wang et al. [11] presented a
combination of the genetic algorithm and the selection functions used in [12],
and obtained the results which are in some cases better than results of [8].

4 BOA and Non-unique Probe Selection

Our approach is based on the Bayesian Optimization Algorithm (BOA) in combi-
nation with a heuristic. Two of the heuristics, Dominated Row Covering (DRC)
and Dominant Probe Selection (DPS), are the ones introduced in [12] for solving
the non-unique probe selection problem. We also modify some of the function
definitions of DRC, and introduce a new heuristic in order to capture more
information.

4.1 Bayesian Optimization Algorithm

The BOA is an EDA (Estimation of Distribution Algorithm) method, first intro-
duced by Pelikan [7]. EDAs are also called Probabilistic Model-Building Genetic
Algorithms (PMBGA) which extend the concept of classical GAs. In the EDA
optimization methods, the principle is to generate a sample of search space and
use the information extracted from that sample to explore the search space more
efficiently. The EDA approach is an iterative one consisting of these steps: (1)
Initialization: a set of random solutions is generated (the first sample of search
space); (2) Evaluation of the solutions quality; (3) Biased random choice of a
subset of solutions such that higher quality solutions have more probability to be
chosen; (4) Constructing a probabilistic model of the sample; (5) Use the model
to generate a new set of solutions and go back to (2). In BOA, the constructed
probabilistic model is a Bayesian Network. Considering a Bayesian Network as
a Directed Acyclic Graph, the nodes represent the variables of the problem and
the dependencies among the variables are simulated by the directed edges in-
troduced to each node. Constructing a Bayesian Network allows discovering and
representing the possible dependencies between the variables of the problem.

Some difficult optimization problems contain dependencies. Classical GAs has
been shown not to be able to solve these category of problems [3]; But BOA
approach has been more successful in solving them. It is interesting to apply BOA
approach for the complex problem of non-unique probe selection optimization
problem. In this problem each (binary)variable represents presence or absence of
a particular probe in the final design matrix. The dependencies among variables
represent the fact that choosing a particular probe have a consequence on the
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choice of other probes in an optimal solution. Pelikan and Goldberg [7] [1] have
proven that when the number of variables and the number of dependencies are
n and k, respectively, the size of the sample should be about of O(2k.n1.05) to
guarantee the convergence.

There are several advantages in applying this new approach. First, BOA is
known as an efficient way to solve the complex optimization problems. Therefore,
it is interesting to compare it with other methods applied to the non-unique
probe selection problem. Second, the EDA methods, by working on the samples
of the search space and deducing the properties of dependencies among the
variables of the problem, are able to reveal new knowledge about the biological
mechanism involved (See 5.2). Finally, with the study of the results obtained
from experimenting different values of the parameter k, BOA provides the ability
to evaluate the level of complexity of the non-unique probe selection in general,
and the specific complexity of the classical set of problems applied to evaluate
the algorithms used for solving this problem in particular.

4.2 Our Approach

In this section, we explain the details of our approach to solve the non-unique
probe selection problem. Wang et al. [12] have introduced two heuristics in order
to solve the non-unique probe selection problem. We integrated these heuristics
into BOA in order to guarantee the feasibility of obtained solutions. A feasible
solution is a solution which satisfies the constraints of coverage and separation
of the non-unique probe selection defined in section 2. Since we discuss the case
of single target in the sample, the separation constraint is applied on the target-
pairs only. This means that we do not focus on the separation of all possible
subsets of targets.

4.3 Heuristics

As mentioned above, our algorithm applies three heuristics in combination with
the BOA. Two of the heuristics are those proposed by Wang et al. [12], namely,
Dominated Row Covering (DRC), and Dominant Probe Selection (DPS). A third
heuristic has also been used in our experiments, which we named Sum of Domi-
nated Row Covering(SDRC ). In this heuristic, we modified the definitions of the
functions C(pj) (coverage function), and S(pj) (separation function) of DRC.

C(pj) = max
ti∈Tpj

{cov(pj, ti) | 1 ≤ j ≤ n} (1)

where Tpj is the set of targets covered by pj.

S(pj) = max
tik∈T 2

pj

{sep(pj, tik) | 1 ≤ j ≤ n} (2)

where T 2
pj

is the set of target pairs separated by the probe pj .
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Before discussing our modifications, we describe the probe selection functions
used in DRC (For further information on DPS selection functions, see Wang et
al. [12]). Given the target-probe incidence matrix H , probe set P = {p1,...,pn},
and the target set T={t1,...,tm}, the function cov and sep have been defined
over P × T and P × T 2, respectively, as following:

sep(pj , tik) = |hij − hkj | × smin

|Ptik
| , pj ∈ Ptik

, tik ∈ T 2 (3)

cov(pj , ti) = hij × cmin

|Pti |
, pj ∈ Pti , ti ∈ T (4)

where Pti is the set of probes hybridizing to target ti, and Ptik
is the set of

probes separating target-pair tik.
Function C favors the selection of probes that cmin-cover dominated targets.

Target ti dominates target tj , if Ptj ⊆ Pti . Function S favors the selection of
the probes that smin-separate dominated target pairs. Target pair tij dominates
target pair tkl, if Ptij ⊆ Ptkl

.
The functions C(pj) and S(pj) have been defined as the maximum between

the values of the function cov and sep, respectively. The selection function D(pj)
which has been defined as follows will indicate the degree of contribution of pj .

D(pj) = max{C(pj), S(pj)} | 1 ≤ j ≤ n} (5)

The probes of highest value of D(pj) will be the candidate probes for the solution
probe set. Calculation of the coverage and separation functions are given in
Tables 2 and 3 based on DRC definitions in rows C and S, respectively [12]. We
see, by definition of DRC functions, these four probes have the same score for the
coverage of the dominated targets and the same score for the separation of the
dominated target pairs, and D(p1) = D(p3) = D(p4) = D(p5) = cmin

3 . Although,
it can be noticed from 2 and 3 that each of these probes has a distinct covering
and separating property. Therefore, these properties are not reflected by the
definitions of current DRC functions. In order to capture this information, we
modified the two functions of C(pj) and S(pj) to C′(pj) and S′(pj), respectively,
in the SDRC (see Eq. 6 and 7 below). The values of C′(pj) and S′(pj) have also
been calculated and presented in Tables 2 and 3. In the SDRC, the D score is
calculated the same as D function in DRC (see Eq. 5).

Table 2. Coverage function table: C has been caculated based on the DRC definition,
and C′ based on the SDRC definition

p1 p2 p3 p4 p5 p6

t1
cmin

4
cmin

4
0 cmin

4
0 cmin

4

t2
cmin

3
0 cmin

3
0 0 cmin

3

t3 0 cmin
5

cmin
5

cmin
5

cmin
5

cmin
5

t4 0 0 cmin
3

cmin
3

cmin
3

0

C cmin
3

cmin
4

cmin
3

cmin
3

cmin
3

cmin
3

C′ 7cmin
12

9cmin
20

13cmin
15

47cmin
60

8cmin
15

47cmin
60
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Table 3. Separation function table: S has been calculated based on the DRC definition,
and S′ based on the SDRC definition

p1 p2 p3 p4 p5 p6

t12 0 smin
3

smin
3

smin
3

0 0
t13

smin
3

0 smin
3

0 smin
3

0
t14

smin
5

smin
5

smin
5

0 smin
5

smin
5

t23
smin

4
smin

4
0 smin

4
smin

4
0

t24
smin

4
0 0 smin

4
smin

4
smin

4

t34 0 smin
2

0 0 0 smin
2

S smin
3

smin
2

smin
3

smin
3

smin
3

smin
2

S′ 31smin
30

77smin
60

13smin
15

5smin
6

31smin
30

19smin
20

C′(pj) =
∑

ti∈Tpj

cov(pj , ti) 1 ≤ j ≤ n (6)

S′(pj) =
∑

tik∈T 2
pj

sep(pj, tik) 1 ≤ j ≤ n (7)

4.4 The Combination of BOA and Heuristics

We have applied the modified version of BOA to the non-unique probe selection
problem. The goal is to find the minimum set of probe that satisfies the cov-
erage and separation constraints. In each iterative step of BOA, we generate a
population of solutions. Each solution is a representation of a set of probes, and
is basically a string of zeros and ones. Each position in the string indicates a
probe. The presence or absence of each probe in the solution is noted by 1 and
0, respectively. After generating the population, the feasibility of each solution
is guaranteed by computing one of the heuristics described in section 4.3. That
is, each solution in the current population is transformed in order to respect
the problem constraints. All of the three applied heuristics include a reduction
phase. Solutions are shortened in this phase, while maintaining their feasibility.

In order to measure the quality of the obtained solutions and distinguish
the best and worst solutions in the population, an objective function should
be defined. Since the goal is to find the minimal probe set in this problem, we
use inverse of the length of a solution as our objective function. The length of a
solution corresponds to the cardinality of probe set, and it is given by the number
of ones in the solution. The larger the objective function value, the higher the
quality of the obtained solutions.

5 Results of Computational Experiments

We combined BOA and with heuristic DRC, DPS, and SDRC for non-unique
probe selection problem. We noticed that we are able to improve the results ob-
tained by the best methods in literature. It should be noticed that our approach
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is more time-consuming than other approaches in the literature; But we did not
focus on comparing our approach to the latest approaches from the aspect of the
execution time, because the design of microarray is not a repetitive task. The
main concern in this process is the quality of the design. Our programs were
written in C++, and experiments were performed on Sharcnet systems [14].

5.1 Data Sets

The experiments were performed on ten artificial datasets named a1,..., a5, b1,...,
b5, and two real datasets HIV1 and HIV2. These datasets have been used in
experiments of all previous works mentioned in the section 3, except for the
HIV1, and HIV2 that have not been used in [5][4]. The datasets and the related
target-probe incidence matrices were kindly provided to us by Dr. Pardalos and
Dr. Ragle [8]. Number of targets and probes of each data set are presented in
Table 4. Along with this information, the number of virtual probes required for
each dataset to guarantee the feasibility of the original probe set are included.

5.2 Results and Discussions

In all experiments, the parameters cmin and smin were set to ten and five, respec-
tively. Each run of BOA has been executed for 100 iterative steps. The number
of probes in each dataset are the number of variables (n) used in the BOA.
Based on the convergence condition of BOA, mentioned in the section 4.1, the
population size should be of O(2k.n1.05). Two different series of experiments are
performed, and the results are presented. In each series, we chose the population
size for each dataset proportional to the number of the variables, which is sum of
the number of real and the number of virtual probes of dataset. The considered
level of dependency (k) among variables is simulated by a parameter named
maximum incoming edges in the BOA software.

Experiments with the default parameters. First series of experiments have
been performed with the default parameters of BOA [15]. For instance, the max-
imum number of incoming edges to each node was set to two, and the percentage
of the offspring and parents in the population was set to 50. The results we obtain
by applying this approach are presented in Table 4. The comparison between the
results is based on the minimum set of probes obtained from each approach. We
have named the combination of BOA and heuristics DRC, DPS, and SDRC re-
spectively BOA+DRC, BOA+DPS, and BOA+SDRC. Three columns have been
included related to experiments performed by state-of-the-art approaches Inte-
ger Linear Programming (ILP) [5][4], Optimal Cutting Plane Algorithm (OCP)
[8], and Genetic Algorithm (DRC-GA) [11]. The last three columns show the
improvement of our approach over each of the three latest approaches. The im-
provement is calculated by Eq. 8.

Imp =
PBOA+DRC

min − PMethod
min

PMethod
min

× 100 (8)

where Method can be substituted by either ILP, OCP, or DRC-GA.
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Table 4. Comparison of the cardinality of the minimal probe set for different ap-
proaches: Performance of various algorithms evaluated using ten datasets with differ-
ent number of targets (|T |), probes (|P |), and virtual probes (|V |). The last three
columns are showing the improvement of BOA+DRC over three methods ILP, OCP,
and DRC-GA (see Eq. 8).

Set |T | |P | |V | ILP[5][4] OCP[8] DRC[11] BOA BOA BOA ILP OCP DRC
-GA +SDRC +DPS +DRC -GA

a1 256 2786 6 503 509 502 503 503 502 -0.20 -1.37 0

a2 256 2821 2 519 494 490 492 491 490 -5.59 -0.81 0

a3 256 2871 16 516 543 534 535 533 533 +1.35 -2.02 -0.18

a4 256 2954 2 540 539 537 540 538 537 -0.55 -0.37 0

a5 256 2968 4 504 529 528 530 530 528 +4.76 -0.19 0

b1 400 6292 0 879 830 839 843 837 834 -5.12 +0.50 -0.60

b2 400 6283 1 938 842 852 853 849 846 -9.81 +0.47 -0.70

b3 400 6311 5 891 827 835 839 831 829 -6.96 +0.24 -0.72

b4 400 6223 0 915 873 879 877 877 875 -4.37 +0.23 -0.45

b5 400 6285 3 946 874 890 887 886 879 -7.08 +0.57 -1.23

HIV1 200 4806 20 - 451 450 452 450 450 - -0.22 0

HIV2 200 4686 35 - 479 476 479 475 474 - -1.04 -0.42

The calculated value of Imp is negative(positive) when BOA+DRC returns a
probe set smaller(larger) than PMethod

min . Therefore, smaller value of Imp shows
more efficiency of the BOA+DRC method. For instance, regarding Table 4 (last
three columns), for dataset a3, our approach has obtained 0.18% and 2.02%
better results (smaller probe set) than DRC-GA and OCP, respectively, and
1.35% worse result (larger probe set) than ILP.

As shown in the Table 4, the best results are obtained with the BOA+DRC,
while we expected better results from the BOA+DPS, because the DPS has
shown better performance on the non-unique probe selection [12]. The results
obtained by the [8] are considered as the best ones in the literature for the
non-unique probe selection problem. As shown in the 4, Wang et. al. [11] have
recently reported the results (noted as DRC-GA) which are comparable to (and
in most cases better than) [8].

Comparing our approach to all the three efficient approaches, we have been
able to improve the result of non-unique probe selection for dataset HIV2, and
obtain the shortest solution length of 474. The results we obtained for datasets
a1, a2, a4, and HIV1 are also equal to the best results calculated for these
datasets in the literature. Another comparison based on the number of datasets
is presented in Table 5.

Another important advantage of our approach over other methods is that BOA
can provide biologists with useful information about the dependencies between
the probes of the dataset. In each experiment, we have stored the scheme of
the relations between variables (probes) which have been found by BOA. As
mentioned, by means of this information, we can realize which probes are related
to each other. Therefore, we can conclude the targets, that these probes hybridize
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Table 5. Comparison between BOA+DRC and ILP, OCP, and DRC-GA: Number of
datasets for which our approach has obtained results better or worse than or equal to
methods ILP, OCP, and DRC-GA. In the column average, the average of improvements
of our approach (illustrated in last three columns of Table 4) is presented.

Worse Equal Better Average

ILP 2 0 8 -3.36
OCP 5 0 7 -0.33

GA-DRC 0 5 7 -0.36

Fig. 1. Part of the BOA output for dataset HIV2: the discovered dependencies for
probes 30 to 38 by BOA

to, also have correlations with each other. A part of these dependencies obtained
for dataset HIV2 is presented in Figure 1. This Figure indicates parts of the
output of the BOA software. Probes 30 to 38 and their dependencies to other
probes are illustrated. As shown, no dependency has been discovered for probes
30, 31, and 34. Probe 32 has two incoming edges from probes 1720 and 4184.
It means that when probes 1720 and 4184 are selected for the final probe set,
probe 32 has high probability to also be selected for solving this problem.

Experiments for investigation of dependency. We conducted another se-
ries of experiments in order to study the effect of increasing the number of
dependencies searched by BOA. The parameter maximum incoming edges rep-
resents this in BOA. As mentioned before, this parameter was set to two for
previous experiments. We decided to increase this number to three and four,
and repeat the experiments of BOA+DRC for some of the datasets. The results
and the number of iterative steps to converge are shown in Table 6. We did not
notice any improvements in results, but comparing cases of k = 2 and k = 3, the
number of iterative steps to converge has been reduced. According to the results,
it is possible that the obtained results are the global optimal solutions for some
of the mentioned datasets. It is also possible that this problem does not contain
high order dependencies. Therefore, search for higher order dependencies does
not help to solve the problem. These should be further investigated with more
experiments.
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Table 6. Cardinality of minimal probe set for DRC+BOA: the experiment was re-
peated in order to investigate the effect of increasing the dependency parameter (k).
By gen in the table, we mean the number of iterative steps of BOA to converge.

Set k = 2 k = 3 k = 4

a1 502 gen:26 502 gen:17 502 gen:19
a2 490 gen:21 490 gen:20 490 gen:15
a3 533 gen:24 533 gen:19 533 gen:17
a4 537 gen:20 537 gen:17 537 gen:22
a5 528 gen:16 528 gen:13 528 gen:15

6 Conclusions (and Future Research)

In this paper, we presented a new approach for solving the non-unique probe
selection problem. Our approach which is based on one of the EDAs named BOA
obtains results that compare favorably with the state-of-the-art. Comparing to
all the approaches deployed on the non-unique probe selection, our approach
proved its efficiency. It obtained the smallest probe set for most datasets. Besides
its high ability for optimization, our approach has another advantage over others
which is its ability to indicate dependencies between the variables or probes for
each dataset. This information can be of interest for biologists.

We also investigated the effect of increasing the dependencies between vari-
ables searched by BOA for some of the datasets. According to the presented
results, it is possible that the results found for some of these datasets are the
global optimal values. This requires more experiments and investigation. The
non-unique probe selection has been discussed in this paper according the as-
sumption of existence of single target in the sample. Therefore, one of the future
works can be to focus on extending the problem with the assumption of multiple
targets in the sample. Also, the discovered dependencies by our approach can be
interpreted more precisely by biologists in order to detect more interesting infor-
mation. As an extension to the presented work, we plan to incorporate several
metrics into solution quality measure, and use a multi-objective optimization
technique. One of the objectives can be the measure of ability of obtained solu-
tions to recognize all targets present in the sample. This is referred to as decoding
ability [10]. Using multi-objective optimization, parallelization techniques in the
implementation can also be used in order to improve the running time of exper-
iments considerably.
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