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Abstract. Clinical proteomics is suffering from high hopes generated by
reports on apparent biomarkers, most of which could not be later substan-
tiated via validation. This has brought into focus the need for improved
methods of finding a panel of clearly defined biomarkers. To examine this
problem, urinary proteome data was collected from healthy adult males
and females, and analysed to find biomarkers that differentiated between
genders. We believe that models that incorporate sparsity in terms of vari-
ables are desirable for biomarker selection, as proteomics data typically
contains a huge number of variables (peptides) and few samples making
the selection process potentially unstable. This suggests the application of
a two-level hierarchical Bayesian probit regression model for variable se-
lection which assumes a prior that favours sparseness. The classification
performance of this method is shown to improve that of the Probabilistic
K-Nearest Neighbour model.

Keywords: Proteomic biomarkers, classification, sparsity, feature
selection, Bayesian inference.

1 Introduction

Proteins and peptides in body fluids hold considerable information on the phys-
iology of an organism and thus can serve as biomarkers for disease. However,
the fields of biomarker discovery and clinical proteomics are suffering from high
hopes generated by reports on potential biomarkers, most of which subsequently
could not be substantiated via validation [I]. This development has resulted in
much scepticism from both clinicians and regulatory agencies, which will make
the application of valid biomarkers even more of a challenge. This vicious cir-
cle has to be broken by pinpointing the major errors made in earlier research
and highlighting good practice that will enable the definition of valid biomarkers
with a much higher probability than currently observed. While some of the initial
issues have already been dealt with satisfactorily, others are still unresolved.
For example, it is now generally accepted that single biomarkers should not
be applied, as the complexity of a disease is unlikely to be thoroughly displayed
by just one marker, and that a panel of such biomarkers should be employed
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instead [1I2]. However, it is equally evident that such a panel must consist of
clearly defined biomarkers, and not of an ill-defined signature, as reported in
several of the original manuscripts, almost exclusively based on the Surface-
Enhanced Laser Desorption/Ionization (SELDI) technology, that subsequently
could not be validated [3/4].

This brings the issue of definition of a valid biomarker into focus. The fun-
damental question that should be asked is whether the change observed in the
disease (frequency or abundance) of a certain molecule, based on data from a
proteomics study, is in fact a result of the disease, or does it merely reflect an
artefact due to technical variability in the pre-analytical steps, or in the analysis.
Other likely suspects for suggesting an apparent but erroneous association with
disease are biological variability or bias introduced in the study (for example, due
to lifestyle, age and gender). In fact, these two problems are likely responsible
for the majority of erroneous biomarkers.

The most appropriate answer to this challenge appears to be the applica-
tion of stringent statistical analysis. Not only does good statistical practice need
to be highlighted, but also more sophisticated multivariate selection methods
need to be developed, so that valid biomarkers will be defined with a much
higher probability than currently observed. To this end, we adopt a Bayesian
approach to classification and feature selection, as this approach offers formal
and well-calibrated probabilities for class prediction which is useful for medical
decision making. We compare the Probabilistic K-Nearest Neighbour and hierar-
chic linear probit regression classifiers. Feature selection was incorporated in the
latter method by assuming priors that favoured sparse solutions. It should be
noted that other classification methods like support vector machines with recur-
sive feature elimination, adaptive boosting and random forests could have been
used, but that in this paper we decided to focus solely on highlighting possible
Bayesian approaches for proteomic biomarker selection.

The rest of this paper is organised as follows: in Sect. 2] we discuss the il-
lustrative experiment to find biomarkers that differentiate between males and
females. Section [3 describes the classification and feature selection methods used
in this paper in more detail. Section [ presents the results of our experiments
comparing the classification performance of the two methods and the feature
selection performance of the three priors used to induce sparsity in the probit
regression model. Finally, Sect. [l discusses the conclusions that can be drawn
from our experimental results.

2 Application

To avoid any uncertainty in the assignment of a physiological condition, we
choose as an illustrative example defining proteomic differences between appar-
ently healthy adult males and females. While clinical diagnosis or pathophysio-
logical conditions are in general associated with a certain degree of uncertainty,
gender can be assessed with almost 100% confidence. Furthermore, the differ-
ences between male and female, while quite obvious at first sight, are likely to
be rather subtle at the proteomic level.
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We chose urine to be the body fluid of interest, since urine has been found to be
of much higher stability than blood-derived samples (serum or plasma), hence re-
ducing pre-analytical variability [2I5]. Capillary electrophoresis-mass spectrome-
try (CE-MS) was used to analyse the urine samples, as this technology allows the
routine analysis of a large number of samples and has been thoroughly validated
as a platform technology [6l7].

The second urine of the morning was collected from a group of apparently healthy
male and female volunteers (aged 21-40) during a routine medical checkup before
recruitment at the Hannover Medical School. All samples were prepared and anal-
ysed using CE-MS as described in [6/7]. The goal of the analysis was to define
biomarkers that would enable differentiation between male and female samples
(based on the hypothesis that such biomarkers must exist).

3 Methods

3.1 Probabilistic K-Nearest Neighbour Classification

The Probabilistic K-Nearest Neighbour (PKNN) classification method (see [8]
for an empirical analysis) adopts a fully Bayesian approach to obtaining posterior
probabilities over the scaling parameter and the number of nearest neighbours
to be employed. Markov chain Monte Carlo using the Metropolis-Hastings al-
gorithm is employed to perform posterior sampling and Monte Carlo averaging
provide the predicitive probabilities of class labels. Some more detail is provided
below.

Consider a finite data sample {(t1,21), -, (ty,2zn)} where each
t, € {1,---,C} denotes the class label associated with the D-dimensional fea-
ture vector x,, € IR” and the feature space IR” has an associated metric with
parameters 6 denoted as Mg. To define a probabilistic representation of the
KNN method an approximate conditional joint likelihood is defined in [9] such

that
s e
eXp k Z 5tn tj
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where we define the N x 1-dimensional vector ¢ as [t1,---ty]? and the N x D-

dimensional matrix X = [x1, -, zx]7, M denotes the metric employed in

the feature space and 6 are the associated parameters. The number of nearest
neighbours is k and 3 defines a scaling variable. The expression

Mo
> i, (2)

jrnlk

denotes the number of the nearest k neighbours of x,, as measured under the
metric Mg within N — 1 samples from X remaining when «,, is removed which
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we denote as X _,,, and have the class label value of t,, whilst each of the terms
in the summation of the denominator provides a count of the number of the &
neighbours of x, which have class label equaling c.

Full posterior inference will follow by obtaining the parameter posterior dis-
tribution p(8, k, 8|t, X, M) and subsequent predictions of the target class label
t. of a new datum «, are made by posterior averaging such that

p(t|ze, b, X, M) :Z/p(t*m*,t,X,ﬂ,k,@,M)p(ﬁ,k,B\t,X,M)dﬁd@. 3)
k

As the required posterior takes an intractable form an MCMC procedure is pro-
posed in [9] and extended in [I0] to enable metric inference so that the following
Monte-Carlo estimate is employed

N,
1 s

ﬁ(t*‘w*vt7X7M): N Zp(t*|m*7taXaﬂ(5)7k(5)a0(8)7M) (4)
S s=1

where each 3() k(5), 0) are samples obtained from the full parameter posterior
p(B, k,08|t, X, M) using a Metropolis style sampler.

As the standard KNN method has no straightforward way to learn the metric
we restrict this study to posterior inference over k and § and fix the metric to the
standard Euclidean metric. We therefore adopt the Metropolis scheme detailed
in [9] and obtain samples from the posterior p(S, k, |t, X, M) and employ Monte-
Carlo estimates p(t«|@.,t, X, M) = ]\1[5 Zgﬁlp(mm*,t,X,ﬂ(s), k), M) in the
following experimental section.

3.2 Hierarchic Linear Probit Regression Models

The fundamental problem of biomarker selection via CE-MS data is to identify
which peptides best discriminate between different types of protein samples, in
this case between male and female samples. CE-MS data contains a large num-
ber of variables (peptides) and the sample size tends to be relatively small so
the selection process can be unstable. Hence, models which incorporate sparsity
in terms of variables are desirable for this kind of problem. Bae and Mallick
[11] proposed a two-level hierarchical Bayesian probit regression model for vari-
able selection which used three different priors to incorporate different levels of
sparsity in the model. Details of this model, the sparsity inducing priors and
the Gibbs sampler used to perform posterior sampling are given below. This
method is preferable to using support vector machines for performing variable
selection as we can obtain predictive probabilities of the class labels for new
observations by Monte Carlo averaging, similar to the Probabilistic K-Nearest
Neighbour method mentioned earlier.

Model. Consider a finite data sample {(¢1,21), -, (tn, zn)} where each ¢, €
{1,2} denotes the class label associated with the D-dimensional feature vector
x, € R”. Define the binary regression model as p; = P(t; = 2) = &(x! 3),
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t = 1,...n, where B is the D x 1-dimensional vector of unknown regression
parameters and @ is the standard normal cumulative density function linking
the probability p; with the linear structure =7 3.

Albert and Chib [I2] introduced n independent latent variables z = [z, ...,
zp|T into the problem, where z; ~ N(z¥3,1) and define ¢; = 2 if 2; > 0 and
t; = 1 if z; < 0. This approach connects the probit binary regression model for
t; to a normal linear regression model for the latent variable z;.

Bae and Mallick [I1] considered different sparsity inducing priors for 8 in a
two-level hierarchical Bayesian model. They placed a zero-mean Gaussian prior
on 3 with unknown variances and assigned three different priors for the variances
under the assumption that they were independent, i.e., 3|A ~ N(0, A), where
0=1[0,...,0]", A =diag(\1,...,Ap) and )\; is the variance of £3;.

Prior distributions for A. Model I - conjugate Inverse Gamma priors for each

/\i7 i.e.,
D D (a/2)+1
a 2 1 b
ANil:[lIG<2’b)ocilj[1<>\i> exp<—2)\i>. (5)

Model II - exponential priors for each \;, i.e.,

D D
A~ H Exponential(7y) o H exp <—7;\i) . (6)
i=1

i=1
Model IIT - non-informative Jeffreys priors for each A;, i.e.,
|

AN,UAZ-' (7)

Note that Model I1I is the special case of Model I in which the hyperparameters
a and b are both set to 0.

Gibbs sampler. 1. Sample z;, for i = 1,...,n, from its full conditional distri-
bution
S8t o N(zI'B,1) truncated at the left by 0 if t; = 2, (8)
Rt N(xI'3,1) truncated at the right by 0 if ¢; = 1.

2. Sample B from its full conditional distribution p(B8|z,t,A) x N(X X7z, ),
where ¥ = (XTX + A~1)~L.

3. Sample A from its full conditional distribution. The full conditional distribu-
tions for Models I, IT and III, respectively, are:

D a+1 2
—1
Azt o [ Gamma (“ 1, 2 ) )
D A
p(A7Yz,t,8) x HInverseGaussian (Iﬁ‘|’7> (10)

i=1
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and

D
p(A7Yz,t,8) mHGamma<;,52> . (11)
i=1 i

Predictive classification. The predictive classification of the target class label
t. of a new datum x, is given by the following Monte-Carlo estimate:

D4 — - (), A T3))
P(t, = 2|z,) = N, Zp . =2z, B 29 AL Z@ T8)), (12)
where 8(%)| 2(*) and A®) are the MCMC samples from the posterior distribution.

4 Experimental Results

4.1 PKNN Classifiers

To maintain consistency of data representation with other studies on this data
the same arbitrary threshold for data sparsity (80%) was employed to reduce
the number of covariates to 1524. However, instead of normalising samples with
their sum of intensity values, we normalised features with their sum of intensity
values, so as to not distort the original feature space before applying our models.
A Wilcoxon Rank-Sum non-parametric test was used to provide a ranking of
individual covariates based on p-value, and from this it is clear that a very small
percentage of the 1524 peptides have any statistical evidence supporting their
discrimination ability. Setting a p-value threshold of 2% the number of peptides
was reduced further to 229 and these were used in devising a series of PKNN
classifiers.

Starting with the full set of 229 peptides a PKNN classifier was devised by
using Metropolis sampling with a burn-in of 5000 samples and a further 45000
post-burn-in samples retained for Monte-Carlo averaging. The proposal distribu-
tion was tuned to achieve acceptance rates between 35% to 50%. A randomised
ten-fold cross validation (10-CV) was used to obtain estimates of predictive per-
formance and only 0-1 error loss is reported here, however predictive probabilities
are obtained from PKNN. These probabilities are used to make decisions based
on the cost and threshold selected which in this case as the classes are balanced
was set at 0.5.

The 10-CV score and associated standard error is reported when 229 peptides
are used, then 228 are used where the peptide with the highest p-value is re-
moved. This is done for fourteen peptides after which groups of 10 peptides were
removed each time and the 10-CV score was measured. These results are shown
in Fig. [ A minimum mean 10-CV error of 8.68% is achieved, however this
is rather meaningless taken on its own without considering the standard error,
which would increase if multiple randomisations were employed. At around 220
to 210 peptides the range of error is minimal and this increases as the number
of low p-value peptides are removed. It is conjectured that due to the relatively
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Fig. 1. This graph shows the estimated 10-CV prediction error (mean + one standard
error)

high levels of sparsity in the data which remains a large number of peptides are
required to make reasonable predictions, this will be discussed further on in the
paper.

4.2 Hierarchic Linear Probit Regression Models

As in Sect. [l we remove all peptides that have more than 80% zero intensity
values and normalise each feature with their sum of intensity values. We again
use the ranking of covariates provided by the p-values of the Wilcoxon test to
further reduce the number of peptides, but this time choose a p-value threshold
of roughly 5% to reduce the number of peptides to 350. These peptides were
then used to build the three classifiers discussed in Sect.

Like Bae and Mallick [I1], we fixed the hyperparameters for Models T and II
so that E(\;) = 10 and Var()\;) = 100. We ran the Gibbs sampler of Sect.
for 50,000 iterations and discarded the first 20,000 iterations as burn-in. As in
Sect. 1], a randomised 10-CV was used to assess the predictive performance of
the three models. Both Models I and II gave an average test error of 8.2%+2.1%,
while Model IIT gave an average test error of 11.2%=2.0%. It should be noted that
tuning the hyperparameters of Models I and II could potentially lead to improved
performance. It is not surprising that Models I and II performed similarly, as
although the form of the prior distribution for the variance of the regression
coefficients was different, the mean and variance was set to be the same, and
this result is consistent with the findings of Bae and Mallick [11]. We believe that
the poorer performance of Model III is due to the Jeffreys prior inducing too
much sparsity in the model, similar to the worsening performance of the PKNN
classifier seen in Fig. [Il after the number of peptides in the model is reduced
below 210.

We select potential biomarkers using the posterior variance of 3 with the idea
being that the peptides with larger variance are more important in discriminating
between the different types of protein samples than those with smaller variance.
Figures 2 [}l and ] show the variance of 3; for Models I, IT and III, respectively.
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Fig. 2. Plot of the variance of 3; versus the peptide ID (Model I)
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Fig. 3. Plot of the variance of 3; versus the peptide ID (Model II)
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Fig. 4. Plot of the variance of §; versus the peptide ID (Model IIT)

We see that Models I and II give very similar results and there are roughly
20 peptides that have significantly larger variance than the others. Comparing
the top 20 peptides for Models T and II we see that Models I and II give very
consistent selections, as 18 peptides are in both top 20s. In particular, both
models rank peptides 186673 and 187114 as the two most important peptides
by a comfortable margin. Of these 18 peptides, all but three of them had p-
values less than 0.005 in the original Wilcoxon tests and of the top two peptides
both had p-values less than 3 x 107%. We also checked the sensitivity of the
peptide rankings with the 10-CV mentioned earlier and found that the rankings



Definition of Valid Proteomic Biomarkers: A Bayesian Solution 145

of Models I and II were broadly consistent between folds with the same peptides
being ranked highly in the majority of folds.

We see from Fig. ] that Model IIT induces sparseness much more strongly
than Models I and II, as there are only 8 peptides that have significantly larger
variance than the others. Only two of these peptides were selected by Models 1
and II, but both models ranked them outside the top 10. Unlike Models I and
II, when we checked the sensitivity of the peptide rankings with the results for
the 10-CV we found that the selected peptides were rarely consistent between
folds. This suggests that the Jeffreys prior over-prunes the model and puts very
little weight on many peptides useful for classifying the binary response, leading
to its worse performance in terms of the average test error found earlier. We
thus conclude that the peptides suggested by Models I and II are more likely
to make a good set of biomarkers for this problem than those suggested by
Model III.

4.3 Classification for the Blinded Test Data

Figures Bl B [ and § show the posterior predictive probabilities obtained for
each test sample from the PKNN classifier of Sect. [£1] and Bae and Mallick’s
sparse probit regression Models I, IT and III of Sect. 2] respectively. We see
that the PKNN classifier and Bae and Mallick’s Model III tend to give the
most confident predictions, while the posterior predictive probabilities are very
similar for Bae and Mallick’s Models I and II and tend to give the least confident
predictions. Note that it is easy to compare the predictive performance of two
competing classifiers graphically by plotting the predictive probabilities of one
method against the other. We also see that the four classifiers tend to allocate
the test samples to the same class. In fact, all four classifiers are in agreement
for 71 of the 92 test samples. The test samples where there is disagreement in
the predictions of the four classifiers tend to happen when at least one classifier
gives an unconfident prediction, that is, a posterior predictive probability close to
0.5. Even with the PKNN classifier there are four samples that have a posterior
predictive probability of between 0.4 and 0.6. In such cases we would advocate
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Fig. 5. Plot of the posterior predictive probabilities from the PKNN classifier
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Fig. 6. Plot of the posterior predictive probabilities from Bae and Mallick Model I
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Fig. 7. Plot of the posterior predictive probabilities from Bae and Mallick Model 1T

not allocating the test sample to either class, as there is great uncertainty over
the true class of the test sample. This transparency in the confidence of our
class predictions is a huge advantage of the Bayesian approach over the more
commonly used SVM techniques, which cannot provide such a formal and well-
calibrated measure of the confidence of a class prediction.

The performance of the four classifiers on the blinded test set turned out
to be very similar, as Bae and Mallick’s Model II misclassified 14 out of the
92 samples, while both their Models I and III made 15 misclassifications, and
the PKNN classifier performing slightly worse with 17 misclassifications. As we
would expect, the test samples that were misclassified tended to have posterior
predictive probabilities between 0.3 and 0.7, and thus had class predictions that
were not very confident.
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Fig. 8. Plot of the posterior predictive probabilities from Bae and Mallick Model 11

We then trained Bae and Mallick’s three models on three smaller data sets
with 33, 20 and 7 cases and controls, in order to assess how model performance
was affected by smaller training set sizes. We discovered that the confidence in
our predictions declines significantly as the number of training samples decreases.
Indeed, when the number of training samples is only 14, almost all the predictive
probabilities are between 0.3 and 0.7, which suggests that our predictive perfor-
mance may be little better than guessing and that the biomarkers suggested by
such a small data set would not be substantiated in practice. This suggestion
of deteriorating predictive performance as the number of training samples is
reduced was confirmed when we unblinded the test samples (see Table [II).

Table 1. Test error for different training set sizes

Training set size Model I Model 1T Model 111

14 283% 27.2% 25%
40 272%  27.2% 23.9%
66 21.7%  21.7% 25%
134 16.3%  15.2% 16.3%

5 Conclusions

Sparse models enable us to identify a small number of peptides having the great-
est discriminating power, thereby allowing researchers to quickly focus on the
most promising candidates for diagnostics and prognostics.

The Bayesian approach yields a coherent way to assign new samples to par-
ticular classes. Rather than hard rules of assignment, we can evaluate the prob-
ability that the new sample will be of a certain type which is more helpful for
medical decision making.
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Meaningful results will only be obtained if the number of training samples
collected is sufficient to allow the definition of statistically valid biomarkers.
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