
JCUDA: A Programmer-Friendly Interface for

Accelerating Java Programs with CUDA

Yonghong Yan, Max Grossman, and Vivek Sarkar

Department of Computer Science, Rice University
{yanyh,jmg3,vsarkar}@rice.edu

Abstract. A recent trend in mainstream desktop systems is the use of
general-purpose graphics processor units (GPGPUs) to obtain order-of-
magnitude performance improvements. CUDA has emerged as a popu-
lar programming model for GPGPUs for use by C/C++ programmers.
Given the widespread use of modern object-oriented languages with man-
aged runtimes like Java and C#, it is natural to explore how CUDA-like
capabilities can be made accessible to those programmers as well. In this
paper, we present a programming interface called JCUDA that can be
used by Java programmers to invoke CUDA kernels. Using this interface,
programmers can write Java codes that directly call CUDA kernels, and
delegate the responsibility of generating the Java-CUDA bridge codes
and host-device data transfer calls to the compiler. Our preliminary per-
formance results show that this interface can deliver significant perfor-
mance improvements to Java programmers. For future work, we plan to
use the JCUDA interface as a target language for supporting higher level
parallel programming languages like X10 and Habanero-Java.

1 Introduction

The computer industry is at a major inflection point in its hardware roadmap due
to the end of a decades-long trend of exponentially increasing clock frequencies.
It is widely agreed that spatial parallelism in the form of multiple homogeneous
and heterogeneous power-efficient cores must be exploited to compensate for this
lack of frequency scaling. Unlike previous generations of hardware evolution, this
shift towards multicore and manycore computing will have a profound impact
on software. These software challenges are further compounded by the need to
enable parallelism in workloads and application domains that have tradition-
ally not had to worry about multiprocessor parallelism in the past. Many such
applications are written in modern object-oriented languages like Java and C#.

A recent trend in mainstream desktop systems is the use of general-purpose
graphics processor units (GPGPUs) to obtain order-of-magnitude performance
improvements. As an example, NVIDIA’s Compute Unified Device Architecture
(CUDA) has emerged as a popular programming model for GPGPUs for use by
C/C++ programmers [1]. Given the widespread use of managed-runtime execu-
tion environments, such as the Java Virtual Machine (JVM) and .Net platforms,
it is natural to explore how CUDA-like capabilities can be made accessible to
programmers who use those environments.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 887–899, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

888 Y. Yan, M. Grossman, and V. Sarkar

In this paper, we present a programming interface called JCUDA that can be
used by Java programmers to invoke CUDA kernels. Using this interface, pro-
grammers can write Java codes that directly call CUDA kernels without having
to worry about the details of bridging the Java runtime and CUDA runtime.
The JCUDA implementation handles data transfers of primitives and multidi-
mensional arrays of primitives between the host and device. Our preliminary per-
formance results obtained on four double-precision floating-point Java Grande
benchmarks show that this interface can deliver significant performance improve-
ments to Java programmers. The results for Size C (the largest data size) show
speedups ranging from 7.70× to 120.32× with the use of one GPGPU, relative
to CPU execution on a single thread.

The rest of the paper is organized as follows. Section 2 briefly summarizes past
work on high performance computing in Java, as well as the CUDA programming
model. Section 3 introduces the JCUDA programming interface and describes
its current implementation. Section 4 presents performance results obtained for
JCUDA on four Java Grande benchmarks. Finally, Section 5 discusses related
work and Section 6 contains our conclusions.

2 Background

2.1 Java for High Performance and Numerical Computing

A major thrust in enabling Java for high performance computing came from
the Java Grande Forum (JGF) [2], a community initiative to promote the use
of the Java platform for compute-intensive numerical applications. Past work
in the JGF focused on two areas: Numerics, which concentrated on issues with
using Java on a single CPU, such as complex arithmetic and multidimensional
arrays, and Concurrency, which focused on using Java for parallel and distributed
computing. The JGF effort also included the development of benchmarks for
measuring and comparing different Java execution environments, such as the
JGF [3,4] and SciMark [5] benchmark suites.

The Java Native Interface (JNI) [6], Java’s foreign function interface for exe-
cuting native C code, also played a major role in JGF projects, such as enabling
Message Passing Interface (MPI) for Java [7]. In JNI, the programmer declares
selected C functions as native external methods that can be invoked by a Java
program. The native functions are assumed to have been separately compiled
into host-specific binary code. After compiling the Java source files, the javah
utility can be used to generate C header files that contain stub interfaces for
the native code. JNI also supports a rich variety of callback functions to enable
native code to access Java objects and services.

2.2 GPU Architecture and the CUDA Programming Model

Driven by the insatiable demand for realtime, high-definition 3D gaming and
multimedia experiences, the programmable GPU (Graphics Processing Unit) has

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 889

�����

����	
�

���

���

�� ��
��

��

��

���

����	
� 1. Copy data from main memory
 to GPU memory
2. CPU instructs GPU to start a
 kernel
3. GPU executes kernel in parallel
 and accesses GPU memory
4. Copy the results from GPU
 memory to main memory

Fig. 1. Process Flow of a CUDA Kernel Call

evolved into a highly parallel, multithreaded, manycore processor. Current GPUs
have tens or hundreds of fragment processors, and higher memory bandwidths
than regular CPUs. For example, the NVIDIA GeForce GTX 295 graphics card
comes with two GPUs, each with 240 processor cores, and 1.8 GB memory with
233.8 GB/s bandwidth, which is about 10× faster than that of current CPUs.
The same GPU is part of the NVIDIA Tesla C1060 Computer Processor, which
is the GPU processor used in our performance evaluations.

The idea behind general-purpose computing on graphics processing units
(GPGPU) is to use GPUs to accelerate selected computations in applications
that are traditionally handled by CPUs. To overcome known limitations and dif-
ficulties in using graphics APIs for general-purpose computing, GPU vendors and
researchers have developed new programming models, such as NVIDIA’s Com-
pute Unified Device Architecture (CUDA) model [1], AMD’s Brook+ streaming
model [8], and Khronos Group’s OpenCL framework [9].

The CUDA programming model is an extension of the C language. Program-
mers write an application with two portions of code — functions to be executed
on the CPU host and functions to be executed on the GPU device. The entry
functions of the device code are tagged with a global keyword, and are re-
ferred to as kernels. A kernel executes in parallel across a set of parallel threads
in a Single Instruction Multiple Thread (SIMT) model [1]. Since the host and
device codes execute in two different memory spaces, the host code must include
special calls for host-to-device and device-to-host data transfers. Figure 1 shows
the sequence of steps involved in a typical CUDA kernel invocation.

3 The JCUDA Programming Interface and Compiler

With the availability of CUDA as an interface for C programmers, the natural
extension for Java programmers is to use the Java Native Interface (JNI) as a
bridge to CUDA via C. However, as discussed in Section 3.1, this approach is

890 Y. Yan, M. Grossman, and V. Sarkar

JVM

native cudaKernel (…);

cudaKernel (…)

static {
System.loadLibrary(“cudaKernel");
}

 libcudaKernel.so

cudaKernel (…) {
 getPrimitiveArrayCritical (…);
 cudaMalloc(…);
 cudaMemcpy (…);
 kernel <<< … >>> (…)
 cudaMemcpy (…);
 cudaFree (…);
}

kernel ()

JNI CUDA

CPU Host GPU Device

Java C/C++ and CUDA

Fig. 2. Development process for accessing CUDA via JNI

neither easy nor productive. Sections 3.2 and 3.3 describe our JCUDA program-
ming interface and compiler, and Section 3.4 summarizes our handling of Java
arrays as parameters in kernel calls.

3.1 Current Approach: Using CUDA via JNI

Figure 2 summarizes the three-stage process that a Java programmer needs to
follow to access CUDA via JNI today. It involves writing Java code and JNI stub
code in C for execution on the CPU host, as well as CUDA code for execution
on the GPU device. The stub code also needs to handle allocation and freeing
of data in device memory, and data transfers between the host and device. It
is clear that this process is tedious and error-prone, and that it would be more
productive to use a compiler or programming tool that automatically generates
stub code and data transfer calls.

3.2 The JCUDA Programming Interface

The JCUDA model is designed to be a programmer-friendly foreign function
interface for invoking CUDA kernels from Java code, especially for programmers
who may be familiar with Java and CUDA but not with JNI. We use the exam-
ple in Figure 3 to illustrate JCUDA syntax and usage. The interface to external
CUDA functions is declared in lines 90–93, which contain a static library defi-
nition using the lib keyword. The two arguments in a lib declaration specify
the name and location of the external library using string constants. The library
definition contains declarations for two external functions, foo1 and foo2. The
acc modifier indicates that the external function is a CUDA-accelerated kernel
function. Each function argument can be declared as IN, OUT, or INOUT to
indicate if a data transfer should be performed before the kernel call, after the
kernel call or both. These modifiers allows the responsibility of device memory
allocation and data transfer to be delegated to the JCUDA compiler. Our current

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 891

1 double[][] l a = new double[NUM1][NUM2];
2 double[][][] l aout = new double[NUM1][NUM2][NUM3];
3 double[][] l aex = new double[NUM1][NUM2];
4
5 initArray(l a); initArray(l aex); //initialize value in array
6
7 int [] ThreadsPerBlock = {16, 16, 1};
8 int [] BlocksPerGrid = new int[3]; BlocksPerGrid[3] = 1;
9 BlocksPerGrid[0] = (NUM1 + ThreadsPerBlock[0] - 1) / ThreadsPerBlock[0];
10 BlocksPerGrid[1] = (NUM2 + ThreadsPerBlock[1] - 1) / ThreadsPerBlock[1];
11
12 /* invoke device on this block/thread grid */
13 cudafoo.foo1 <<<< BlocksPerGrid, ThreadsPerBlock >>>> (l a, l aout, l aex);
14 printArray(l a); printArray(l aout); printArray(l aex);

...

90 static lib cudafoo (”cfoo”, ”/opt/cudafoo/lib”) {
91 acc void foo1 (IN double[][]a, OUT int[][][] aout, INOUT float[][] aex);
92 acc void foo2 (IN short[][]a, INOUT double[][][] aex, IN int total);
93 }

Fig. 3. JCUDA example

JCUDA implementation only supports scalar primitives and rectangular arrays
of primitives as arguments to CUDA kernels. The OUT and INOUT modifiers are
only permitted on arrays of primitives, not on scalar primitives. If no modifier is
specified for an argument, it is default to be IN. As discussed later in Section 5,
there are related approaches to CUDA language bindings that support modifiers
such as IN and OUT, and the upcoming PGI 8.0 C/C++ compiler also uses
an acc modifier to declare regions of code in C programs to be accelerated. To
the best of our knowledge, none of the past efforts support direct invocation of
user-written CUDA code from Java programs, with automatic support for data
transfer (including copying of multidimensional Java arrays).

Line 13 shows a sample invocation of the CUDA kernel function foo1. Similar
to CUDA’s C interface, we use the <<<<. . .>>>>1 to identify a kernel call. The
geometries for the CUDA grid and blocks are specified using two three-element
integer arrays, BlocksPerGrid and ThreadsPerBlock. In this example, the ker-
nel will be executed with 16 × 16 = 256 threads per block and by a number of
blocks per grid that depends on the input data size (NUM1 and NUM2).

3.3 The JCUDA Compiler

The JCUDA compiler performs source-to-source translation of JCUDA programs
to Java program. Our implementation is based on Polyglot [10], a compiler front
end for the Java programming language. Figures 4 and 5 show the Java static
class declaration and the C glue code generated from the lib declaration in
Figure 3. The Java static class introduces declarations with mangled names for
native functions corresponding to JCUDA functions foo1 and foo2 respectively,
as well as a static class initializer to load the stub library. In addition, three
1 We use four angle brackets instead of three as in CUDA syntax because the “>>>”

is already used as unsigned right shift operator in Java programming language.

892 Y. Yan, M. Grossman, and V. Sarkar

private static class cudafoo {

native static void HelloL 00024cudafoo foo1(double[][] a,
int[][][] aout, float[][] aex, int[] dimGrid, int[] dimBlock, int sizeShared);

static void foo1(double[][] a, int[][][] aout, float[][] aex, int[] dimGrid, int[] dimBlock, int sizeShared) {
HelloL 00024cudafoo foo1(a, aout, aex, dimGrid, dimBlock, sizeShared);

}

native static void HelloL 00024cudafoo foo2(short[][] a,
double[][][] aex, int total, int[] dimGrid, int[] dimBlock, int sizeShared);

static void foo2(short[][] a, double[][][] aex, int total, int[] dimGrid, int[] dimBlock, int sizeShared) {
HelloL 00024cudafoo foo2(a, aex, total, dimGrid, dimBlock, sizeShared);

}

static { java.lang.System.loadLibrary(”HelloL 00024cudafoo stub”); }
}

Fig. 4. Java static class declaration generated from lib definition in Figure 3

extern global void foo1(double * d a, signed int * d aout, float * d aex);

JNIEXPORT void JNICALL
Java HelloL 00024cudafoo HelloL 100024cudafoo 1foo1(JNIEnv *env, jclass cls, jobjectArray a,

jobjectArray aout, jobjectArray aex, jintArray dimGrid, jintArray dimBlock, int sizeShared) {
/* copy array a to the device */
int dim a[3] = {2};
double * d a = (double*) copyArrayJVMToDevice(env, a, dim a, sizeof(double));

/* Allocate array aout on the device */
int dim aout[4] = {3};
signed int * d aout = (signed int*) allocArrayOnDevice(env, aout, dim aout, sizeof(signed int));

/* copy array aex to the device */
int dim aex[3] = {2};
float * d aex = (float*) copyArrayJVMToDevice(env, aex, dim aex, sizeof(float));

/* Initialize the dimension of grid and block in CUDA call */
dim3 d dimGrid; getCUDADim3(env, dimGrid, &d dimGrid);
dim3 d dimBlock; getCUDADim3(env, dimBlock, &d dimBlock);

foo1 <<< d dimGrid, d dimBlock, sizeShared >>> ((double *)d a, (signed int *)d aout, (float *)d aex);

/* Free device memory d a */
freeDeviceMem(d a);

/* copy array d aout->aout from device to JVM, and free device memory d aout */
copyArrayDeviceToJVM(env, d aout, aout, dim aout, sizeof(signed int));
freeDeviceMem(d aout);

/* copy array d aex->aex from device to JVM, and free device memory d aex */
copyArrayDeviceToJVM(env, d aex, aex, dim aex, sizeof(float));
freeDeviceMem(d aex);

return;
}

Fig. 5. C glue code generated for the foo1 function defined in Figure 3

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 893

0
0 1 2 ...

0 1 2 ...

0 1 2 ...

0 1 2 ...

1

2

...

9

0 1 2 ...

float a [10][10]

Fig. 6. Java Multidimensional Array Layout

parameters are added to each call — dimGrid, dimBlock, and sizeShared —
corresponding to the grid geometry, block geometry, and shared memory size.
As we can see in Figure 5, the generated C code inserts host-device data transfer
calls in accordance with the IN, OUT and INOUT modifiers in Figure 3.

3.4 Multidimensional Array Issues

A multidimensional array in Java is represented as an array of arrays. For ex-
ample, a two-dimensional float array is represented as a one-dimensional array
of objects, each of which references a one-dimensional float array as shown in
the Figure 6. This representation supports general nested and ragged arrays, as
well as the ability to pass subarrays as parameters while still preserving pointer
safety. However, it has been observed that this generality comes with a large
overhead for the common case of multidimensional rectangular arrays [11].

In our work, we focus on the special case of dense rectangular multidimensional
arrays of primitive types as in C and Fortran. These arrays are allocated as
nested arrays in Java and as contiguous arrays in CUDA. The JCUDA runtime
performs the necessary gather and scatter operations when copying array data
between the JVM and the GPU device. For example, to copy a Java array of
double[20][40][80] from the JVM to the GPU device, the JCUDA runtime
makes 20×40 = 800 calls to the CUDA cudaMemcpy memory copy function with
80 double-words transferred in each call. In future work, we plan to avoid this
overhead by using X10’s multidimensional arrays [12] with contiguous storage of
all array elements, instead of Java’s multidimensional arrays.

4 Performance Evaluation

4.1 Experimental Setup

Weuse fourSection2benchmarks fromtheJavaGrandeForum(JGF)Benchmarks
[3,4] to evaluate our JCUDA programming interface and compiler — Fourier co-
efficient analysis (Series), Sparse matrix multiplication (Sparse), Successive over-
relaxation (SOR), and IDEA encryption (Crypt). Each of these benchmarks has

894 Y. Yan, M. Grossman, and V. Sarkar

three problem sizes for evaluation — A, B and C — with Size A being the smallest
and Size C the largest. For each of these benchmarks, the compute-intensive por-
tionswererewritten inCUDAwhereastherestof thecodewasretained in itsoriginal
Java form except for the JCUDA extensions used for kernel invocation. The rewrit-
tenCUDAcodes are parallelized in the samewayas the original Javamultithreaded
code, with each CUDA thread performing the same computation as a Java thread.

The GPU used in our performance evaluations is a NVIDIA Tesla C1060 card,
containing a GPU with 240 cores in 30 streaming multiprocessors, a 1.3 GHz
clock speed, and 4GB memory. It also supports double-precision floating-point
operations, which was not available in earlier GPU products from NVIDIA. All
benchmarks were evaluated with double-precision arithmetic, as in the original
Java versions. The CPU hosting this GPGPU is an Intel Quad-Core CPU with
a 2.83GHz clock speed, 12MB L2 Cache and 8GB memory. The software in-
stallations used include a Sun Java HotSpot 64-bit virtual machine included in
version 1.6.0 07 of the Java SE Development Kit (JDK), version 4.2.4 of the
GNU Compiler Collection (gcc), version 180.29 of the NVIDIA CUDA driver,
and version 2.0 of the NVIDIA CUDA Toolkit.

There are two key limitations in our JCUDA implementation which will be ad-
dressed in future work. First, as mentioned earlier, we only support primitives and
rectangular arrays of primitives as function arguments in the JCUDA interface.
Second, the current interface does not provide any direct support for reuse of data
across kernel calls since the parameter modes are restricted to IN, OUT and INOUT.

4.2 Evaluation and Analysis

Table 1 shows the execution times (in seconds) of the Java and JCUDA versions
for all three data sizes of each of the four benchmarks. The Java execution times

Table 1. Execution times in seconds, and Speedup of JCUDA relative to 1-thread Java
executions (30 blocks per grid, 256 threads per block)

Benchmark Series Sparse
Data Size A B C A B C

Java-1-thread execution time 7.6s 77.42s 1219.40s 0.50s 1.17s 19.87s
Java-2-threads execution time 3.84s 39.21s 755.05s 0.26s 0.54s 8.68s
Java-4-threads execution time 2.03s 19.82s 390.98s 0.25s 0.39s 5.32s

JCUDA execution time 0.11s 1.04s 10.14s 0.07s 0.14s 0.93s
JCUDA Speedup w.r.t. Java-1-thread 67.26 74.51 120.32 7.25 8.30 21.27

Benchmark SOR Crypt
Data Size A B C A B C

Java-1-thread execution time 0.62s 1.60s 2.82s 0.51s 3.26s 8.16s
Java-2-threads execution time 0.26s 1.32s 2.59s 0.27s 1.65s 4.10s
Java-4-threads execution time 0.16s 1.37s 2.70s 0.11s 0.21s 2.16s

JCUDA execution time 0.09s 0.21s 0.37s 0.02s 0.16s 0.45s
JCUDA Speedup w.r.t. Java-1-thread 6.74 7.73 7.70 22.17 20.12 17.97

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 895

0

0.5

1

1.5

2

2.5

21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441

Threads Per Block

T
im

e
(s

)

Size A

Size B

Size C

(a) SOR (30 blocks/grid)

0

0.5

1

1.5

2

2.5

21 46 71 96 121 146 171 196 221 246 271 296 321 346 371 396 421 446 471 496

Threads Per Block

T
im

e
(s

)

Size A

Size B

Size C

(b) Crypt (30 blocks/grid)

0

0.5

1

1.5

2

2.5

3

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99

Blocks Per Grid

T
im

e
(s

)

Size A

Size B

Size C

(c) SOR (256 threads/block)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Blocks Per Grid

T
im

e
(s

)
Size A

Size B

Size C

(d) Crypt (256 threads/block)

Fig. 7. Execution time by varying threads/block and blocks/grid in CUDA kernel
invocations on the Tesla C1060 GPU

were obtained for 1, 2 and 4 threads, representing the performance obtained
by using 1, 2, and 4 CPU cores respectively. The JCUDA execution times were
obtained by using a single Java thread on the CPU combined with multiple
threads on the GPU in a configuration of 256 threads per block and 30 blocks
per grid. The JCUDA kernel was repeatedly executed 10 times, and the fastest
times attained for each benchmark and test size are listed in the table.

The bottom row shows the speedup of the JCUDA version relative to the 1-
thread Java version. The results for Size C (the largest data size) show speedups
ranging from 7.70× to 120.32×, whereas smaller speedups were obtained for
smaller data sizes — up to 74.51× for Size B and 67.26× for Size A. The bench-
mark that showed the smallest speedup was SOR. This is partially due to the
fact that our CUDA implementation of the SOR kernel performs a large number
of barrier (syncthreads) operations — 400, 600, and 800 for sizes A, B, and C
respectively. In contrast, the Series examples show the largest speedup because
it represents an embarrassingly parallel application with no communication or

896 Y. Yan, M. Grossman, and V. Sarkar

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Series A Series B Series C Sparse
A

Sparse
B

Sparse
C

SOR A SOR B SOR C Crypt A Crypt B Crypt C

Problem and Size

P
er

ce
n

ta
g

e JCUDA cost
Post-Compute
Pre-Compute
Compute

Fig. 8. Breakdown of JCUDA Kernel Execution Times

synchronization during kernel execution. In general, we see that the JCUDA
interface can deliver significant speedups for Java applications with double-
precision floating point arithmetic by using GPGPUs to offload computations.

Figure 7 shows the results of varying threads/block and blocks/grid for SOR
and Crypt to study the performance variation relative to the geometry assumed
in Table 1 (256 threads/block and 30 blocks/grid). In Figures 7(a) and 7(b), for
30 blocks per grid, we see that little performance gain is obtained by increasing
the number of threads per block beyond 256. This suggests that 256 threads per
block (half the maximum value of 512) is a large enough number to enable the
GPU to maintain high occupancy of its cores [13]. Next, in Figures 7(c) and
7(d), for 256 threads per block, we see that execution times are lowest when the
blocks/grid is a multiple of 30. This is consistent with the fact that the Tesla
C1060 has 30 streaming multiprocessors (SM). Further, we observe a degradation
when the blocks/grid is 1 more than a multiple of 30 (31, 61, 91, . . .) because
of the poor load balance that results on a 30-SM GPU processor.

Figure 8 shows the percentage breakdown of the JCUDA kernel execution
times into compute, pre-compute, post-compute and JCUDA cost components.
The compute component is the time spent in kernel execution on the GPGPU.
The pre-compute and post-compute components represent the time spent in
data transfer before and after kernel execution. The JCUDA cost includes the
overhead of the JNI calls generated by the JCUDA kernel. As the figure shows,
for each benchmark, as the problem becomes larger, the compute time percent-
age increases. The JCUDA overhead has minimal impact on performance, espe-
cially for Size C executions. The impact of pre-compute and post-compute times
depends on the communication requirements of individual benchmarks.

5 Related Work

In this section, we briefly discuss two areas of related work in making CUDA
kernels accessible to other languages. The first approach is to provide library

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 897

bindings for the CUDA API. Examples of this approach include the JCublas and
JCufft [14] Java libraries that provide Java bindings to the standard CUBLAS
and CUFFT libraries from CUDA. We recently learned that JCublas and JCufft
are part of a new Java library called jCUDA. In contrast, the JCUDA interface
introduced in this paper is a language-based approach, in which the compiler
automatically generates glue code and data transfers.

PyCuda [15] from Python community is a Python binding for the CUDA API.
It also allows CUDA kernel code to be embedded as a string in a Python program.
RapidMind provides a multicore programming framework based on the C++
programming language [16]. A programmer can embed a kernel intended to run
on the GPU as a delimited piece of code directly in the program. RapidMind also
supports IN, and OUT keywords for function parameters to guide the compiler
in generating appropriate code for data movement.

The second approach is to use compiler parallelization to generate CUDA
kernel code. A notable example of this approach can be found in the PGI 8.0
x64+GPU compilers for C and Fortran which allow programmers to use direc-
tives, such as acc, copyin, and copyout, to specify regions of code or functions
to be GPU-accelerated. The compiler splits portions of the application between
CPU and GPU based on these user-specified directives and generates object
codes for both CPU and GPUs from a single source file. Another related ap-
proach is to translate OpenMP parallel code to hybrid code for CPUs and GPUs
using compiler analysis, transformation and optimization techniques [17]. A re-
cent compiler research effort that is of relevance to Java can be found in [18],
where the Jikes RVM dynamic optimizing compiler [19] is extended to perform
automatic parallelization at the bytecode level.

To the best of our knowledge, none of the past efforts support direct invocation
of user-written CUDA code from Java programs, with automatic support for data
transfer of primitives and multidimensional arrays of primitives.

6 Conclusions and Future Work

In this paper, we presented the JCUDA programming interface that can be
used by Java programmers to invoke CUDA kernels without having to worry
about the details of JNI calls and data transfers (especially for multidimensional
arrays) between the host and device. The JCUDA compiler generates all the
necessary JNI glue code, and the JCUDA runtime handles data transfer be-
fore and after each kernel call. Our preliminary performance results obtained
on four Java Grande benchmarks show significant performance improvements
of the JCUDA-accelerated versions over their original versions. The results for
Size C (the largest data size) showed speedups ranging from 6.74× to 120.32×
with the use of a GPGPU, relative to CPU execution on a single thread. We
also discussed the impact of problem size, communication overhead, and syn-
chronization overhead on the speedups that were obtained.

To address the limitations listed in Section 4.1, we are considering to add a
KEEP modifier for an argument to specify GPU resident data between kernel

898 Y. Yan, M. Grossman, and V. Sarkar

calls. To support the overlapping of computation and data transfer, we are de-
veloping memory copy primitives for programmers to initiate asynchronous data
copy between CPU and GPU. Those primitives can use either the conventional
cudaMemcpy operation or the page-locked memory mapping mechanism intro-
duced in the latest CUDA development kit. In addition to those, there are also
several interesting directions for our future research. We plan to use the JCUDA
interface as a target language to support high-level parallel programming lan-
guage like X10 [12] and Habanero-Java in the Habanero Multicore Software
Research project [20]. In this approach, we envision generating JCUDA code
and CUDA kernels from a single source multi-place X10 program. Pursuing this
approach will require solving some interesting new research problems such as
ensuring that offloading X10 code onto a GPGPU will not change the exception
semantics of the program. Another direction that we would like to explore is
the use of the language extensions recommended in [21] to simplify automatic
parallelization and generation of CUDA code.

Acknowledgments

We are grateful to Jisheng Zhao and Jun Shirako for their help with the Poly-
glot compiler infrastructure and JGF benchmarks. We would also like to thank
Tim Warburton and Jeffrey Bridge for their advice on constructing the GPGPU
system used to obtain the experimental results reported in this paper.

References

1. Nickolls, J., Buck, I., Garland, M., Nvidia, Skadron, K.: Scalable Parallel Program-
ming with CUDA. ACM Queue 6(2), 40–53 (2008)

2. Java Grande Forum Panel, Java Grande Forum Report: Making Java Work for
High-End Computing, Java Grande Forum, SC 1998, Tech. Rep. (November 1998)

3. Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking Java Against C
and Fortran for Scientific Applications. In: Proceedings of the 2001 joint ACM-
ISCOPE Conference on Java Grande, pp. 97–105. ACM Press, New York (2001)

4. Smith, L.A., Bull, J.M., Obdrzálek, J.: A Parallel Java Grande Benchmark Suite.
In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing, p. 8. ACM
Press, New York (2001)

5. SciMark Java Benchmark for Scientific and Numerical Computing,
http://math.nist.gov/scimark2/

6. Liang, S.: Java Native Interface: Programmer’s Guide and Specification. Sun Mi-
crosystems (1999)

7. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-Like Message
Passing for Java. Concurrency - Practice and Experience 12(11), 1019–1038 (2000)

8. AMD, ATI Stream Computing - Technical Overview. AMD, Tech. Rep. (2008)
9. Khronos OpenCL Working Group, The OpenCL Specification - Version 1.0. The

Khronos Group, Tech. Rep. (2009)
10. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An Extensible Compiler

Framework for Java. In: Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp.
138–152. Springer, Heidelberg (2003)

http://math.nist.gov/scimark2/

JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs 899

11. Moreira, J.E., Midkiff, S.P., Gupta, M., Artigas, P.V., Snir, M., Lawrence, R.D.:
Java Programming for High-Performance Numerical Computing. IBM Systems
Journal 39(1), 21–56 (2000)

12. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an Object-Oriented Approach to Non-Uniform Cluster
Computing. In: OOPSLA 2005: Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pp. 519–538. ACM, New York (2005)

13. NVIDIA, NVIDIA CUDA Programming Guide 2.2.plus 0.5em minus 0.4emN-
VIDIA (2009), http://www.nvidia.com/cuda

14. Java Binding for NVIDIA CUDA BLAS and FFT Implementation,
http://www.jcuda.de

15. PyCuda, http://documen.tician.de/pycuda/
16. Matthew Monteyne, RapidMind Multi-Core Development Platform. RapidMind

Inc., Tech. Rep (2008)
17. Lee, S., Min, S.-J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for

automatic translation and optimization. In: PPoPP 2009: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pp. 101–110. ACM, New York (2009)

18. Leung, A.C.-W.: Thesis: Automatic Parallelization for Graphics Processing Units
in JikesRVM. University of Waterloo, Tech. Rep. (2008)

19. Alpern, B., Augart, S., Blackburn, S.M., Butrico, M., Cocchi, A., Cheng, P., Dolby,
J., Fink, S., Grove, D., Hind, M., McKinley, K.S., Mergen, M., Moss, J.E.B., Ngo,
T., Sarkar, V.: The Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal 44(2), 399–417 (2005)

20. Habanero Multicore Software Project, http://habanero.rice.edu
21. Shirako, J., Kasahara, H., Sarkar, V.: Language Extensions in Support of Com-

piler Parallelization. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC 2007.
LNCS, vol. 5234, pp. 78–94. Springer, Heidelberg (2008)

http://www.nvidia.com/cuda
http://www.jcuda.de
http://documen.tician.de/pycuda/
http://habanero.rice.edu

	JCUDA: A Programmer-Friendly Interface for Accelerating Java Programs with CUDA
	Introduction
	Background
	Java for High Performance and Numerical Computing
	GPU Architecture and the CUDA Programming Model

	The JCUDA Programming Interface and Compiler
	Current Approach: Using CUDA via JNI
	The JCUDA Programming Interface
	The JCUDA Compiler
	Multidimensional Array Issues

	Performance Evaluation
	Experimental Setup
	Evaluation and Analysis

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

