
Using OpenMP vs. Threading Building Blocks
for Medical Imaging on Multi-cores

Philipp Kegel, Maraike Schellmann, and Sergei Gorlatch

University of Münster, Germany
{p.kegel,schellmann,gorlatch}@uni-muenster.de

Abstract. We compare two parallel programming approaches for
multi-core systems: the well-known OpenMP and the recently introduced
Threading Building Blocks (TBB) library by IntelR©. The comparison is
made using the parallelization of a real-world numerical algorithm for
medical imaging. We develop several parallel implementations, and com-
pare them w.r.t. programming effort, programming style and abstraction,
and runtime performance. We show that TBB requires a considerable
program re-design, whereas with OpenMP simple compiler directives are
sufficient. While TBB appears to be less appropriate for parallelizing ex-
isting implementations, it fosters a good programming style and higher
abstraction level for newly developed parallel programs. Our experimen-
tal measurements on a dual quad-core system demonstrate that OpenMP
slightly outperforms TBB in our implementation.

1 Introduction

Modern CPUs, even on desktop computers, are increasingly employing multiple
cores to satisfy the growing demand for computational power. Thus, easy-to-use
parallel programming models are needed to exploit the full potential of paral-
lelism. Early parallel programming models (e.g. Pthreads) usually allow for flex-
ible parallel programming but rely on low-level techniques: The programmer has
to deal explicitly with processor communication, threads and synchronization,
which renders parallel programming tedious and error-prone. Several techniques
exist to free programmers from low-level implementation details of parallel pro-
gramming. One approach is to extend existing programming languages with
operations to express parallelism. OpenMP is an example of this approach. An-
other approach is to introduce support for parallel programming within a library.
Recently, Intel R© published one such library, Threading Building Blocks (TBB),
that adds support for high-level parallel programming techniques to C++.

The OpenMP application programming interface is quite popular for shared-
memory parallel programming [3]. Basically, OpenMP is a set of compiler di-
rectives that extend C/C++ and Fortran compilers. These directives enable the
user to explicitly define parallelism in terms of constructs for single program
multiple data (SPMD), work-sharing and synchronization. OpenMP also pro-
vides some library functions for accessing the runtime environment. At compile

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 654–665, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 655

time, multi-threaded program code is generated based on the compiler direc-
tives. OpenMP has been designed to introduce parallelism in existing sequential
programs. In particular, loop-based data parallelism can be easily exploited.

Threading Building Blocks (TBB) is a novel C++ library for parallel pro-
gramming, which can be used with virtually every C++ compiler. In TBB,
a program is described in terms of fine-grained tasks. Threads are completely
hidden from the programmer. TBB’s idea is to extend C++ with higher-level,
task-based abstractions for parallel programming; it is not just a replacement for
threads [6]. At runtime, TBB maps tasks to threads. Tasks are more light-weight
than threads, because they cannot be preempted, such that no context switching
is needed. They may be executed one after another by the same thread. This
reduces scheduling overhead, which usually occurs when each program task is
defined and performed by a single thread. Tasks also can be re-scheduled at run-
time to load-balance threads. This mechanism is referred to as “task-stealing”
[6]. TBB provides skeletons for common parallel programming patterns, like
map, reduce or scan. Thereby it facilitates high-level parallel programming.

This paper studies the use of OpenMP and TBB for parallelizing an existing
sequential implementation of an algorithm for image reconstruction. We com-
pare parallel implementations of this algorithm based on OpenMP and TBB,
using such criteria as programming effort, programming style and abstraction,
and runtime performance. In Section 2, the algorithm that we want to parallelize
and its field of application are presented. The actual parallelization is described
in Section 3. Here, we provide some code examples and a detailed description of
several parallel implementations of the algorithm based on OpenMP and TBB.
In Section 4, we compare our TBB- and OpenMP-based implementations. We
present runtime performance and discuss programming style. Finally, we con-
clude with an evaluation of TBB and OpenMP in Section 5 with respect to our
algorithm and describe our ongoing and future work.

2 Positron Emission Tomography (PET) Imaging

In Positron Emission Tomography (PET), a radioactive substance is injected
into a specimen (mice or rats in our case). Afterwards, the specimen is placed
within a scanner, a device that is facilitated with several arrays of sensors. As
the particles of the applied substance decay, two positrons are emitted (hence
the name PET) in opposite directions. The “decay events” are detected by the
sensors, usually by two opposite sensors in parallel. The scanner records these
events, with each record comprising a timestamp and the positions of the two
sensors.

ListMode Ordered Subset Expectation Maximization [5] (LM OSEM) is a
block-iterative algorithm for 3D image reconstruction. LM OSEM takes a set of
the aforementioned recorded events and splits them into s equally sized subsets.
For each subset l ∈ 0, . . . , s − 1 the following computation is performed:

fl+1 = flcl; cl =
1

At
N1

∑

i∈Sl

(Ai)t 1
Aifl

. (1)

656 P. Kegel, M. Schellmann, and S. Gorlatch

Here f ∈ R
n is a 3D image in vector form with dimensions n = (X × Y × Z).

A ∈ R
m×n, element aik of row Ai is the length of intersection of the line between

the two detectors of event i with voxel k of the reconstruction region, computed
using Siddon’s algorithm [9]. Each subset’s computation takes its predecessor’s
output image as input and produces a new, more precise image.

The overall structure of a sequential LM OSEM implementation is shown in
Listing 1. It comprises three nested loops, one outer loop with two inner loops.
The outer loop iterates over the subsets. The first inner loop iterates over a
subset to compute the summation part of cl. The second inner loop iterates over
all elements of fl and cl to compute fl+1.

for (int l = 0; l < subsets; l++) {

/∗ read subset ∗/

/∗ compute c_l ∗/
#pragma omp parallel

{

#pragma omp for schedule(static)
for (int i = 0; i < subset_size; i++) {

...

}

} /∗ end of parallel region ∗/

/∗ compute f_l+1 ∗/
#pragma omp parallel for schedule(static)
for (int k = 0 ; k < image_size; k++) {

if (sens[k] > 0.0 && c_l[k] > 0.0)

f[k] = f[k] ∗ c_l[k] / sens[k]; } }

Listing 1. The original sequential implementation comprises one outer loop with two
nested inner loops. For parallelization it is augmented with OpenMP compiler directives.

A typical 3D image reconstruction processing 6×107 million input events for a
150×150×280 PET image takes more than two hours on a common PC. Several
parallel implementations for systems with shared- and distributed-memory, as
well as hybrid systems have been developed to reduce the algorithm’s runtime
[4,7]. Also an implementation for Compute Unified Device Architecture (CUDA)
capable graphics processing units is available [8].

3 Parallelizing the LM OSEM Algorithm

Because of the data dependency between the subset’s computations (implied by
fl+1 = flcl), the subsets cannot be processed in parallel. But the summation part
of cl and the computation of fl+1 are well parallelizable. (Additional parts of
the implementation, e.g., for performing an image convolution to improve image

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 657

quality, can also be parallelized. However, none of these program parts have to
do directly with LM OSEM and will be omitted in the sequel.)

3.1 Loop Parallelization

To parallelize the summation part of cl and the computation of fl+1, we have to
parallelize the two inner loops of the LM OSEM algorithm. OpenMP and TBB
both offer constructs to define this kind of data parallelism.

In OpenMP, two constructs are used to parallelize a loop: the parallel and
the loop construct. The parallel construct, introduced by a parallel directive,
declares the following code section (the parallel region) to be executed in parallel
by a team of threads. Additionally, the loop construct, introduced by a for
directive, is placed within the parallel region to distribute the loop’s iterations
to the threads executing the parallel region. We parallelize the inner loop using
these two constructs, as shown in Listing 1. For the first inner loop, each thread
must perform some preliminary initializations. The according statements are
placed at the parallel region’s beginning. The second inner loop does not need any
initializations. Therefore, we use the parallel for directive, which is a shortcut
declaration of a parallel construct with just one nested loop construct. Apart
from the additional compiler directives, no considerable changes were made to
the sequential program. Thus, an OpenMP-based parallel implementation of
LM OSEM is easily derived from a sequential implementation of the LM OSEM
algorithm written in C [7], see Listing 1.

OpenMP supports several strategies for distributing loop iterations to threads.
The strategy is specified via the schedule clause, which is appended to the for
directive. In our application, we expect that the workload is evenly distributed in
iteration ranges of reasonable size (greater than 10000 events). Therefore, a static
and even distribution of iterations to threads will be sufficient for our application.
OpenMP’s static scheduling strategy suits our needs. If not specified otherwise,
it creates evenly sized blocks of loop iterations for all threads of a parallel region.
Thereby, the block size implicitly is defined as n/p, where n is the number of
iterations and p is the number of threads.

In TBB, parallel loops are defined using the parallel for template, which
is applied in two steps as proposed by Reinders [6]:

1. A class is created, which members correspond to the variables that are out-
side the scope of the loop to be parallelized. The class has to overload the ()
operator method so that it takes an argument of type blocked_range<T>
that defines a chunk of the loop’s iteration space which the operator’s caller
should iterate over. The method’s body takes the original code for the loop.
Then, the arguments for the loop’s iteration bounds are replaced by calls to
methods that return the iteration space’s beginning and end.

2. The code of the original loop is replaced by a call to the parallel for
pattern. The pattern is called with two arguments, the loop’s iteration space
and an instance of the previously defined class, called the body object. The
iteration space is defined by an instance of the blocked_range<T> template
class. It takes the iteration space’s beginning and end and a grain size value.

658 P. Kegel, M. Schellmann, and S. Gorlatch

A parallel implementation of LM OSEM using TBB thus requires to re-implement
the two inner loops. The most obvious difference to OpenMP is the use of C++
instead of C. TBB’s parallel for construct is a C++ template and takes a C++
class as parameter. Actually, this technique is a workaround for C++’s missing
support of lambda expressions. With lambda expression, blocks of code can be
passed as parameters. Thus, the code of the body object could be passed to the
parallel for template in-place without the overhead of a separate class
definition [6].

According to step 1, we create a class for each of the loops. Within these
classes, we change the loops’ iteration bounds and provide member variables
that save the original outer context of the loops (see Listing 2). We determined
these variables by carefully analyzing our existing implementation of LM OSEM.

class ImageUpdate {

double ∗const f, ∗const c_l;

double ∗const sens,

public:
ImageUpdate(double ∗f, double ∗sens, double ∗c_l) :

f(f), sens(sens), c_l(c_l) {}

void operator() (const blocked_range<int>& r) const {

for (int k = r.begin(); k != r.end(); k++) {

if (sens[k] > 0.0 && c_l[k] > 0.0)

f[k] ∗= c_l[k] / sens[k]; } }

};

Listing 2. The loop to be parallelized is embedded into a separate class that defines a
method operator()

Then, following step 2, we are able to replace the loops by calls to TBB’s
parallel for template (see Listing 3).

for (int l = 0; l < subsets; l++) {

/∗ read subset ∗/

/∗ compute c_l ∗/
parallel_for(

blocked_range<int>(0, subset_size, GRAIN_SIZE),

SubsetComputation(f, c_l, event_buffer, precision));

/∗ compute f_l+1 ∗/
parallel_for(

blocked_range<int>(0, image_size, GRAIN_SIZE),

ImageUpdate(f, sens, c_l)); }

Listing 3. A call to the parallel for template replaces the loop

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 659

The grain size value specifies a reasonable maximum number of iterations
that should be performed by a single processor. Unlike OpenMP, which provides
multiple scheduling strategies, TBB always uses a fixed scheduling strategy that
is affected by the selected grain size. If the size of an iteration range is greater
than the specified grain size, the parallel for template recursively splits it into
disjoint iteration ranges. The grain size value thus serves as a lower bound for
the tasks’ size. If each task comprised a single iteration, this would result in a
massive task scheduling overhead. Internally, the parallel for template creates
a task for each iteration range in a divide and conquer manner. Finally, all tasks
are processed independently; i.e., in parallel.

TBB’s grain size value is comparable to an optional block size value, which can
be specified for OpenMP’s schedule clause. Both specify a threshold value for
chunks of iterations, to avoid too large or too small work pieces for each thread.
However, the semantics of the block size value slightly differ from the grain size
value and depend on the selected scheduling strategy. Reinders [6] proposes to
select a grain size, such that each iteration range (task) takes at least 10,000
to 100,000 instructions to execute. According to this rule of thumb we select a
grain size value of 1,000 for the first inner loop and a value of 10,000 for the
second inner loop.

3.2 Thread Coordination

Within the first inner loop (summation part of cl) all threads perform multiple
additions to arbitrary voxels of a common intermediate image. Hence, possible
race conditions have to be prevented. There are two basic techniques for this:

1. Mutexes: The summation part is declared mutually exclusive, such that only
one thread at a time is able to work on the image.

2. Atomic operations: The summation is performed as an atomic operation.

In OpenMP, both techniques are declared by appropriate directives. Mutexes are
declared by using the critical construct. Similarly to the aforementioned parallel
construct, it specifies a mutual exclusion for the successive code section (see
Listing 4).

/∗ compute c_l ∗/
...

#pragma omp critical

while (path_elements[m].coord != −1) {

c_l[path_elem[m].coord] += c ∗ path_elem[m].length

} /∗ end of critical section ∗/

Listing. 4. Mutex in OpenMP: The critical construct specifies a mutex for the succes-
sive code section (critical region)

OpenMP’s atomic construct is used similarly to the critical construct (see
Listing 5). It ensures that a specific storage location is updated without inter-
ruption (atomically) [1]. Effectively, this ensures that the operation is executed

660 P. Kegel, M. Schellmann, and S. Gorlatch

only by one thread at a time. However, while a critical region semantically locks
the whole image, an atomic operation just locks the voxel it wants to update.
Thus atomic operations in our case may be regarded as fine-grained locks.

/∗ compute c_l ∗/
...

while (path_elements[m].coord != −1) {

path_elem[m].length ∗= c;

#pragma omp atomic

c_l[path_elem[m].coord] += path_elem[m].length; }

Listing 5. Atomic operation in OpenMP: The atomic construct ensures that the voxels
of the intermediate image are updated atomically

Besides, mutual exclusion can be implemented explicitly by using low-level
library routines. With these routines, in general, a lock variable is created. Af-
terwards a lock for this variable is acquired and released explicitly. This provides
a greater flexibility than using the critical or atomic construct.

TBB provides several mutex implementations that differ in properties like scal-
ability, fairness, being re-entrant, or how threads are prevented from entering a
critical section [6]. Scalable mutexes do not perform worse than a serial execution,
even under heavy contention. Fairness prevents threads from starvation and, for
short waits, spinning is faster than sending waiting threads to sleep. The simplest
way of using a mutex in TBB is shown in Listing 6. The mutex lock variable is cre-
ated explicitly, while a lock on the mutex is acquired and released implicitly. Al-
ternatively, a lock can be acquired and released explicitly by appropriate method
calls, similarly to using the OpenMP library functions.

tbb::mutex mtx; /∗ create mutex ∗/
...

{ /∗ beginning of lock scope ∗/
tbb::mutex::scoped_lock lock(mtx); /∗ acquire lock on mutex ∗/
while (path_elements[m].coord != −1) {

c_l[path_elem[m].coord] += c ∗ path_elem[m].length; }

} /∗ end of scope, release lock ∗/

Listing 6. Mutex in TBB: The constructor of scoped lock implicitly acquires a lock,
while the destructor releases it. The brackets keep the lock’s scope as small as possible.

Atomic operations can only be performed on a template data type that pro-
vides a set of methods (e.g. fetchAndAdd) for these operations. Thus, the origi-
nal data type (e.g., the image data type of LM OSEM) would have to be changed
throughout the whole program. In our application, the voxels of an image are
represented by double-precision floating-point numbers. However, TBB only sup-
ports atomic operations on integral types [6]. Therefore, with TBB, we cannot use
atomic operations in our implementation of the LM OSEM algorithm.

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 661

4 Comparison: OpenMP vs. TBB

To compare OpenMP and TBB concerning our criteria of interest, we create
several parallel implementations of LM OSEM using OpenMP and TBB. Two
versions of an OpenMP-based implementation are created using the critical and
the atomic construct, respectively. Moreover, we create three versions of our
implementation based on TBB using TBB’s three basic mutex implementations:
a spin mutex (not scalable, not fair, spinning), a queuing mutex (scalable, fair,
spinning) and a wrapper around a set of operation system calls (just called
mutex) that provides mutual exclusion (scalability and fairness OS-dependent,
not spinning).

4.1 Programming Effort, Style, and Abstraction

The previous code examples clearly show that TBB requires a thorough re-
design of our program, even for a relatively simple pattern like parallel for.
Our TBB-based implementations differ greatly from the original version. We had
to create additional classes, one for each loop to be parallelized, and replace the
parallelized program parts by calls to TBB templates. Basically, this is because
TBB uses library functions that depend on C++ features like object orientation
and templates. Consequently, the former C program becomes a mixture of C and
C++ code. The most delicate issue was identifying the variables that had to be
included within the class definition of TBB’s parallel for body object.

Parallelizing the two inner loops of the original LM OSEM implementation
using OpenMP is almost embarrassingly easy. Inserting a single line with com-
piler directives parallelizes a loop without any additional modifications. Another
single line implements a mutual exclusion for a critical section or the atomic ex-
ecution of an operation. Also, in contrast to TBB, we do not have to take any
measures to change variable scopes. OpenMP takes care of most details of thread
management.

Regarding the number of lines of code, OpenMP is far more concise than TBB.
The parallel constructs are somewhat hidden in the program. For example, the
end of the parallel region that embraces the first inner loop of LM OSEM is hard
to identify in the program code. TBB, on the other hand, improves the program’s
structure. Parallel program parts are transferred into separate classes. Though
this increases the number of lines of code, the main program becomes smaller
and more expressive through the use of the parallel for construct.

The parallel constructs ofTBB and OpenMP offer a comparable level of abstrac-
tion. In neither case we have to work with threads directly. TBB’s parallel for
template resembles the semantics of OpenMP’s parallel loop construct. OpenMP’s
parallel loop construct can be configured by specifying a scheduling strategy and
a block size value, whereas TBB relies solely on its task-scheduling mechanism.
However, OpenMP’s parallel loop construct is easier to use, because the schedule
clause may be omitted.

Regarding thread coordination, OpenMP and TBB offer a similar set of
low-level library routines for locking. However, OpenMP additionally provides

662 P. Kegel, M. Schellmann, and S. Gorlatch

compiler directives which offer a more abstract locking method. Also, for our
application, TBB has a serious drawback regarding atomic operations: these
operations are only supported for integral types (and pointers).

4.2 Runtime Performance

To give an impression of the performance differences between OpenMP and
TBB with respect to our application, we compare the OpenMP-based parallel
implementations with the ones based on TBB.

We test our implementations on a dual quad-core (AMD Opteron
TM

2352,
2.1GHz) system. Each core owns a 2×64KB L1 cache (instruction/data) and
512KB L2 cache. On each processor, four cores share 2 MB L3 cache and 32GB
of main memory. The operating system is Scientific Linux 5.2.

We run the LM OSEM algorithm on a test file containing about 6×107 events
retrieved from scanning a mouse. To limit the overall reconstruction time in our
tests, we process only about 6 × 106 of these events. The events are divided
into ten subsets of one million events each. Thus, we get subsets that are large
enough to provide a reasonable intermediate image (cl), while the number of
subsets is sufficient for a simple reconstruction. Each program is re-executed ten
times. Afterwards, we calculate the average runtime for processing a subset. We
repeat this procedure using 1, 2, 4, 8, and 16 threads. The number of threads is
specified by an environment variable in OpenMP or by a parameter of the task
scheduler’s constructor in TBB, respectively.

Figure 1 shows a comparison of the results of the implementations of LM
OSEM using mutexes. Most of the implementations show a similar scaling be-
havior. Exceptions are the implementations based on TBB’s mutex wrapper and

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 8 16

S
pe

ed
up

 fa
ct

or

#threads

TBB (spin_mutex)
TBB (queuing_mutex)

TBB (mutex)
OpenMP (critical)

(a) speedup

 5

 10

 15

 20

 25

 1 2 4 8 16

R
un

tim
e

(s
ec

on
ds

)

#threads

TBB (spin_mutex)
TBB (queuing_mutex)

TBB (mutex)
OpenMP (critical)

(b) runtime

Fig. 1. Runtime and speedup for a single subset iteration of different implementations
of LM OSEM

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 663

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16

S
pe

ed
up

 fa
ct

or

#threads

TBB (w/ queuing_mutex)
OpenMP (w/ critical section)

TBB (w/o mutex)
OpenMP (w/o critical section)

(a) speedup

 5

 10

 15

 20

 25

 1 2 4 8 16
R

un
tim

e
(s

ec
on

ds
)

#threads

TBB (w/ queuing_mutex)
OpenMP (w/ critical section)

TBB (w/o mutex)
OpenMP (w/o critical section)

(b) runtime

Fig. 2. Runtime and speedup for a single subset iteration of different implementations
of LM OSEM. Without thread coordination both implementations perform equally.

spin mutex. The implementation based on the mutex wrapper performs worst of
all implementations. In particular, it shows a much worse scaling behavior. With
16 threads (oversubscription), the spin mutex-based implementation performs
best of all. However, OpenMP’s critical construct outperforms most of TBB’s
mutex implementations.

To clarify the reasons for TBB’s inferior performance as compared to OpenMP,
we repeat our experiments with two implementations that do not prevent race

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16

S
pe

ed
up

 fa
ct

or

#threads

critical
atomic

(a) speedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

R
un

tim
e

(s
ec

on
ds

)

#threads

critical
atomic

(b) runtime

Fig. 3. Runtime and speedup for a single subset iteration of the OpenMP-based LM
OSEM implementations

664 P. Kegel, M. Schellmann, and S. Gorlatch

conditions in OpenMP or TBB, respectively. The results (see Figure 2) show that
without a mutex (or critical section), TBB and OpenMP perform virtually equally
well.

A comparison of the two OpenMP-based implementations of LM OSEM (see
Figure 3) reveals a remarkable difference. The runtime of the single-threaded
case shows that using atomic operations slows down our implementation by
about 50%. However, when the number of threads increases, the implementa-
tion using atomic operations provides an almost linear speedup. With about
8 threads, it finally outperforms the OpenMP-based implementation using the
critical construct and all implementations using TBB’s mutexes.

One should keep in mind that the performance of an OpenMP program heavily
depends on the used compiler (Intel C/C++ compiler version 10.1 in our case).
While the TBB library implements parallelization without any special compiler
support, with OpenMP the parallelization is done by the compiler. Hence, the
presented results do not apply to every OpenMP-capable compiler in general.

5 Conclusion

Using OpenMP, we can parallelize LM OSEM with little or no program redesign.
It can be easily used for parallelizing our existing sequential implementation.
TBB, on the other hand, fosters a structured, object-oriented programming style,
which comes along with the cost of re-writing parts of the program. Hence, TBB
is more appropriate for the creation of a new parallel implementation of LM
OSEM. Besides, TBB is C++ based. Hence, one might argue that using TBB
also requires object-oriented programming. Lambda expressions (see Section 3.1)
will probably become part of the next C++ standard. This might enable TBB
to implement loop parallelization in place, such that at least the effort for loop
parallelization might be reduced to a level comparable to that of OpenMP [6].

With TBB, we can implement the same kind of data-parallelism as with
OpenMP. Also, both approaches provide an abstract programming model, which
shields the programmer from details of thread programming.

Regarding runtime, we get the best results when using OpenMP. TBB offers
a comparable scaling behavior, but does not achieve a similar absolute perfor-
mance. Our experimental results show that TBB’s inferior performance is prob-
ably caused by its non-optimal mutex implementations, while its parallel for
template provides equal performance. Besides, TBB lacks atomic operations for
floating-point data types, while such operations provide the best performance
when used in our OpenMP-based implementation.

In conclusion, OpenMP apparently is a better choice for easily parallelizing
our sequential implementation of the LM OSEM algorithm than TBB. OpenMP
offers a fairly abstract programming model and provides better runtime perfor-
mance. Particularly thread synchronization, which is crucial in our application,
is easier to implemented when using OpenMP.

Nevertheless, apart from the parallel for template, TBB offers some addi-
tional constructs (e.g. pipeline), which provide a higher level of abstraction. In

Using OpenMP vs. TBB for Medical Imaging on Multi-cores 665

particular, these constructs allow the implementation of task-parallel patterns.
We excluded these constructs from the comparison, because OpenMP contains
no comparable features. If we started a new implementation of the LM OSEM
algorithm with parallelism in mind, we might much easier exploit parallelism
in TBB than in OpenMP by using these high-level constructs. For example, we
might concurrently fetch and process events and calculate cl by using TBB’s
pipeline construct. Especially, we would not have to take care about thread syn-
chronization explicitly as we have to do in our current implementations. OpenMP
does not provide such a construct, so that it would have to be implemented from
scratch. Currently, we are working on implementations of LM OSEM using these
features to exploit a higher level of programming.

In our future experiments, we also plan to analyze the exact influence of grain
and block size and scheduling strategy (see section 3.1) for different amounts of
input data on the program performance.

The most important feature of TBB is its task-based programming model.
Usually, templates shield the programmers from directly using tasks. The latest
version 3.0 of OpenMP also includes a task-based parallel programming model
[2]. We are going to study how far this task model is comparable to TBB and
whether it increases OpenMP’s performance.

References

1. OpenMP.org – The OpenMP API specification for parallel programming,
http://openmp.org/

2. OpenMP Architecture Review Board. OpenMP Application Program Interface (May
2008)

3. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP - Portable Shared Memory
Parallel Programming. MIT Press, Cambridge (2007)

4. Hoefler, T., Schellmann, M., Gorlatch, S., Lumsdaine, A.: Communication optimiza-
tion for medical image reconstruction algorithms. In: Lastovetsky, A., Kechadi, T.,
Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 75–83. Springer,
Heidelberg (2008)

5. Reader, A.J., Erlandsson, K., Flower, M.A., Ott, R.J.: Fast accurate iterative re-
construction for low-statistics positron volume imaging. Physics in Medicine and
Biology 43(4), 823–834 (1998)

6. Reinders, J.: Outfitting C++ for Multi-core Processor Parallelism - Intel Threading
Building Blocks. O’Reilly, Sebastopol (2007)

7. Schellmann, M., Kösters, T., Gorlatch, S.: Parallelization and runtime prediction of
the listmode osem algorithm for 3d pet reconstruction. In: IEEE Nuclear Science
Symposium and Medical Imaging Conference Record, San Diego, pp. 2190–2195.
IEEE Computer Society Press, Los Alamitos (2006)

8. Schellmann, M., Vörding, J., Gorlatch, S., Meiländer, D.: Cost-effective medical
image reconstruction: from clusters to graphics processing units. In: CF 2008: Pro-
ceedings of the 2008 conference on Computing Frontiers, pp. 283–292. ACM, New
York (2008)

9. Siddon, R.L.: Fast calculation of the exact radiological path for a three-dimensional
CT array. Medical Physics 12(2), 252–255 (1985)

http://openmp.org/

	Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores
	Introduction
	Positron Emission Tomography (PET) Imaging
	Parallelizing the LM OSEM Algorithm
	Loop Parallelization
	Thread Coordination

	Comparison: OpenMP vs. TBB
	Programming Effort, Style, and Abstraction
	Runtime Performance

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

