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Abstract. Mobile ad hoc networks as well as grid platforms are dis-
tributed, changing and error prone environments. Communication costs
within such infrastructures can be improved, or at least bounded, by us-
ing k-clustering. A k-clustering of a graph, is a partition of the nodes
into disjoint sets, called clusters, in which every node is distance at
most k from a designated node in its cluster, called the clusterhead.
A self-stabilizing asynchronous distributed algorithm is given for con-
structing a k-clustering of a connected network of processes with unique
IDs and weighted edges. The algorithm is comparison-based, takes O(nk)
time, and uses O(log n + log k) space per process, where n is the size of
the network. To the best of our knowledge, this is the first distributed
solution to the k-clustering problem on weighted graphs.
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1 Introduction

Nowadays distributed systems are built over a large number of resources. Overlay
structures require taking into account locality among the entities they manage.
For example, communication time between resources is the main performance
metric in many systems. A cluster structure facilitates the spatial reuse of re-
sources to increase system capacity. Clustering also helps routing and can im-
prove the efficiency of a parallel software if it runs on a cluster of well connected
resources. Another advantage of clustering is that many changes in the network
can be made locally, i.e., restricted to particular clusters.

Many applications require that entities are grouped into clusters according to
a certain distance which measures proximity with respect to some relevant crite-
rion; the clustering will result in clusters with similar or bounded readings. We
are interested in two particular fields of research which can make use of resource
clustering: mobile ad hoc networks (MANET) and application deployment on
grid environments.
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In MANET, scalability of large networks is a critical issue. Clustering can be
used to design a low-hop backbone network in MANET with routing facilities
provided by clustering. However, using only hops, i.e., the number of links in
the path between two processes, may hide the true communication time between
two nodes.

A major aspect of grid computing is the deployment of grid middleware.
The hop distance is used as a metric in some applications, but it may not be
relevant in many platforms, such as a grid. Using an arbitrary metric (i.e., a
weighted metric) is a reasonable option in such heterogeneous distributed sys-
tems. Distributed grid middleware, like Diet [1] and GridSolve [2] can make use
of accurate distance measurements to do efficient job scheduling.

Another important aspect is that both MANET and grid environments are
highly dynamic systems: nodes can join and leave the platform anytime, and may
be subject to errors. Thus, designing an efficient fault-tolerant algorithm which
clusters the nodes according to a given distance k, and which can dynamically
adapt to any change, is a necessity for many applications, including MANET
and grid platforms.

Self-stabilization [3] is a desirable property of fault-tolerant systems. A
self-stabilizing system, regardless of the initial states of the processes and ini-
tial messages in the links, is guaranteed to converge to the intended behavior
in finite time. Self-stabilization has been shown to be a powerful tool to de-
sign dynamic systems. As MANET and grid platforms are dynamic and error
prone infrastructures, self-stabilization is a good approach to design efficient
algorithms.

1.1 The k-Clustering Problem

We now formally define the problem solved in this paper. Let G = (V, E) a
connected graph (network) consisting of n nodes (processes), with positively
weighted edges. For any x, y ∈ V , let w(x, y) be the distance from x to y,
defined to be the least weight of any path from x to y. We will assume that
the edge weights are integers. We also define the radius of a graph G as follows:
radius(G) = minx∈V maxy∈V {w(x, y)}.

Given a non-negative integer k, we define a k-cluster of G to be a non-empty
connected subgraph of G of radius at most k. If C is a k-cluster of G, we say
that x ∈ C is a clusterhead of C if, for any y ∈ C, there is a path of length at
most k in C from x to y.

We define a k-clustering of G to be a partitioning of V into k-clusters. The
k-clustering problem is then the problem of finding a k-clustering of a given
graph.1 In this paper, we require that a k-clustering specifies one node, which
we call the clusterhead within each cluster, which is within k of all nodes of the
cluster, and a shortest path tree rooted at the clusterhead which spans all the
nodes of the cluster.

1 There are several alternative definitions of k-clustering, or the k-clustering problem,
in the literature.
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A set of nodes D ⊆ V is a k-dominating set2 of G if, for every x ∈ V ,
there exists y ∈ D such that w(x, y) ≤ k. A k-dominating set determines a
k-clustering in a simple way; for each x ∈ V , let Clusterhead(x) ∈ D be the
member of D that is closest to x. Ties can be broken by any method, such as
by using IDs. For each y ∈ D, Cy = {x : Clusterhead(x) = y} is a k-cluster, and
{Cy}y∈D is a k-clustering of G. We say that a k-dominating set D is optimal if
no k-dominating set of G has fewer elements than D. The problem of finding an
optimal k-dominating set is known to be NP-hard [5].

1.2 Related Work

To the best of our knowledge, there exist only three asynchronous distributed so-
lutions to the k-clustering problem in mobile ad hoc networks, in the comparison
based model, i.e., where the only operation allowed on IDs is comparison. Amis
et al. [5] give the first distributed solution to this problem. The time and space
complexities of their solution are O(k) and O(k log n), respectively. Spohn and
Garcia-Luna-Aceves [6] give a distributed solution to a more generalized version
of the k-clustering problem. In this version, a parameter m is given, and each
process must be a member of m different k-clusters. The k-clustering problem
discussed in this paper is then the case m = 1. The time and space complexi-
ties of the distributed algorithm in [6] are not given. Fernandess and Malkhi [7]
give an algorithm for the k-clustering problem that uses O(log n) memory per
process, takes O(n) steps, provided a BFS tree for the network is already given.
The first self-stabilizing solution to the k-clustering problem was given in [8]; it
takes O(k) time and O(k log n) space. However, this algorithm only deal with
the hop metric, and is thus unable to deal with more general weighted graphs.

1.3 Contributions and Outline

Our solution, Algorithm Weighted-Clustering, given in Sect. 3, is partially in-
spired by that of Amis et al. [5], who use simply the hop distance instead of ar-
bitrary edge weights. Weighted-Clustering uses O(log n+log k) bits per process.
It finds a k-dominating set in a network of processes, assuming that each process
has a unique ID, and that each edge has a positive weight. It is also self-stabilizing
and converges in O(nk) rounds. When Algorithm Weighted-Clustering stabi-
lizes, the network is divided into a set of k-clusters, and inside each cluster, the
processes form a shortest path tree rooted at the clusterhead.

In Sect. 2, we describe the model of computation used in the paper, and give
some additional needed definitions. In Sect. 3, we define the algorithm Weighted-
Clustering, and give its time and space complexity. We also show an example
execution of Weighted-Clustering in Sect. 4. Finally, we present some simulation
results in Sect. 5 and conclude the paper in Sect. 6.

2 Note that this definition of the k-dominating set is different than another well known
problem consisting in finding a subset V ′ ⊆ V such that |V ′| ≤ k, and such that
∀v ∈ V − V ′,∃y ∈ V ′ : (x, y) ∈ E. [4].
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2 Model and Self-stabilization

We are given a connected undirected network of size n ≥ 2, and a distributed
algorithm A on that network. Each process P has a unique ID, P.id, which we
assume can be written with O(log n) bits.

The state of a process is defined by the values of its registers. A configuration
of the network is a function from processes to states; if γ is the current config-
uration, then γ(P ) is the current state of each process P . An execution of A is
a sequence of states e = γ0 �→ γ1 �→ . . . �→ γi . . ., where γi �→ γi+1 means that it
is possible for the network to change from configuration γi to configuration γi+1

in one step. We say that an execution is maximal if it is infinite, or if it ends at
a sink , i.e., a configuration from which no execution is possible.

The program of each process consists of a set of registers and a finite set
of actions of the following form: < label >:: < guard > −→ < statement >.
The guard of an action in the program of a process P is a Boolean expression
involving the variables of P and its neighbors. The statement of an action of
P updates one or more variables of P . An action can be executed only if it is
enabled , i.e., its guard evaluates to true. A process is said to be enabled if at
least one of its actions is enabled. A step γi �→ γi+1 consists of one or more
enabled processes executing an action.

We use the shared memory/composite atomicity model of computation [3,9].
Each process can read its own registers and those of its neighbors, but can write
only to its own registers; the evaluations of the guard and executions of the
statement of any action is presumed to take place in one atomic step.

We assume that each transition from a configuration to another is driven by
a scheduler , also called a daemon. At a given step, if one or more processes are
enabled, the daemon selects an arbitrary non-empty set of enabled processes to
execute an action. The daemon is thus unfair : even if a process P is continuously
enabled, P might never be selected by the daemon, unless, at some step, P is
the only enabled process.

We say that a process P is neutralized during a step, if P is enabled before the
step but not after the step, and does not execute any action during that step.
This situation could occur if some neighbors of P change some of their registers
in such a way as to cause the guards of all actions of P to become false.

We use the notion of round [10], which captures the speed of the slowest
process in an execution. We say that a finite execution � = γi �→ γi+1 �→ . . . �→ γj

is a round if the following two conditions hold: (i) Every process P that is enabled
at γi either executes or becomes neutralized during some step of �, (ii) The
execution γi �→ . . . �→ γj−1 does not satisfy condition (i). We define the round
complexity of an execution to be the number of disjoint rounds in the execution,
possibly plus one more if there are some steps left over.

The concept of self-stabilization was introduced by Dijkstra [3]. Informally, we
say that A is self-stabilizing if, starting from a completely arbitrary configuration,
the network will eventually reach a legitimate configuration.

More formally, we assume that we are given a legitimacy predicate LA on con-
figurations. Let �A be the set of all legitimate configurations, i.e., configurations
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which satisfy LA. Then we define A to be self-stabilizing to �A, or simply self-
stabilizing if �A is understood, if the following two conditions hold: (i) (Conver-
gence) Every maximal execution contains some member of �A, (ii) (Closure) If an
execution e begins at a member of �A, then all configurations of e are members
of �A. We say that A is silent if every execution is finite. In other words, starting
from an arbitrary configuration, the network will eventually reach a sink , i.e., a
configuration where no process is enabled.

3 The Algorithm Weighted-Clustering

In this section, we present Weighted-Clustering, a self-stabilizing algorithm that
computes a k-clustering of a weighted network of size n.

3.1 Overview of Weighted-Clustering

A process P is chosen to be a clusterhead if and only if, for some process Q, P has
the smallest ID of any process within a distance k of Q. The set of clusterheads
so chosen is a k-dominating set, and a clustering of the network is then obtained
by every process joining a shortest path tree rooted at the nearest clusterhead.
The nodes of each such tree form one k-cluster.

Throughout, we write NP for the set of all neighbors of P , and UP = NP ∪{P}
the closed neighborhood of P . For each process P , we define the following values:

MinHop(P ) = min {min {w(P, Q) : Q ∈ NP }, k + 1}
MinId(P, d) = min {Q.id : w(P, Q) ≤ d}

MaxMinId(P, d) = max {MinId(Q, k) : w(P, Q) ≤ d}
Clusterhead_Set = {P : MaxMinId(P, k) = P.id}

Dist(P ) = min {w(P, Q) : Q ∈ Clusterhead_Set}

Parent(P ) =

⎧
⎪⎨

⎪⎩

P.id if P ∈ Clusterhead_Set

min

{

Q.id :
(Q ∈ NP ) ∧
(Dist(Q) + w(P, Q) = Dist(P ))

}

otherwise

Clusterhead (P ) =

{
P.id if P ∈ Clusterhead_Set
Clusterhead (Parent(P )) otherwise

The output of Weighted-Clustering consists of shared variables P.parent
and P.clusterhead for each process P . The output is correct if P.parent = Parent
(P ) and P.clusterhead = Clusterhead(P ) for each P . Hence, the previous val-
ues define the sequential version of our algorithm. Weighted-Clustering is self-
stabilizing. Although it can compute incorrect output, the output shared variables
will eventually stabilize to their correct values.

3.2 Structure of Weighted-Clustering: Combining Algorithms

The formal definition of Weighted-Clustering requires 26 functions and 15 ac-
tions, and thus it is difficult to grasp the intuitive principles that guide it. In
this conference paper, we present a broad and intuitive explanation of how the
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algorithm works. Technical details of Weighted-Clustering can be found in our
research report [11] which also contains proofs of its correctness and complexity.

Weighted-Clustering consists of the following four phases.

Phase 1, Self-Stabilizing Leader Election (SSLE). We make use of an
algorithm SSLE, defined in [12], which constructs a breadth-first-search (BFS)
spanning tree rooted at the process of lowest ID, which we call Root_bfs. The
BFS tree is defined by pointers P.parent_bfs for all P , and is used to synchronize
the second and third phases of Weighted-Clustering. SSLE is self-stabilizing and
silent. We do not give its details here, but instead refer the reader to [12].

The BFS tree created by SSLE is used to implement an efficient broadcast and
convergecast mechanism, which we call color waves , used in the other phases.

Phase 2 and 3, A non-silent self-stabilizing algorithm Interval. Given
a positively weighted connected network with a rooted spanning tree, a number
k > 0, and a function f on processes, Interval computes min {f(Q) :w(P, Q) ≤ k}
for each process P in the network, where w(P, Q) is the minimum weight of any
path through the network from P to Q.

– Phase 2, MinId, which computes, for each process P , MinId(P, k), the
smallest ID of any process which is within distance k of P . The color waves,
i.e., the Broadcast-convergecast waves on the BFS tree computed by SSLE,
are used to ensure that (after perhaps one unclean start) MinId begins from
a clean state, and also to detect its termination. MinId is not silent; after
computing all MinId(P, k), it resets and starts over.

– Phase 3, MaxMinId, which computes, using Interval, for each process P ,
MaxMinId(P, k), the largest value of MinId(Q, k) of any process Q which
is within distance k of P .

The color waves are timed so that the computations of MinId and MaxMinId
alternate. MinId will produce the correct values of MinId(P, k) during its first
complete execution after SSLE finishes, and MaxMinId will produce the correct
values of MaxMinId(P, k) during its first complete execution after that.

Phase 4, Clustering. A silent self-stabilizing algorithm which computes the
clusters given Clusterhead_Set , which is the set of processes P for which MaxMin
Id(P, k) = P.id . Clustering runs concurrently with MinId and MaxMinId, but
until those have both finished their first correct computations, Clustering may
produce incorrect values. Clusterhead_Set eventually stabilizes (despite the fact
that MinId and MaxMinId continue running forever), after which Clustering has
computed the correct values of P.clusterhead and P.parent for each P .

3.3 The BFS Spanning Tree Module SSLE

It is only necessary to know certain conditions that will hold when SSLE
converges.
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– There is one root process, which we call Root_bfs, which SSLE chooses to
be the process of smallest ID in the network.

– P.dist_bfs = the length (number of hops) of the shortest path from P to
Root_bfs.

– P.parent_bfs=

⎧
⎪⎨

⎪⎩

P.id if P = Root_bfs

min

{

Q.id :
(Q ∈ NP ) ∧
(Q.dist_bfs + 1) = P.dist_bfs

}

otherwise

SSLE converges in O(n) rounds from an arbitrary configuration, and remains
silent, thus throughout the remainder of the execution of Weighted-Clustering,
the BFS tree will not change.

3.4 Error Detection and Correction

There are four colors, 0, 1, 2, and 3. The BFS tree supports the color waves; these
scan the tree up and down, starting from the bottom of the tree for colors 0 and
2, and from the top for 1 and 3. The color waves have two purposes: they help
the detection of inconsistencies within the variables, and allow synchronization
of the different phases of the algorithm. Before the computation of clusterheads
can be guaranteed correct, all possible errors in the processes must be corrected.
Three kinds of errors are detected and corrected:

– Color errors: P.color is 1 or 3, and the color of its parent in the BFS tree is
not the same, then it is an error. Similarly, if the process’ color is 2 and if its
parent in the BFS tree has color 0, or if one of its children in the BFS tree
has a color different than 2, then it is an error. Upon a color error detection,
the color of the process is set to 0.

– Level errors: throughout the algorithm, P makes use of four variables which
define a search interval, two for the MinId phase: P.minlevel and P.minhi level ,
and two for the MaxMinId phase: P.maxminlevel and P.maxminhi level . De-
pending on the color of the process, the values of P.minlevel and P.minhi level
must fulfill certain conditions, if they do not they are set to k and k+1, respec-
tively; the variables P.maxminlevel and P.maxminhi level are treated
similarly.

– Initialization errors: P also makes use of the variables P.minid and
P.maxminid to store the minimum ID found in the MinId phase, and the
largest MinId(Q, k) found in the MaxMinId phase. If the process has color
0, in order to correctly start the computation of the MinId phase, the val-
ues of P.minid , P.minlevel and P.minhi level must be set respectively to
P.id , 0 and MinHop(P ); if they do not have these values, they are cor-
rected. The variables P.maxminlevel and P.maxminhi level are treated sim-
ilarly when P.color = 2, except that P.maxminid is set to P.minid , so that
the MaxMinId phase starts correctly.

When all errors have been corrected, no process will ever return to an error state
for as long as the algorithm runs without external interference.
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Fig. 1. Evolution of the search interval P.minlevel ≤ d < P.minhi level for the example
computation Fig. 2

3.5 Building Clusters

The heart of the algorithm is identification of the clusterheads, which consists
of two phases, MinId and MaxMinId. We describe only MinId in detail, as
MaxMinId is similar. When it ends, if P.maxminid = P.id , P is a clusterhead.

MinId computes, for each process P , the smallest ID of any process which
is within distance k of P . This phase starts when P.color = 0, and ends when
P.minhi level = k + 1. Three steps constitute this phase:

First Step: Synchronization: a color wave starting from the root of the BFS
tree sets the color of all processes to 1.

Second Step: At each substep, process P defines a search interval, it gives
lower and upper bounds on the distance d up to which P has looked to find
the lowest ID: P.minlevel ≤ d < P.minhi level . The bounds can never decrease
in each substep of the algorithm. Initially each process is only able to look no
further than itself. Then, a process is able to update its P.minid , P.minlevel
and P.minhi level only when no neighbor prevents it from executing, i.e., when
P is included in the search interval of one of its neighbors Q, and P has a
lower minid value than Q: a neighbor has not finished updating its variables
according to its search interval. The levels are increased in accordance with the
current levels and the minid of the neighbors: P.minlevel is set to the minimum
Q.minlevel +w(P, Q) ≤ k such that Q.minid < P.minid , and P.minhi level is set
to the minimum of all min{Q.minlevel + w(P, Q), k + 1} if Q.minid < P.minid ,
or min{Q.minhi level + w(P, Q), k + 1}.

Of course, a process cannot directly look at processes which are not its direct
neighbors, but the evolution of the search intervals gives time for the informa-
tion to gradually travel from process to process, thus by reading its neighbors
variables, the process will eventually receive the values.
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An example of the evolution of the search intervals is given Fig. 1. For example,
process E starts by looking at itself, then it looks at D, then for the next three
steps it is able to look at D and L, and finally looks at B. It never looks at A,
as the distance between E and A is greater than k = 30.

Third Step: Once P.minhi level = k+1, another color wave starts at the bottom
of the tree; this wave sets the color of all processes to 2. The processes are now
ready to for the MaxMinId phase.

3.6 Time and Space Complexity

The algorithm uses all the variables of SSLE [12] and 11 other variables in each
process. SSLE uses O(log n) space. The internal ID variables can be encoded
on O(log n) space, distance in O(log k) space, and colors in only 2 bits. Hence,
Weighted-Clustering requires O(log n + log k) memory per process.

SSLE converges in O(n) rounds, while the clustering module requires O(n)
rounds once Clusterhead_Set has been correctly computed. MinId and MaxMinId
are the most time-consuming, requiring O(nk) rounds each to converge. The total
time complexity of the Weighted-Clustering is thus O(nk).

4 An Example Computation

In Fig. 2, we show an example where k = 30. In that figure, each oval represents a
process P and the numbers on the lines between the ovals represent the weights of
the links. To help distinguish IDs from distances, we use letters for IDs. The top
letter in the oval representing a process P is P.id . Below that, for subfigures (a)
to (g) we show P.minlevel , followed by a colon, followed by P.minid , followed
by a colon, followed by P.minhi level . Below each oval is shown the action the
process is enabled to execute (none if the process is disabled). We name Aminid
the action consisting in updating P.minlevel , P.minid and P.minhi level , and
Ahi level the action consisting in updating only P.minhi level . An arrow in the
figure from a process P to a process Q indicates that Q prevents P from executing
Action Aminid . In subfigure (h) we show the final values of P.maxminlevel ,
followed by a colon, followed by P.maxminid , followed by a colon, followed by
P.maxminhi level . In subfigure (i) we show the final value of P.dist ; an arrow
from P to Q indicates that P.parent = Q.id , and a bold oval means that the
process is a clusterhead. The dashed line represents the separation between the
two final k-clusters.

In Fig. 2(a) to (g), we show synchronous execution of the MinId phase. The
result would have been the same with an asynchronous execution, but using
synchrony makes the example easier to understand.

In each step, if an arrow leaves a process, then this process cannot execute
Aminid , but can possibly execute Ahi level to update its minhi level variable.
At any step, two neighbors cannot both execute Action Aminid due to a special
condition present in the guard. This prevents miscalculations of minid .
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Fig. 2. Example computation of Weighted-Clustering for k = 30

Consider the process L. Initially it is enabled to execute Action Aminid (sub-
figure (a)). It will, after the first execution (subfigure (b)), find the value of the
smallest ID within a distance of L.minhi level = 7, which is D, and will at the
same time update its minhi level value to D.minhi level + w(D, L) = 6 + 7 = 13.
As during this step, D and B have updated their minhi level value, L.minhi level
is an underestimate of the real minhi level , thus L is now enabled to execute
Action Ahi level to correct this value. The idea behind the minhi level variable,
is to prevent the process from choosing a minimum ID at a distance greater
than minhi level before its neighbors have a chance to copy its current value of
minid , if necessary. Thus a process will not look at the closest minimum ID in
terms of number of hops (as could have done process D at the beginning by
choosing process A), but will compute the minimum ID within a radius equal
to minhi level around itself (hence process D is only able to choose process A in
the final step, even if A is closer than B in terms of number of hops).

The MinId phase halts when P.minhi level = k + 1 for all P (subfigure (g)).
In the final step every P knows the process of minimum ID at a distance no
greater than k, and P.minlevel holds the distance to this process.

Sometimes, a process P can be elected clusterhead by another process Q with-
out having elected itself clusterhead (this does not appear in our example); P
could have the smallest ID of any process within k of Q, but not the small-
est ID of any node within k of itself. The MaxMinId phase corrects this; it
allows the information that a process P was elected clusterhead to flow back
to P .
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5 Simulations

We designed a simulator to evaluate the performance of our algorithm. In or-
der to verify the results, a sequential version of the algorithm was run, and all
simulation results compared to the sequential version results. Thus, we made
sure that the returned clustered graph was the correct one. In order to detect
when the algorithm becomes stable and has computed the correct clustering, we
compared, at each step, the current graph with the previous one; the result was
then output only if there was a difference. The stable result is the last graph
output once the algorithm has reached an upper bound on the number of rounds
(at least two orders of magnitude higher than the theoretical convergence time).

We ran the simulator on random weighted graphs. For each value of k, we
ran 10 simulations starting from an arbitrary initial state where the value of
each variable of each process was randomly chosen. Each process had a specific
computing power so that they could not execute all at the same speed; we set
the ratio between the slowest and the fastest process to 1/100. Due to space
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constraints we cannot show all these results, and present results obtained for
one of the random graphs containing 59 nodes, with a diameter equal to 282
(9 hops), links’ weights are between 1 and 100, and the degree of the nodes are
between 3 and 8 (5.4 on average).

Figure 3a shows the number of clusterheads found for each run and each value
of k. As the algorithm returns exactly the same set of clusterheads whatever the
initial condition, the results for a given k are all the same. Note that the number
of clusterheads decreases as k increases, and even if the algorithm may not find
the optimal solution, it gives a clustering far better than a naive O(1) self-
stabilizing algorithm which would consist in electing each process a clusterhead.
The number of clusterheads quickly decreases as k increases.

Figure 3b shows the number of rounds required to converge. This figure shows
two kinds of runs: with an unfair daemon and different computing speed, and
with a fair daemon and identical power for all processes. The number of rounds
is far lower than the theoretical bound O(nk), even with an unfair daemon.

6 Conclusion

In this article, we present a self-stabilizing asynchronous distributed algorithm
for construction of a k-dominating set, and hence a k-clustering, for a given k, for
any weighted network. In contrast with previous work, our algorithm deals with
an arbitrary metric on the network. The algorithm executes in O(nk) rounds,
and requires only O(log n + log k) space per process.

In future work, we will attempt to improve the time complexity of the algo-
rithm, and use the message passing model, which is more realistic. We
also intend to explore the possibility of using k-clustering to design efficient
deployment algorithms for applications on a grid infrastructure.
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