
MPI Applications on Grids: A Topology Aware
Approach

Camille Coti1, Thomas Herault1,2, and Franck Cappello1

1 INRIA, F-91893 Orsay, France
coti@lri.fr, fci@lri.fr

2 Univ Paris Sud, LRI, F-91405 Orsay, France
herault@lri.fr

Abstract. Porting on grids complex MPI applications involving collective com-
munications requires significant program modification, usually dedicated to a sin-
gle grid structure. The difficulty comes from the mismatch between programs
organizations and grid structures: 1) large grids are hierarchical structures ag-
gregating parallel machines through an interconnection network, decided at
runtime and 2) the MPI standard does not currently provide any specific in-
formation for topology-aware applications, so almost all MPI applications have
been developed following a non-hierarchical and non-flexible vision. In this pa-
per, we propose a generic programming method and a modification of the MPI
runtime environment to make MPI applications topology aware. In contrary to
previous approaches, topology requirements for the application are given to the
grid scheduling system, which exposes the compatible allocated topology to the
application.

1 Introduction

Porting MPI applications on grids and getting acceptable performance is challenging.
However two clear user motivations push researchers to propose solutions: 1) The de-
facto standard for programming parallel machines is the Message Passing Interface
(MPI). One of the advantages of MPI is that it provides a single, well defined program-
ming paradigm, based on explicit message passing and collective communications. It is
interesting to consider an MPI for grids, since complex applications may use non trivial
communication schemes both inside and between clusters; 2) Because of their experi-
ence in parallel machines, many users wish to port their existing MPI applications, but
redeveloping large portions of their codes to fit new paradigms requires strong efforts.

Not all parallel applications will perform well on a grid, and in general optimizations
are required to reach acceptable performance. However, computation intensive applica-
tions following the master-worker or monte-carlo approaches are good candidates and
some of them have been ported and executed successfully on grids [1, 19, 4].

In this paper, we investigate the issue of porting more complex MPI applications on
grids. More specifically, we consider applications involving some collectives commu-
nications. In order to port complex MPI applications on grids, several issues have to
be addressed. In [8], we already addressed the problem of designing an efficient MPI
on grids and enabling transparent inter-cluster communications. However, with this

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 466–477, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MPI Applications on Grids: A Topology Aware Approach 467

framework, MPI applications cannot take full advantage of the grid performance. In-
deed, the communication pattern does not differentiate communications between nodes
inside a cluster and remote nodes. As a consequence, the application may continuously
communicate between clusters, with a significant impact on performances.

The difficulty of porting complex MPI applications on grids comes from 1) the dif-
ference between MPI programs organization and grid structures and 2) the static orga-
nization of existing MPI programs that does not fit with the diversity of grid structures.
Cluster of clusters grids are intrinsically hierarchical structures where several parallel
machines are connected through a long-distance interconnection network. In contrary,
MPI standard does not currently provide any specific information on the topology, so
almost all MPI applications have been developed following a non-hierarchical vision. In
addition all grids differ in their topology and there is no mechanism in MPI to self-adapt
the topology of the application to the one of the execution environment.

Previous works addressed the lack of topology awareness in MPI by exposing the
topology of the available resources to the application. However, this approach requires
a strong effort from the application to adapt itself to potentially any kind of resources
that can be available at the time of submission, and is a key lock to building topology-
aware MPI applications for grids. Such applications need to have a generic computa-
tion pattern that can adapt itself to any communication pattern, and such applications
are very difficult (and sometimes impossible) to program. Our approach to address this
problem is to combine: a) a modification of the MPI program organization to make it
hierarchical and flexible b) a description by the programmer of its hierarchical commu-
nication pattern through a virtual topology and c) a mapping of the virtual topology to
the physical one as provided by the grid reservation and scheduling service.

Typically in our approach, the application developer adapts the application code in a
hierarchical approach and describes its ”virtual” computation and communication pat-
terns in a companion file. The application developer specifies in the companion file
properties for specific processes and network requirements between nodes. To execute
the application, the user submits it to the grid by providing as usual the binary, its
parameters and data files, the number of desired nodes, and the companion file. We as-
sume that the grid reservation and scheduling system assigns physical resources to the
application according to a best effort matching with the user requirements and the ap-
plication’s companion file. This assumption corresponds to the architecture proposed in
the QosCosGrid project, and scheduling techniques to allocate resources corresponding
to the developer and user requirements are described in [7, 16, 17]. The modified MPI
system adapts the collective operations to optimize communications on the physical
topology, and exposes the virtual topology required by the developer to the application,
thus optimizing communication patterns to the hierarchical topology. Since communi-
cation costs can vary by orders of magnitude between two consecutive levels of topol-
ogy hierarchy, performances can greatly benefit from collective operations that adapt
their point-to-point communications pattern to the physical topology.

We present 4 main contributions to expose our approach in details and demonstrate
its effectiveness: 1) the method to make MPI applications adapt to grids’ hierarchy; 2)
the presentation and performance evaluation of a grid-enabled MPI middleware, featur-
ing topology awareness; 3) the evaluation of adapted collective operations that fit with

468 C. Coti, T. Herault, and F. Cappello

the topology of the grid using topology information, namely Broadcast, Reduce, Gather,
Allgather and Barrier; 4) the description and evaluation of a grid-enabled application
that takes advantage of our approach.

2 Related Work

A few approaches tried to tackle the topology adaptation problem (e.g. PACX-MPI and
MPICH-G [10, 14]) by publishing a topology description to the application at runtime.
The Globus Toolkit (GT) [9] is a set of software that aims to provide tools for an efficient
use of grids. MPICH [11] has been extended to take advantage of these features [14]
and make an intensive use of the available resources for MPI applications. MPICH-
G2 introduced the concept of colors to describe the available topology. It is limited to
at most four levels, that MPICH-G2 calls: WAN, LAN, system area and, if available,
vendor MPI. Those four levels are usually enough to cover most use-cases. However,
one can expect finer-grain topology information and more flexibility for large-scale
grid systems. These approaches expose the physical topology for the application, which
has to adapt by itself to the topology: this is the major difference with our approach.
Practical experiments demonstrated that it is a difficult task to compute an efficient
communication scheme without prior knowledge on the topology: the application must
be written in a completely self-adaptive way.

Used along with Globus, Condor-G uses a technique called gliding-in [21] to run
Condor jobs on a pool of nodes spanning several administrative domains. This way, a
pool of Condor machines is made of the aggregation of those remote resources, the per-
sonal matchmaker and the user’s Condor-G agent. This technique can be a solution for
executing master-worker applications on a grid, but most non grid-specific applications
are written in MPI and cannot be executed with Condor. Moreover, global operations
like broadcasts and reductions cannot be done with Condor.

Collective operations have been studied widely and extensively in the last decades.
However, as pointed out in [20] proposed strategies are optimal in homogeneous envi-
ronments, and most often with a power-of-two number of processes. Their performance
are drastically harmed in the heterogeneous, general case of number of nodes.

Topology-discovery features in Globus have been used to implement a topology-
aware hierarchical broadcast algorithm in MPICH-G2 [13]. However, complex appli-
cations require a larger diversity of collective operations, including reductions, barrier,
and sometimes all-to-all communications.

Grid-MPI [18] provides some optimized collective operations. The AllReduce algo-
rithm is based on the works presented in [20]. The broadcast algorithm is based on [2].
Collective operations are optimized to make an intensive use of inter-cluster bandwidth,
with the assumption that inter-cluster communications have access to a higher band-
width than intra-cluster. However, 1) this is not always a valid assumption and 2) clus-
ter of clusters grid have a large diversity of topology and results presented in [18] only
concern 2 clusters.

Previous studies on hierarchical collective operations like [6] create a new algorithm
for the whole operation. Our approach tries to make use of legacy algorithms whenever
possible, i.e, in homogeneous sub-sets of the system (e.g., a cluster). MagPIe [15] is

MPI Applications on Grids: A Topology Aware Approach 469

an extension of MPICH for aggregations of clusters. MagPIe considers as a cluster any
single parallel machine, which can be a network of workstations, SMPs or MPPs. It
provides a set of collective operations based on a two-level hierarchy, using a flat tree
for all the inter-cluster communications. This requirement strongly limits the scope of
hardware configurations. Moreover, a flat tree may not always be the most efficient
algorithm for upper-level communications.

3 Architecture

In this section we present how application developers can program their applications in
order to make them fit to grids. We assume two kinds of topologies: the virtual topol-
ogy, seen by the programmer, and the physical topology, returned by the scheduler.
The virtual topology connects MPI processes or groups of processes in a hierarchical
structure; the physical topology connects resources (core, CPU, cluster, MPP...) follow-
ing a hierarchical structure. We consider that a physical topology is compatible with
a virtual topology if the general structure of both topologies are matching and if the
physical topology is not more scattered than the virtual topology (the physical topology
preserves the geographical locality of inter-process communications).

For example, if the developer requested three groups for tightly coupled processes,
the scheduler can map them on three clusters, or two clusters only: both physical topolo-
gies meet the requirements of the virtual topology, since the geographical locality is
preserved.

We assume that the programmer designed the virtual topology without considering
a specific physical topology. However, when the programmer developed an application,
he can define requirements on the physical topology through parametrization of the
virtual topology. Parameters in the virtual topology are link bandwidth, link latency,
available memory... (these requirements are optional). The requirements are provided
to the grid meta-scheduler, that tries to allocate nodes on a physical topology matching
these requirements; the allocation algorithm and a topology aware Grid meta-scheduler
are described in details in [17] and are not the object of this paper.

Besides, we have developped new collective operations in the MPI library that adapt
themselves to the physical topology returned by the scheduler. If we consider the afore-
mentioned example, global collective operations will be optimized for two subsets of
processes instead of three subsets of processes as required by the virtual topology. The
current version of the adaptation algorithm assumes that geographical locality always
reduces the collective communication execution time.

Our collective operations use the best implementation of collective operations avail-
able for every computing resource in the hierarchical structure. Compared to collec-
tive operations for homogeneous environments discussed in Section 2, our collective
operations adapt themselves to the physical topology.

To submit and execute a topology-aware application, the developer writes his appli-
cation and describes processes or process groups and communications in a companion
file called jobProfile. The jobProfile is submitted to the scheduler, that provides the list
of allocated machines to the launcher. The application is deployed and started on this set
of machines. The MPI runtime environment obtains the physical and virtual topologies

470 C. Coti, T. Herault, and F. Cappello

Vanilla Ray2mesh:
Broadcasts
if I am master:

while(chunk)
distribute among workers
receive results from workers

else /* worker */
upon receive chunk:

calculate ray tracing
send results to the master

endif
Broadcast
AllToAll
Output local result

Hierarchical Ray2mesh:
Broadcasts
if I am central master:

while(chunk)
distribute among bosses
receive results from bosses

else
if I am a boss:

upon receive chunk:
while(chunk)
distribute among workers
receive results from workers

send results to the central mas-
ter or my upper-level boss

else /* worker */
upon receive chunk:

calculate ray tracing
send results to the boss

endif
endif
Broadcast
AllToAll
Output local result

Fig. 1. Ray2mesh, vanilla and hierarchical code versions

and transmits them to the MPI library (for collectives communications) and the appli-
cation in order to identify the location of every MPI process in the virtual topology.

The following three subsections explain in more details how each step of the
adaptation are done. Subsection 3.1 describes a specifically adapted application,
Subsection 3.2 describes how the topology is adapted to the application’s requirements
in terms of resources and communications, and Subsection 3.3 describes a set of collec-
tive operations designed to fit on the physical topology and knowledge about proximity
between processes.

3.1 Grid-Enabled Application

The master-worker approach is used for a very wide range of parallel applications. Its
major drawback is the single point of stress (master) creating a bottleneck. We consider
the class of master-worker applications where parallel computations are done from one
or several large partitionnable data sets, initially located on the central master. Parti-
tions of the data set(s), that we call ”chunks” are distributed to the workers during the
execution, following a scheduling algorithm.

For these applications, after computing a chunk, a worker sends its result to the
master and waits for a new chunk. Data prefetch could be used as an optimization
to overlap communication and computation in order to reduce worker idle time [3].
However this approach requires strong modifications of the application, for both master
and worker code and compromises the utilisation of external libraries in the application.

In a hierarchical communication and computation pattern, we introduce local masters
in the virtual topology that can be used to relay data from the central master to the
workers, and results from the workers to the central master. In the following, we call
such a local master a boss. Bosses must be used at every intermediate level of the
topology. A boss receives data from its upper-level boss, and sends it down to its lower-
level boss or worker. Bosses are used in the virtual topology to reduce the number of
cross-level communications and to foster locality of communications.

We have applied our hierarchical execution approach to Ray2mesh [12], a geophysics
application that traces seismic rays along a given mesh containing a geographic area
description. It uses the Snell-Descartes law in spherical geometry to propagate a wave

MPI Applications on Grids: A Topology Aware Approach 471

front from a source (earthquake epicenter) to a receiver (seismograph). In the following,
we consider the master-worker implementation of Ray2mesh.

The execution of Ray2mesh can be split up into three phases (see Figure 1). The
first one consists of successive collective operations to distribute information to the
computation nodes. The second phase is the master-worker computation itself. The third
phase is made of collective operations to give information from all workers to all others,
before they can output their part of the final result.

We use the topological information to build a multi-level implementation of the three
phases involved in Ray2mesh to make the communication pattern fit with the typically
hierarchical topology of the grid.

This approach provides the same attractive properties as a traditional master-worker
application, with any number of levels of hierarchy. Hence, it performs the same load-
balancing, not only among the workers, but also among the bosses. This property al-
lows suiting to different sizes of clusters and different computation speeds. Moreover,
it allows each boss handling fewer data requests than in an organization with a unique
master.

3.2 Hardware Resources and Application Matching

The communications of an application follow a certain pattern, which involve some
requirements to be fulfilled by the physical topology. For example, tightly-coupled pro-
cesses will require low-latency network links, whereas some processes that do not com-
municate often with each other but need to transfer large amounts of data will have
bandwidth requirements. Those requirements can be described in a JobProfile. The
jobProfile is submitted to the grid scheduler, that tries to allocate resources with respect
to the requirements by mapping the requested virtual topology on available resources
whose characteristics match as tightly as possible the ones requested in the JobProfile.

The JobProfile describes the process groups involved in the computation, in particu-
lar by specifying the number of processes in each group and requirements on inter- and
intra-cluster communication performances. Some parameters are left blank, and filled
by the meta-scheduler with the characteristics of the obtained mapping.

The groupId defined in the jobProfile will be passed to the application at runtime,
along with the virtual topology of the resources that were allocated to the job. Using
groupIds, it is simple to determine during the initialization of the application which
group a given process belongs to, and which processes belong to a given group. The
virtual topology description is passed like it was done for MPICH-G2 (cf Section 2),
using an array of colors. Basically, two processes having the same color at a same
hierarchy depth belong to the same group. In MPICH-G2, the depth of a hierarchy is
limited to four. Our virtual topologies does not have this limitation.

3.3 Adapted Collective Operations

Collective operations are one of the major features of MPI. A study conducted at the
Stuttgart High-Performance Computing Center [20] showed that on their Cray T3E,
they represent 45% of the overall time spent in MPI routines.

To the best of our knowledge, no equivalent study was ever done on a produc-
tion grid during such a long period. However, one can expect non-topology-aware

472 C. Coti, T. Herault, and F. Cappello

collective communications to be even more time-consuming (with respect to all the
other operations) on an heterogeneous platform.

As in other Grid-MPI work (cf Section 2), our MPI for grids features collective
communication patterns adapted to the physical topology in order to optimize them. In
the following paragraphs, we describe which collective operations have been modified
for topology-awareness and how they have been modified.

MPI Bcast Sending a message between two clusters takes significantly more time
than sending a message within a cluster. The latency for small synchronization mes-
sages, can be superior by several orders of magnitude, and the inter-cluster bandwidth
is shared between all the nodes communicating between clusters.

The broadcast has been modified for exploiting the hierarchy of the physical topol-
ogy. The root of the broadcast, if it belongs to the top-level master communicator, broad-
casts the message along this top-level communicator. Otherwise,the root process sends
the message to a top-level process which does exactly the same thing afterwards. Each
process then broadcasts the message along its “sub-masters” communicator, until the
lowest-level nodes are reached.

MPI Reduce Using associativity of the operator in the Reduce operation, it can be
made hierarchical as follows: each lowest level cluster performs a reduction towards
their master, and for each level until the top level is reached the masters perform a
reduction toward their level master.

MPI Gather A Gather algorithm can also be done in a hierarchical way: a root is
defined in each cluster and sub-cluster, and an optimized gather algorithm is used within
the lowest level of hierarchy, then for each upper level until the root is reached.

The executions among sub-masters gather buffers which are actually aggregations
of buffers. This aggregation minimizes the number of inter-cluster communications, for
the cost of only one trip time while making a better use of the inter-cluster bandwidth.

MPI Allgather aggregates data and makes the resulting buffer available on all the
nodes. It can be done in a hierarchical fashion by successive Allgather operations from
the bottom to the top of the hierarchy, followed by a hierarchical Bcast to propagate the re-
sulting buffer. MPI Barrier is similar to an MPI Allgather without propagating any data.

4 Experimental Evaluation

We modified the runtime environment and the MPI library of the QosCosGrid Open MPI
implementation presented in [8] to expose the virtual topology to the application. We also
implemented the collective operations described in Section 3.3 using MPI functions.

We conducted the experiments on two traditional platforms of high performance
computing: clusters of workstations with GigaEthernet network and computational
grids. These experiments were done on the experimental Grid’5000 [5] platform or
some of its components.

First, we measure the efficiency of topology-awarecollective operations, using micro-
benchmarks to isolate their performance. Then we measure the effects of hierarchy on a
master-worker data distribution pattern and the effects on the Ray2mesh application. In
the last section, we present a graph showing the respective contribution of the hierachical
programming and topology aware collective operations on the application performance.

MPI Applications on Grids: A Topology Aware Approach 473

4.1 Experimental Platform

Grid’5000 is a dedicated reconfigurable and controllable experimental platform featur-
ing 13 clusters, each with 58 to 342 PCs, inter-connected through Renater (the French
Educational and Research wide area Network). It gathers roughly 5,000 CPU cores fea-
turing four architectures (Itanium, Xeon, G5 and Opteron) distributed into 13 clusters
over 9 cities in France.

For the two families of measurement we conducted (cluster and grid), we used only
homogeneous clusters with AMD Opteron 248 (2 GHz/1MB L2 cache) bi-processors.
This includes 3 of the 13 clusters of Grid’5000: the 93-node cluster at Bordeaux, the
312-node cluster at Orsay, a 99-node cluster at Rennes. Nodes are interconnected by a
Gigabit Ethernet switch.

We also used QCG, a cluster of 4 multi-core-based nodes with dual-core Intel Pen-
tium D (2.8 GHz/2x1MB L2 cache) processors interconnected by a 100MB Ethernet
network.

All the nodes were booted under linux 2.6.18.3 on Grid’5000 and 2.6.22 on the
QCG cluster. The tests and benchmarks are compiled with GCC-4.0.3 (with flag -O3).
All tests are run in dedicated mode.

Inter-cluster throughput on Grid’5000 is 136.08 Mb/s and latency is 7.8 ms, whereas
intra-cluster throughput is 894.39 Mb/s and latency is 0.1 ms. On the QCG cluster,
shared-memory communication have a throughput of 3979.46 Mb/s and a latency of
0.02 ms, whereas TCP communications have a throughput of 89.61 Mb/s and a latency
of 0.1 ms.

4.2 Collective Operations

We ran collective operation benchmarks on 32 nodes across two clusters in Orsay and
Rennes (figures 2a-b). A configuration with two clusters is an extreme situation to eval-
uate our collective communications: a small and constant number of inter-cluster mes-
sages are sent by topology-aware communications, whereas O(log(p)) (where p is the
total number of nodes) inter-cluster messages are sent by standard collective operations.

We also conducted some experiments on the QCG cluster with 8 processes mapped
on each machine. Although this mapping oversubscribes the nodes (8 processes for 2
available slots), our benchmarks are not CPU-bound, and this configuration enhances
the stress on the network interface. Measurements with a profiling tool validated the
very low CPU usage during our benchmark runs.

We used the same measurement method as described in [14], using the barrier
described in Section 3.3 to synchronize time measurements.

Since we implemented our hierarchical collective operations in MPI, some pre-
treatment of the buffers may be useful. Messages are pre-cut and sent chunk after chunk.
Then it is possible to pipeline the successive stages of the hierarchical operation. It ap-
peared to be particularly useful when shared-memory communications were involved,
allowing fair system bus sharing.

Figures 2(a) and 2(b) picture comparisons between standard and hierarchical MPI -
Bcast and MPI Reduce on Grid’5000. Message pre-cutting appeared to be useful for
MPI Bcast, whereas it was useless for MPI Reduce, since big messages are already
split by the algorithm implemented in Open MPI.

474 C. Coti, T. Herault, and F. Cappello

 1

 10

 100

 1000
 1

28

 2
56

 5
12 1k 2k 4k 8k 16

k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M

T
im

e
(m

s)

Message size (B)

QCG_Bcast

Standard
Grid

(a) Broadcast (Grid’5000)

 0.1

 1

 10

 100

 1000

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k

32
k

64
k

12
8k

25
6k

51
2k

ti
m

e
(m

s)

message size (B)

QCG_Reduce

Standard
Grid

(b) Reduce (Grid’5000)

 100

 1000

 10000

 100000

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M

T
im

e
(m

s)

Message size (B)

QCG_Reduce

Standard
Grid

(c) Reduce (QCG)

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M 4M 8M

T
im

e
(m

s)

Message size (B)

QCG_Gather

Standard
Grid

(d) Gather (QCG)

Fig. 2. Comparison between standard and grid-enabled collective operations on a grid

One can see that, as expected, hierarchical MPI Bcast (Figure 2(a)) always performs
better than the standard implementation. Moreover, pre-cutting and pipelining permits
to avoid the performance step around the eager/rendez-vous mode transition.

When messages are large regarding communicator size, MPI Reduce (Figure 2(b))
in Open MPI is implemented using a pipeline mechanism. This mechanism allows com-
munication costs to be dominated by the high throughput of the pipeline rather than the
latency of a multi-steps tree-like structure. Hierarchy shortens the pipeline: then its la-
tency (i.e., time to load the pipeline) is smaller and it performs better on short messages.
But for large messages (beyond 100 kB), the higher throughput of a longer pipeline out-
performs the latency-reduction strategy. In this case, hierarchical communications are
not an appropriate approach, and a single flat pipeline performs better.

Figures 2(c) and 2(d) picture comparisons between standard and hierarchical MPI -
Reduce and MPI Gather on the QCG cluster. On a cluster of multi-cores, collective
operations over shared-memory outperform inter-machine TCP communications sig-
nificantly enough to have a negligible cost. Therefore, on a configuration including a
smaller number of physical nodes, inducing more shared-memory communications, our
hierarchical MPI Reduce performs better (Figure 2(c)).

4.3 Adapted Application

The execution phases of Ray2mesh are presented in Section 3.1. It is made of 3 phases:
two collective communication phases and a master-worker computation phase in be-
tween them. When the number of processes increases, one can expect the second phase
to be faster but the first and third phases to take more time, since more nodes are
involved in the collective communications.

MPI Applications on Grids: A Topology Aware Approach 475

of procs

(a) Scalability of Ray2mesh on a grid

 40

 60

 80

 100

 120

 140

 160

15 30 45 60 90 120

P
er

ce
nt

ag
e

of
 A

cc
el

er
at

io
n

w
.r

.t.
 V

an
ill

a
R

ay
2m

es
h

of nodes

Execution Time of Ray2mesh on a Grid

Grid Optimized Collectives
Topology Aware

Vanilla

(b) Relative acceleration of Ray2mesh, with
respect to the vanilla implementation

Fig. 3. Comparison of vanilla Ray2mesh with vanilla Ray2mesh using optimized collective com-
munications, and fully topology-aware Ray2mesh

Figure 3(a) presents the scalability of Ray2mesh under three configurations: stan-
dard (vanilla), using grid-adapted collective operations, and using a hierarchical master-
worker pattern and grid-adapted collective operations. Those three configurations
represent the three levels of adaptation of applications to the Grid. The standard de-
viation is lower than 1% for each point. The fourth line represents the values of the last
configuration, measured with the same number of computing elements as in the first
configuration, thus removing the local boss in the process count.

First of all, Ray2mesh scales remarkably well, even when some processes are located
on a remote cluster. When a large number of nodes are involved in the computation, col-
lective operations represent an important part of the overall execution time. We can
see the improvement obtained from grid-enabled collectives on the “grid-optimized
collectives” line in Figure 3(a). The performance gain for 180 processes is 9.5%.

Small-scale measurements show that the grid-enabled version of Ray2mesh does not
perform as well as the standard version. The reason is that several processes are used
to distribute the data (the bosses) instead of only one. For example, with 16 processes
distributed on three clusters, 15 processes will actually work for the computation in
a single-master master-worker application, whereas only 12 of them will contribute
to the computation on a multi-level (two-level) master-worker application. A dynamic
adaptation of the topology according to the number of involved node would select the
”non hierarchical” version for small numbers of nodes and would select the hierarchical
version when the number of nodes exceeds 30.

However, we ran processes on each of the available processors, regardless of their
role in the system. Bosses are mainly used for communications, whereas workers do
not communicate a lot (during the master-worker phase, they communicate with their
boss only). Therefore, a worker process can be run on the same slot as a boss without
competing for the same resources. For a given number of workers, as represented by the
“workers and master only” line in Figure 3(a), the three implementations show the same
performance for a small number of processes, and the grid-enabled implementations
are more scalable. The performance gain for 180 processes is 35% by adding only 3
dedicated nodes working exclusively as bosses.

476 C. Coti, T. Herault, and F. Cappello

The relative acceleration with respect to the vanilla implementation is represented
Figure 3(b). We can see that the application speed is never harmed by optimized collec-
tive operations and performs better on large scale, and a topology-aware application is
necessary to get a better speedup for large-scale application.

5 Conclusion

In this paper, we proposed a new topology-aware approach to port complex MPI appli-
cations on grid through a methodology to use MPI programming techniques on grids.
First we described a method to adapt master-worker patterns to grids’ hierarchical topol-
ogy. We used this method to implement a grid-enabled version of the Ray2mesh geo-
physics applications featuring a multi-level master-worker pattern and our hierarchical
collective operations. Then we proposed a way to describe the communication patterns
implemented in the application in order to match the application’s requirements with
the allocated physical topology. In the last part we presented a set of efficient collective
operations that organize their communications with respect to the physical topology in
order to minimize the number of high-latency communications.

Experiments showed the benefits of each part of this approach and their limitations.
In particular, experiments showed that using optimized collectives fitted to the phys-
ical topology of the grid induce a performance improvement. They also showed that
adapting the application itself can improve the performances even further.

We presented an extension of the runtime environment of an MPI implementation
targeting institutional grids to provide topology information to the application. These
features have been implemented in an MPI library for grids.

Acknowledgements. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, an initiative from the French Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https:// www.grid5000.fr), and founded by the QosCosGrid
European project (grant number: FP6-2005-IST-5 033883).

References

[1] Atanassov, E.I., Gurov, T.V., Karaivanova, A., Nedjalkov, M.: Monte carlo grid application
for electron transport. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2006. LNCS, vol. 3993, pp. 616–623. Springer, Heidelberg (2006)

[2] Barnett, M., Gupta, S., Payne, D.G., Shuler, L., van de Geijn, R., Watts, J.: Building a high-
performance collective communication library. In: Proc. of SC 1994, pp. 107–116. IEEE,
Los Alamitos (1994)

[3] Boutammine, S., Millot, D., Parrot, C.: An adaptive scheduling method for grid computing.
In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 188–
197. Springer, Heidelberg (2006)

[4] Branford, S., Sahin, C., Thandavan, A., Weihrauch, C., Alexandrov, V.N., Dimov, I.T.:
Monte carlo methods for matrix computations on the grid. Future Gener. Comput.
Syst. 24(6), 605–612 (2008)

MPI Applications on Grids: A Topology Aware Approach 477

[5] Cappello, F., Caron, E., Dayde, M., et al.: Grid’5000: A large scale and highly reconfig-
urable grid experimental testbed. In: Proc. The 6th Intl. Workshop on Grid Computing, pp.
99–106 (2005)

[6] Cappello, F., Fraigniaud, P., Mans, B., Rosenberg, A.L.: HiHCoHP: Toward a realistic com-
munication model for hierarchical hyperclusters of heterogeneous processors. In: Proc. of
IPDPS. IEEE, Los Alamitos (2001)

[7] Charlot, M., De Fabritis, G., Garcia de Lomana, A.L., Gomez-Garrido, A., Groen, D., et
al.: The QosCosGrid project. In: Ibergrid 2007 conference, Centro de Supercomputacion
de Galicia (2007)

[8] Coti, C., Herault, T., Peyronnet, S., Rezmerita, A., Cappello, F.: Grid services for MPI. In:
Proc. of CCGRID, pp. 417–424. IEEE, Los Alamitos (2008)

[9] Foster, I.T.: Globus toolkit version 4: Software for service-oriented systems. J. Comput.
Sci. Technol. 21(4), 513–520 (2006)

[10] Gabriel, E., Resch, M.M., Beisel, T., Keller, R.: Distributed computing in a heterogeneous
computing environment. In: Alexandrov, V.N., Dongarra, J. (eds.) PVM/MPI 1998. LNCS,
vol. 1497, pp. 180–187. Springer, Heidelberg (1998)

[11] Gropp, W., Lusk, E., Doss, N., Skjellum, A.: High-performance, portable implementation
of the MPI message passing interface standard. Parallel Computing 22(6), 789–828 (1996)

[12] Grunberg, M., Genaud, S., Mongenet, C.: Parallel seismic ray tracing in a global earth
model. In: Proc. of PDPTA, vol. 3, pp. 1151–1157. CSREA Press (2002)

[13] Karonis, N.T., de Supinski, B.R., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.: Exploiting
hierarchy in parallel computer networks to optimize collective operation performance. In:
Proc. of SPDP, pp. 377–386. IEEE, Los Alamitos (2000)

[14] Karonis, N.T., Toonen, B.R., Foster, I.T.: MPICH-G2: A grid-enabled implementation of
the message passing interface. In: CoRR, cs.DC/0206040 (2002)

[15] Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MAGPIE: MPI’s
collective communication operations for clustered wide area systems. In: Proc. of PPoPP.
ACM Sigplan, vol. 34.8, pp. 131–140. ACM Press, New York (1999)

[16] Kravtsov, V., Carmeli, D., Schuster, A., Yoshpa, B., Silberstein, M., Dubitzky, W.: Quasi-
opportunistic supercomputing in grids, hot topic paper. In: Proc. of HPDC (2007)

[17] Kravtsov, V., Swain, M., Dubin, U., Dubitzky, W., Schuster, A.: A fast and efficient al-
gorithm for topology-aware coallocation. In: Bubak, M., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 274–283. Springer, Heidel-
berg (2008)

[18] Matsuda, M., Kudoh, T., Kodama, Y., Takano, R., Ishikawa, Y.: TCP adaptation for MPI on
long-and-fat networks. In: Proc. of CLUSTER, pp. 1–10. IEEE, Los Alamitos (2005)

[19] Nascimento, P., Sena, C., da Silva, J., Vianna, D., Boeres, C., Rebello, V.: Managing the
execution of large scale mpi applications on computational grids. In: Proc. of SBAC-PAD,
pp. 69–76 (2005)

[20] Rabenseifner, R.: Optimization of collective reduction operations. In: Bubak, M., van Al-
bada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036, pp. 1–9.
Springer, Heidelberg (2004)

[21] Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In: Grid Computing: Making
the Global Infrastructure a Reality. John Wiley & Sons Inc., Chichester (2002)

	MPI Applications on Grids: A Topology Aware Approach
	Introduction
	Related Work
	Architecture
	Grid-Enabled Application
	Hardware Resources and Application Matching
	Adapted Collective Operations

	Experimental Evaluation
	Experimental Platform
	Collective Operations
	Adapted Application

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

