
H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 361–374, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A DHT Key-Value Storage System with Carrier Grade
Performance

Guangyu Shi1, Jian Chen1, Hao Gong1, Lingyuan Fan1, Haiqiang Xue2,
Qingming Lu1, and Liang Liang1

1 Huawei Technologies Co., Ltd
Shenzhen, 518129, China

{shiguangyu,jchen,haogong}@huawei.com
2 China Mobile Communications Co.

Beijing, 100053, China
xuehaiqiang@chinamobile.com

Abstract. The Peer-to-Peer (P2P) technology being widely adopted in today’s
both academic research and practical service providing, has many potential ad-
vantages and achieves a great success in Information Technology scope. Re-
cently some researchers have proposed that P2P inspired architecture also might
be one choice for the telecom network evolution. Most of such works adopted
structured P2P (DHT) as the basic solutions, but they seldom discussed how to
eliminate the huge gap between the telecom underlay performance requirement
and the performance of existed DHT which mainly originated from the Internet
applications. This paper presents the design and implementation of SandStone,
a DHT based key-value storage system with carrier grade performance, such as
good scalability, strong consistency and high reliability, which could be
deployed as the cornerstone in such new P2P inspired networking architectures.

Keywords: Peer-to-Peer, DHT, Telecom Network, Key-Value Storage.

1 Introduction

Reliability and efficiency at massive scale is one of the important challenges in tele-
com applications, even the slightest outage or congestion has significant financial
consequences and impacts customer experience. Although most of the current telecom
networks were strictly central server based, many researchers have proposed a new
networking architecture inspired by the P2P paradigm, in order to benefit from the
advantages of decentralization such as high scalability and cost-effectiveness.

In the last few years, a number of systems and prototypes have been proposed to
incorporate P2P technology into the field of telecommunications. For example,
P2PSIP [1] proposed a DHT based conversational signaling system. Reference [2]
and [3] presented two kinds of distributed IP Multimedia Subsystem (IMS) architec-
tures, utilizing the DHT as the basic register/lookup functional entity, contrasted
with central servers based on present IMS HSS/HLR. It’s evident that methodology
behind these works is to push P2P into the telecom underlay application, although
P2P technology emerged as an Internet overlay technology.

362 G. Shi et al.

On the other hand, P2P Distributed Storage Systems have been developed by leaps
and bounds in recent years; typical examples include GFS [4], OceanStore [5], Pond
[6], BitVault [7], Ceph [8], Dynamo [9], and WheelFS [10]. In the principles of these
systems, the authors have a unified view that structured P2P or DHT should be used
as the basic key-value storage system infrastructure. Nevertheless, in comparison with
the Internet overlay applications, apparently telecom applications have a much stricter
performance requirement for real-time response, reliability and consistency. Unfortu-
nately, so far as we know, none of them has seriously considered the question that
how to enhance DHT technology to face such performance requirements challenges.

In this paper, we present the design and implementation of SandStone, a highly de-
centralized, loosely coupled, service oriented storage system architecture consisting of
thousands of PC peers. The name “SandStone” stands for transforming the enormous
sand-like tiny and common PCs’ capability into an invincible infrastructure corner-
stone of distributed storage systems, to provide a “Carrier Grade Storage” experience.
It means, the system is tested and engineered to meet or exceed “five nines” 99.999%
high availability standards, and provide very fast fault recovery through redundancy.

The rest of this paper is organized as follows. Section 2 describes background re-
quirements of SandStone. Section 3 elaborates the detail design and section 4 presents
the implementation. Section 5 details the experiments and insights gained by running
SandStone in production. And we summarize the conclusion in Section 6.

2 Background

2.1 Scenario

In telecom network, there are a large number of subscriber profile data in a central-
ized way to store, such as IMPI/IMPU (IP Multimedia Private Identity/Public
Identity) in IMS and CDR (Call Detail Record) in BSS (Billing Support System).
Originally, SandStone was designed to implement basic IMS HSS (Home Subscriber
Server) functional entity in a decentralized and self-organized way. As works going
on, we found that SandStone holds much more potential for being used as a key-value
storage system in most of the P2P telecom application scenarios referred in section 1.
For the sake of clarity, we’ll choose the IMS HSS scenario as the application context.

According to 3GPP [11] specifications, HSS is the repository hosting the subscrip-
tion related user data to support the other network entities such as CSCF (Call Session
Control Function) to handle calls or sessions. Nowadays all the existing IMS HSS are
centralized based. Typically it is hosted on expensive ATCA (Advanced Telecom
Computing Architecture) or commercial super servers demanding a high robustness.
The current HSS architecture works well on the deployment. Nevertheless, there are
still some drawbacks other than the huge CAPEX (Capital Expenditure) and OPEX
(Operating Expense). Firstly, central server is not a solution scaling well. Typically
commercial HSSes are fully equipped nodes that can handle and store the data per-
taining to a give maximum number of subscribers. Should the number of subscribers
exceed the maximum limit, the operator is forced to deploy new HSS units that can
handle the new subscriber data. Another question is the congested and overloaded
servers can not be mitigated even there are spare resource somewhere else in the net-
work. These drawbacks seriously hindered the development and deployment of IMS.

 A DHT Key-Value Storage System with Carrier Grade Performance 363

It is necessary to make some evolutions to adapt to the development trend in current
network architectures. Although the distributed DHT based storage system seems
quite capable to deal with these problems, the only doubt is whether it can achieve the
same carrier grade performance goals as well as the central server based solutions.

2.2 Carrier Grade Objectives

According to current performance of HSS, SandStone for carrier grade of services has
the following requirements:

Cost performance: Considering the saving of CAPEX and OPEX, SandStone is im-
plemented on top of an infrastructure of tens of thousands of common computers
located in many datacenters around the country. These common computers are very
easy to maintain, add and replace than current ATCA servers.

Application Model: simple read and write operations to a data item that is uniquely
identified by a key in SandStone. Every one million user corresponds to 1000 read
and 100 write requests per second according to current application model of HSS. In
other words, each peer in SandStone needs to support 10 read and 1 write requests per
second at least in normal application model.

Scalability: the scalability in a self organized way, SandStone should be easily
scaled up to handle 1 billion subscriber data. According to current HSS architecture,
SandStone targets applications that need to store subscriber data that are relatively
small. Each subscriber data should have a profile with 128K bytes, and tens of index
mappings at the size of 128 bytes.

Reliability: Reliability is one of the most important requirements because even the
slightest outage and congestion has significant financial consequences and impacts
customers’ experience. There are always a small but significant number of hosts
that are failing at any given time. As such SandStone needs to be constructed in a
manner that treats failure handling as the normal case without impacting availability
or performance. The reliability objective is specified as “five nines” in telecom
scopes.

Efficiency: For the best customers’ quality of experience, any client operation should
get the final response in 300 milliseconds, so as to limit the DHT lookup hops must
be little with the presumption that SandStone will be deployed in a private network
assuring 50 milliseconds is the maximum latency for any host-to-host pairs.

2.3 Failure Models

In a distributed system, the peer failure is a very common phenomenon. Peer’s and
network’s failure models have an essential impact on the distributed storage systems,
but this topic was rarely mentioned in above P2P inspired telecom research works.

We consider three failure models, including average failure (AF) and simultaneous
failure (SBF1 and SBF2), respectively represents independent single computer fault,
site/rack failure and inaccessible region due to IP backbone network break down.

Choosing exponential life distribution for a computer (f(t)=λe-λt), we can get
the failure rate as λ(t) =1/MTBF (Mean time between failure). From China present

364 G. Shi et al.

mandatory standard, the personal common computer must have a MTBF no less than
4000 hours. We choose 1000 hours for the safe margin, this means, each computer
has the probability of 0.001 to failure in one hour. Taking Npc as the number of
total computers in the DHT overlay network, then AF model will result in Npc/1000
computers failure in every hour.

The site/rack failure, SBF1, is usually caused by power system blackouts or
other unknown reasons in a site. It happens quite rarely in a telecom scene. We still
choose exponential distribution to model it, with 20000 as the MTBF. In the actual
deployment, it’s up to 50 hosts in a site/rack, so SBF1 exhibits the scenario that 50
computers will get out of service simultaneously in each period of 20000*50/Npc
hours.

Finally, it is hard to estimate the probability distribution for SBF2. For example,
maybe the backbones between regions are being destroyed by unexpected tornados or
earthquakes. We transformed it into a design requirement; SandStone has to sustain
one of the largest regions inaccessible. The “largest” means it may contain all com-
puters of a certain region. After overcome these failure models above, this distributed
storage system truly could be regarded as a carrier grade system.

3 The Design of SandStone

In this paper, we presented SandStone, a novel DHT key-value storage system with
carrier grade performance which could be applied to telecom network architecture
such as IMS. The main contributions of SandStone are as follows: a multi-layer DHT
architecture that decreases the traffic overload in backbone network; a enhanced one-
hop routing table that achieves rapid positioning of data resources; a data partition
mechanism that provides N:N resources backup and parallel recovery; an adaptive
write/read strategy and synchronization mechanism that guarantee high data consis-
tency, and a high-performance disaster recovery strategy that maintains most of the
resources available and reliable even when a certain region was disconnected. In the
following, we describe the major design considerations of SandStone.

3.1 Architecture Overview

Fig.1 depicts the architecture of a SandStone peer. The SandStone is composed of
four main components: data storage module, key based routing module, communica-
tion module and configurations & statistics module. Intercommunication between
peers is completed by the bottom layer communication module.

Middle layer key based routing, KBR, refers to find the best suitable host for a key
as the input, also include peers’ ID allocation, DHT routing protocol, peers failure
detecting and etc. In this layer, we implemented a novel ID allocation mechanism for
traffic localization in section 3.2, and a one-hop DHT enhancement in section 3.3.

The top layer Data storage module takes charge of storage and management of sub-
scriber data, include data storage, data restoring, data consistency verification and etc.
Here we came up with a unique and practical replica placement strategy in section 3.4,
and the enforced strong consistency strategy in section 3.5.

 A DHT Key-Value Storage System with Carrier Grade Performance 365

 Fig. 1. The architecture of a SandStone peer Fig. 2. The ID assignment

Furthermore, configurations & statistics module takes charge of managing and
configuration the other layer modules. In addition, the simulation adaptor is introduced
to let SandStone can be switched seamlessly between the simulation and realistic
environment.

3.2 Traffic Localization

One of the key design requirements for SandStone is that it must make the traffic
localization as far as possible. Recent studies [12, 13] have shown that a large volume
of inter-domain redundant traffic by P2P mismatch problem already became the seri-
ous problem for ISPs. Due to the complexity of distributed networks, a novel traffic
localization technique can not only consider the reduction of application response
time but also decrease the backbone network overhead caused by inter-domain traffic.

Aiming at this goal, we have to answer two questions: (1) how to let peers carry
region indication; (2) how to impel the data operations to exhibit a localized pattern.

First question, clearly, peer ID is an ideal place to embed regional identifiers such
as province or city information. Most of solutions proposed to use a prefix for that,
but such an ID assignment will result in severe load unbalance. SandStone use a Strip
Segmentation solution as depicted in Fig.2. At first it divides the whole hash value
space into N strips equally, and then it divides each strip into M striplets. M is the
number of regions, and N can be user-defined, such as 1000. Notice that all the stri-
plets at the same position of each strip constitutes the ID ranges for one region, peers
belong to that region can randomly choose its ID within those intersected ranges. The
Strip Segmentation can be regarded as a compromise to greatly mitigate the unbal-
ance resulted by prefix solutions. This rule is known to every SandStone peer, thus it
will be able to calculate the geographical region of any peer according to its ID.

For the second question, in the existing telecom network, subscriber data always
carry the corresponding region information, such as subscriber attribution informa-
tion, subscriber roaming information and etc. Utilized above characteristics, Sand-
Stone constructs a unique key from a subscriber data by using consistent hashing and
with piggybacked its region information. Key k is assigned to the first peer whose
identifier is equal to or follows k in the same region space. Every SandStone peer
joins in the globe DHT and a logical region DHT at the same time, as shown in Fig.3.

Data Storage
Parallel Recovery

Replica Replacement Strategy

User Index Consistency

User Data

Key Based Routing
ID Management DHT Protocol Simulator

Communication
TCP Simulator UDP

C
on

fi
gu

ra
ti

on
s

&
 S

ta
ti

st
ic

s

Incoming & Outcoming Msg Queues

Incoming & Outcoming Msg Queues

366 G. Shi et al.

 Fig. 3. The two layered DHT Fig. 4. The replica placement

Globe DHT and logical region DHTs are maintained by same KBR routing mecha-
nisms. When a peer requests for a desired subscriber data, the default lookup strategy
tries to search in the same region DHT as the requester’s, then turn to the globe DHT if
not found in region DHT. This simple design grasps some essence of the present user
calling model, in which intra-region call attempts constitutes a major proportion, 70%
for example. Because intra-region call/session handling related DHT operations will
not bother the inter-region links anymore, it can be summarized that SandStone can
achieve the same performance as traditional HSS in the aspect of traffic localization.

3.3 KBR Routing with One Hop Enhancement

In telecom networks, SandStone is built for latency sensitive applications that require
at least 99.999% of read and write operations to be performed within 300 millisec-
onds. To meet these stringent latency requirements, it was imperative for us to avoid
routing requests through multiple peers (which is the typical design adopted by sev-
eral DHT systems such as Chord [14]). This is because multi-hop routing will bring
on variability in response delay, increasing the latency at higher percentiles.

In order to meet the latency demand, SandStone can be characterized as a one-hop
DHT, where each peer maintains enough routing information locally to route a
request to the appropriate peer directly.

All SandStone peers belong to different regions form a globe ring topology just
like Chord. In order to provide more efficient application response time, except the
existing finger table router mechanism in Chord, SandStone makes a further step, to
set up an extra One-hop Routing Table which include whole peers’ router and state
information for the one hop searching. One-hop Routing Table contains all the peers’
router information in the DHT. Apparently the key question is that how to maintain
the One-hop Routing Table freshness in every peer without too much resource
consumption.

This is unrealistic that each peer maintains a One-hop Routing Table only by its
self-organization mechanism on this large scale of network environment. This disor-
der organization and management method will cause a huge bandwidth overhead and
routing table update latency. So there must be a number of special peers to play the
role in unified managing and informing routing information. We will refer to these
special peers which take charge of maintain routing information as SPM (Super Peer
Maintenance).

Region Region

Region

Globe

Region DHT D

 A DHT Key-Value Storage System with Carrier Grade Performance 367

There is at least one SPM node in certain region. All peers belong to this region
must register to the local SPM when they joining into the SandStone system. The
local SPM takes charge of peers in this region. SandStone failure detection mecha-
nism uses a simple ping-style protocol that enables those peers in the system to learn
about the arrival or departure of their neighbor peers. When joining or leaving the
system, the peer’s state change will be detected by its neighbor peer. And then the
neighbor peer will inform local SPM this alternation information. A gossip-based
protocol propagates peer alternation information and maintains a strongly consistent
view of One-hop Routing Table between SPMs belongs to different regions. Finally,
each SPM forward this notification in a broadcasting way to all peers which are lo-
cated at its management region.

The advantage of SPM is that the routing information can be forwarded to all peers
in entire system by a unified and effective fashion. It also decreases the traffic over-
head in backbone network because one routing information message only transfers
once in backbone links. It is worth mentioning that SPM nodes are only involved in
routing table updating and managing in SandStone system. They don’t deal with spe-
cific application requests so that they will not be the bottlenecks of the performance
even with the increasing of application requests.

3.4 Replica Placement

To achieve high availability and durability, SandStone chooses the replica-based
scheme that replicates the subscriber data on multiple peers. The replica placement
policy serves two purposes: maximize data reliability and availability, and maximize
network bandwidth utilization. For both, it is not enough to spread replicas across
computers, which only guards against computer failures and fully utilizes each ma-
chine’s network bandwidth. We must also spread data replicas across regions. This
ensures that some replicas of a subscriber data will survive and remain available even
if backbone network of a region is damaged in SBF2 scenario.

How to parallel recovery from the corresponding nodes is another important issue
in replica mechanism of distributed storage system. BitVault and many related re-
search works argued to spread the replicas randomly across the whole overlay, so as
to make parallel recovery feasible. The drawback is that each peer must “remember” a
long list of other peers hosting backups for its subscriber data, so make it not so scal-
ability and reliability under churn. As shown in Fig.4, Dynamo still chose the original
method to let the coordinator to replicate data at the N-1 clockwise successor nodes in
the ring, N usually be 3. For a recovering operation, it is inefficient that node can only
download data from the other corresponding N-1 nodes.

So in SandStone, we decided to choose three replicas as default R, represent the num-
ber of replicas for one subscriber data. Among the three replicas, the first would be stored
in a peer of local region according to DHT key-value fundament, the second replica
should be stored in a peer of different site but in same region, and the third would be
maintained in the different region peer. This replicas’ benefit is that not only improved
traffic engineering based on specific application model (70% of applications are intra-
region data operations), but also achieved good disaster recovery by out-regions.

At this time, new problems have emerged that how are replica locations selected?
In SandStone, the backup data is stored in a certain segmentation rule so that it is no

368 G. Shi et al.

need to remember the location of other replication data for any peers. To explain the
replica placement, we need firstly define the ideal recovery factor L, as how many
candidates should be used as the recovery source. Each peer calculates different off-
sets according to various data in its L striplet position. The keys of data are mapped to
distinct strips after added different offsets, and then construct the backup keys of
replica data. Finally, the replica data will be stored in different backup peers accord-
ing to key-value principle and its backup key. Fig.4 depicts that a SandStone peer (red
one) replicates its data partitions to 6 different peers, with L=3 and R=3. When red
one recovering, it can pull the replication data from other 6 peers simultaneously. In
this case, every peer only need to allocate one sixth space as the backup operation
occupied for the failed peer, it’s another benefit.

3.5 Consistency Strategy

To keep multiple replicas consistent is a difficult but inevitable task. Although data
was partitioned, SandStone provides optimized eventual consistency, which allows
for updates and amendments to be propagated to all replicas asynchronously.

Based on our specific application model, SandStone modifies the traditional “quo-
rum” technique as its consistency strategy. For different peer failure modes, the read
and write operation policies are defined as follows.

(1)When there is no peer fail, according to our business mode that read operation is
more than write operation (read is 10 times of write), SandStone implements W=3,
R=1 strategy. In this case, the data must be successfully updated in 3 peers simul-
taneously; otherwise write operation returns fail and peers has been updated roll
back the data. With respect to read operation, SandStone try to fetch main replica-
tion firstly, if it is ok, then return the data to application client, otherwise it try to
fetch local backup replication and remote backup replication in sequence. Only all
three operations failed, this read operation return fails;

(2)When there are some peers fails, considering there is a trade-off between availability
and consistency, SandStone implements an adaptive write policy for different data
operation type. The “delete” operation still enforces of W=3 strategy; the “add” op-
eration enforces of W>=2 strategy, and the “modify” operation enforces of W>=1
strategy. So each operation has a minimal acceptable number X (for de-
lete/add/modify operation, the X is 3/2/1 respectively). Assuming, for one given
data, Y is the number of current available peers which are responsible for storing
three copies of the data. If Y>=X, then W=Y strategy is enforced; otherwise this data
operation return fail. With respect to read operation, R=1 strategy is still enforced.

(3)When a fail peer comes back and under restoring process which synchronizes data
from corresponding peers, the read operation will be blocked by this peer and
return fail.

(4)If a peer joins, the data which the new peer is responsible for storing need to be moved
from successor node. After that the incremental data restore process will be triggered
and the corresponding data will be transmitted to the new arrived peer. On the other
hand, the read operation on this peer will be blocked until the restoring process fin-
ished. If a peer leaves, the successor node will perform incremental data restore proc-
ess for the new incremental key range space. Then the read operation within the
incremental key range on this peer will be blocked until the restoring process finished.

 A DHT Key-Value Storage System with Carrier Grade Performance 369

In the aspect of data version, with the introduction of NTP servers, SandStone uses
timestamp as version tag in order to capture causality between different versions of
the same data. One can determine which version is the latest one by examine their
timestamps. If the version of same data in corresponding peer conflict, then the older
one will be overwritten and updated.

Base on consistency strategy described above, SandStone provides eventual
consistency guarantee which has been proved in a wide range of experiments.

4 Implementation

We implemented SandStone in C++, atop the ACE [15] (Adaptive Communication
Environment) toolkit which provides a rich set of reusable C++ wrapper facades and
framework components that perform common communication software tasks across a
range of OS platforms. In the choice of the storage engines for SandStone, we have
two kinds of options. One is an open source database MySQL [16] which is easy to
development and integration. On the other hand, we also implemented a simplified
memory database MDB to improve the efficiency of data access.

We replaced the existing HSS module by our SandStone in IMS system. The archi-
tecture of IMS over SandStone is shown in Fig.5. A-CSCF is combined by P-CSCF,
I-CSCF and S-CSCF for the flat structure design. Toward A-CSCF module, it doesn’t
need to know either HSS or SandStone is bottom subscriber database. The A-CSCF
module access SandStone peers through existing IMS Cx interface and lookups the
subscriber data in whole DHT network. When SandStone peers found the target data
successfully, it returns the data to A-CSCF module.

 Fig. 5. The architecture of IMS over SandStone Fig. 6. The topology of SandStone

Furthermore, in order to simulate the various scenarios and the business modes for
evaluating the performance of SandStone, we implemented two auxiliary testing tools
TT (Testing Tool) and PTT (Performance Testing Tool) in addition. TT is a compre-
hensive test and management tool which can control the behavior of peers, trigger
various peers failure model, and monitor the state of whole peers such as their routing
table information. PTT is another test tool for performance evaluation. For simulating
the CSCF module, it can send various application requirement packets by introducing
different business scene model.

370 G. Shi et al.

5 Experiments

In the process of building and deploying SandStone, we have experienced a variety of
issues, some operational and technical. We built a SandStone prototype of 3000 peers
located in three regions separately, each of which is a commodity PC with a 2.2GHz
Core2 CPU and 2GB memory. The operating system on each peer is SUSE9 sp4,
running the Linux 2.6.5-7.308 kernel. We use two experimental network environ-
ments to measure our system. The first is that these computers are connected with a
series of Huawei Quidway S3500 1000Mb Ethernet switches. The second one intro-
duces a Shunra Virtual Enterprise [17] to simulate a wide variety of network impair-
ments, exactly as if SandStone were running in a real production environment. The
topology is shown in Fig.6. Unless otherwise specified, the experiments lasted 24
hours.

5.1 Load Balance

In order to determine whether a distributed storage system stores data rationality and
effectively, we first measure data load distribution in SandStone. We randomly gener-
ated 10 million subscriber data according to user registered statistics by China Mo-
bile, and put them into the 3000 peers based on DHT key-value rule. Finally, we
made a statistic for distribution of these data in 3000 peers.

9000 9200 9400 9600 9800 10000 10200 10400 10600 10800 11000
0

200

400

600

800

1000

P
ee

r
Lo

ad
 D

is
tr

ib
ut

io
n

Subscriber Data Number

 Peer Number
 Gaussian Fit

0 4 8 12 16 20
0

40000

80000

120000

In
te

r-
R

eg
io

n
B

an
dw

id
th

 C
on

su
m

pt
io

n
(M

b)

Time (hours)

 Restore Application

 Fig. 7. Load balance Fig. 8. The inter-region bandwidth consumption

From the Fig.7, through the optimization of strip segmentation arithmetic and ID
assignment mechanism, the subscriber data obeys a Gaussian-like distribution. The
number of data in 98% of peers maintained at around 10000. Data stored in Sand-
Stone have perfect load-sharing so that it also improves the traffic balance finally.

5.2 Reliability

To achieve high availability and durability, SandStone uses strict replica placement
and consistency strategy. In this scenario, we evaluate the reliability of SandStone in
the face of a variety of failure and application models.

As shown in table 1, under normal application model, each peer received 1 write
and 10 read requests per second. 1% AF model will result in 1% of peers fail in every

 A DHT Key-Value Storage System with Carrier Grade Performance 371

hour, and in the next hour 80% of fail peers will be comeback. As is clear from table
1, the 1% and 3% AF model almost no impact on business success rate. The success
rate in 12 hours is almost 100%. The SBF1 and SBF2 model lead to more number of
peers’ failure, but the SandStone still able to maintain more than 99.9% success rate.
With the increased of business requests, the success rate has declined, but still more
than 99%.

Table 1. The reliability of SandStone Table 2. The recovery time in SandStone

Application
Model

Failure
Model

Success
Rate

AF (1%) ≈100%
AF (3%) ≈100%

SBF1 99.9992%

write:1/s per
peer

read:10/s per
peer SBF2 99.951%

AF (1%) 99.99995%
AF (3%) 99.9997%

SBF1 99.9959%

write:30/s per
peer

read:50/s per
peer SBF2 99.68%

AF (1%) 99.99992%
AF (3%) 99.9973%

write:50/s per
peer

read:100/s per SBF1 99.9934%

Database
Mode

Peer Behavior Recovery Time
(seconds)

Inactive (30 mins) 40.1
Inactive (60 mins) 75.2

Add 161.2

MySQL

Delete 82.6
Inactive (30 mins) 31.7
Inactive (60 mins) 58.1

Add 132.7

Memory DB

Delete 74.1

5.3 Latency

While SandStone’s principle design goal is to build a highly available data storage
system, application response time is an equally important criterion. As mention above,
to provide a best customer experience, SandStone must guarantees that the application
can deliver its functionality in a bounded time. In this experiment, we measured the
application response latency under various application models’ frequency.

0

20

40

60

80

100

300/600250/500200/400150/300100/200
70/140

50/100
30/60

 W
ri

te
 O

p
er

at
io

n
 A

ve
ra

g
e

L
at

en
cy

 (
m

s)

Write/Read Frequency (each peer)

 MDB RTT=0ms
 MDB RTT=20ms
 MDB RTT=50ms
 MySQL RTT=0ms
 MySQL RTT=20ms
 MySQL RTT=50ms

10/20

0

10

20

30

40

50

300/600250/500200/400150/300100/200
70/140

50/100
30/60

 R
ea

d
 O

p
er

at
io

n
 A

ve
ra

g
e

L
at

en
cy

 (m
s)

Write/Read Frequency (each peer)

 MDB RTT=0ms
 MDB RTT=20ms
 MDB RTT=50ms
 MySQL RTT=0ms
 MySQL RTT=20ms
 MySQL RTT=50ms

10/20

Fig. 9. Write operation average latency Fig. 10. Read operation average latency

It can be seen from the Fig.9 and Fig.10, with the expanding of business requests,
the latency of write and read requests are increased. But even in the most unexpected
application model situation (write/read frequency is 300/600 per second per peer); the
latency is also much lower than the restriction of 300ms which is the business can
tolerate. In the follow-up experiment, we turn on the Shunra Virtual Enterprise to

372 G. Shi et al.

simulate the path propagation delay between different regions, from 0ms to 50ms. At
this time we can see from the figure, with the increased propagation delay, the latency
of write request operation has a greater degree of change obviously because of remote
data replica placement strategy in section 3.4. However, because most of the data can
be obtained from the local peers due to data localization, the latency of read request
operations is basically no change, although frequency is increased. Furthermore, it is
evident that the efficiency of Memory DB is higher than MySQL and the latency
under Memory DB environment is lower than under MySQL’s, especially in heavy
business requests models. It is worth mentioning that the system can’t afford the
300/600 frequency under MySQL environment because of the limitation of DB pools.

5.4 Recovery Time

In SandStone system, peer outages (due to failures and maintenance tasks) are often
transient but may last for extended intervals. For systems prone to peer and network
failures, availability can be increased by using optimistic replication techniques,
where data are allowed to propagate to replicas in the background, and concurrent,
disconnected work is tolerated. When peer come back again, it will recover incre-
mental data from other replicas. So data recovery process time also determines
the reliability of the system. In this experiment, we compared the data recovery
time under series of node-state changes scenario. In experiment environment, each
peer have stored approximately 10000 subscriber data, and the application model is
normal, so each peer received 1 write and 10 read requests per second.

From the table 2, as a result of the parallel synchronization and incremental recov-
ery technology, peer data recovery time maintained at a very small value. Even in the
Add and Delete scenario that need to synchronize the entire data, a peer change proc-
ess only consumed less than 200 second. This kind of recovery time in the Carrier
Grade network is totally acceptable. Meanwhile, it is clear that the recovery time of
Memory DB is shorter than MySQL’s.

5.5 Bandwidth Consumption

Although SPM node is only responsible for the maintenance and synchronization of
one-hop routing table, its bandwidth consumption is still one of our concerned issues.
We recorded the bandwidth consumption of SPM under various failure models.

As can be seen in table 3, in the general failure model such as AF model, the band-
width consumption of SPM is very tiny, almost can be ignored. Even in the case of
SBF1 model (almost 50% of peers in same region failed simultaneously); the band-
width consumption is just 820KB/s. For such a very low probability of unexpected
events, this overhead of SPM is totally acceptable. It is worth mentioning that SPM
uses a unified manner to inform the routing table change in SBF2 model, so the
bandwidth consumption maintained at a very small value.

On the other hand, we calculate the inter-region bandwidth consumption in whole
SandStone network. The application model is normal, and 3% AF failure model is
introduced. From the Fig.8, we can see that despite the restore traffic in the ever-
changing, but the overall inter-region bandwidth consumption is still maintained at a
relatively stable value that decreases the impact to backbone network.

 A DHT Key-Value Storage System with Carrier Grade Performance 373

Table 3. The bandwidth consumption of SPM

Failure Model Bandwidth Consumption (KB/S)
AF (1%) 1.9
AF (5%) 34.8

AF (10%) 75.6
SBF1 (50fails) 93

SBF1 (100fails) 210
SBF1 (200fails) 450
SBF1 (500fails) 820

SBF2 15.3

6 Conclusion

In this paper, we present the analysis and main design considerations of SandStone.
The main contributions of SandStone are: a one-hop DHT enhancement, a Strip Seg-
mentation ID assignment and a two layered DHT for traffic localization, a novel rep-
lica placement schemes and an enhanced protocol for data consistency strategy. Till
now, by simulation and running in an experimental environment (thousands of nodes),
SandStone achieved the Carrier Grade performance as listed in section 2.2. We’ll seek
more deployments to testify the SandStone performance, and adapt SandStone to
more telecom application scenarios as listed in section 1.

References

1. P2PSIP (2009),
 http://www.ietf.org/html.charters/p2psip-charter.html

2. Matuszewskil, M., Garcia-Martin, M.A.: A Distributed IP Multimedia Subsystem (IMS).
In: Proc. of WoWMoM (2007)

3. Van Leekwijck, W., Tsang, I.-J.: Distributed Multimedia Control System Using an In-
network Peer-to-Peer Architecture. In: Proc. of ICIN (2006)

4. Ghemawat, S., Gobioff, H., Leung: The Google file system. In: Proc. of ACM SOSP
(2003)

5. Oceanstore (2009), http://oceanstore.cs.berkeley.edu
6. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond: the

oceanstore prototype. In: Proc. of USENIX FAST (2003)
7. Zhang, Z., Lian, Q., Lin, S., Chen, W., Chen, Y., Jin, C.: BitVault: a highly reliable dis-

tributed data retention platform. ACM SIGOPS Operating Systems Review archive 41(2),
27–36 (2007)

8. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph, A scalable, high-
performance distributed file system. In: Proc. of OSDI (2006)

9. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.: Dynamo: Amazon’s Highly
Available Key-value Store. In: Proc. of ACM SOSP (2007)

10. Stribling, J., Sovran, Y., Zhang, I., Pretzer, X., Li, J., Kaashoek, F., Morris, R.: Simplify-
ing Wide-Area Application Development with WheelFS. In: Proc. of USENIX NSDI
(2009)

11. 3GPP (2009), http://www.3gpp.org/

374 G. Shi et al.

12. Aggarwal, V., Feldmann, A., Scheideler, C.: Can ISPs and P2P Systems Cooperate for Im-
proved Performance? ACM SIGCOMM Computer Communications Review 37(3), 29–40
(2007)

13. Shen, G., Wang, Y., Xiong, Y., Zhao, B., Zhang, Z.: HPTP: Relieving the Tension be-
tween ISPs and P2P. In: Proc. of USENIX IPTPS (2007)

14. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: Proc of ACM SIGCOMM 2001,
San Deigo, CA, August 2001, pp. 149–160 (2001)

15. ACE (2009), http://www.cs.wustl.edu/~schmidt/ACE.html
16. MySQL (2009), http://www.mysql.com/
17. Shunra, V.E.: (2009), http://www.shunra.com/

	A DHT Key-Value Storage System with Carrier Grade Performance
	Introduction
	Background
	Scenario
	Carrier Grade Objectives
	Failure Models

	The Design of SandStone
	Architecture Overview
	Traffic Localization
	KBR Routing with One Hop Enhancement
	Replica Placement
	Consistency Strategy

	Implementation
	Experiments
	Load Balance
	Reliability
	Latency
	Recovery Time
	Bandwidth Consumption

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

