Skip to main content

Funktionell-neuroanatomische und neuropathologische Grundlagen psychischer Erkrankungen

  • Chapter
Psychiatrie, Psychosomatik, Psychotherapie

Zusammenfassung

Wenngleich tradierte dualistische Sichtweisen nahelegen, dass Körper und Psyche getrennte Entitäten seien, so zeigen die neueren Erkenntnisse der Neurowissenschaften dennoch überzeugend, dass normalen wie krankhaft veränderten psychischen Vorgängen hirnbiologische Substrate zugrunde liegen und somit psychische Störungen ebenso wie neurologische Erkrankungen auf Funktionsstörungen des zentralen Nervensystems zurückzuführen sind. Zum besseren Verständnis der Hirnbiologie psychischer Störungen werden im folgenden Kapitel zunächst die funktionell neuroanatomischen Grundlagen von Kognition und Emotion basierend auf der Interaktion von limbischen, kortikalen und dienzephalen Hirnsystemen dargestellt. Dadurch soll das Verständnis hirnorganischer Psychosyndrome erleichtert werden, deren Symptomspektrum weitgehend von den Aufgaben der betrof fenen funktionellen Systeme abhängt sowie von der anatomischen Lage des gestörten Systems im jeweiligen neuronalen Netzwerk. Durch Darstellung der Prinzipien der Neuroplastizität soll ein Brückenschlag zwischen psychosozialen und hirnbiologischen Sichtweisen von lebensgeschichtlich herleitbaren Psychosyndromen ermöglicht werden. Schließlich werden als Schwerpunkt dieses Kapitels die funktionell- neuroanatomischen und neuropathologischen Grundlagen schizophrener Psychosen und affektiver Störungen dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Kim JJ, Potkin SG et al. (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53: 425–436

    PubMed  CAS  Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Brain Res Rev 52: 293–304

    CAS  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010–1012

    PubMed  CAS  Google Scholar 

  • Allin M, Murray R (2002) Schizophrenia: a neurodevelopmental or neurodegenerative disorder. Curr Opin Psychiatry 15: 9–15

    Google Scholar 

  • Amato T, Rochet T, Dalery J et al. (1994) Seasonality of birth and ventricular enlargement in chronic schizophrenia. Psychiatry Res (Neuroimaging) 55: 65–73

    Google Scholar 

  • Arnold SE, Hyman BT, van Hösen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625–632

    PubMed  CAS  Google Scholar 

  • Bahn S (2002) Gene expression in bipolar disorder and schizophrenia: new approaches to old problems. Bipolar Disord 4 (Suppl 1): 70– 72

    PubMed  Google Scholar 

  • Baumann B, Bogerts B (2001) Neuroanatomical studies on bipolar disorders. Br J Psychiatry Suppl 41: 142–147

    Google Scholar 

  • Baumann B, Danos P, Diekmann S et al. (1999 a) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed non-suicidal patients but normal in depressed suicide patients. Eur Arch Psychiatr Clin Neurosci 249: 212–219

    CAS  Google Scholar 

  • Baumann B, Danos P, Krell D et al. (1999 b) Unipolar-bipolar dichotomy of mood disorders is supported by noradrenergic brainstem system morphology. J Affect Disorders 54: 217–224

    CAS  Google Scholar 

  • Baumann B, Danos P, Krell D et al (1999 c) Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a postmortem study. J Neuropsych Clin Neurosci 11: 71–78

    CAS  Google Scholar 

  • Baumann B, Bielau H, Krell D et al. (2002) Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med 32: 93–103

    PubMed  CAS  Google Scholar 

  • Beckmann H, Jakob H, Senitz D (2006) The development concept of »endogenous psychoses«. Dialogues Clin Neurosci 8: 101–108

    PubMed  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52: 1015–1018

    PubMed  CAS  Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiat 44: 608–616

    PubMed  CAS  Google Scholar 

  • Bernstein H-G, Krell D, Baumann B et al. (1998 a) Morphometric and immunohistochemical studies of the entorhinal cortex in neuropsychiatric patients and controls: Clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33: 125–132

    CAS  Google Scholar 

  • Bernstein H-G, Stanarius A, Baumann B et al. (1998 b) Nitric oxide synthase containing neurons in the human hypothalamus: Reduced number of immunoreactive cells in the nucleus paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83: 867–875

    CAS  Google Scholar 

  • Bernstein H-G, Krell D, Emrich H et al. (2002) Fewer beta-endorphin expressing arcuate nucleus neurons and reduced beta-endorphinergic innervation of paraventricular neurons in schizophrenics and patients with depression. Cell Mol Biol 48: OL259–265

    PubMed  CAS  Google Scholar 

  • Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathopysiological significance and possible consequences for therapy. Expert Rev Neurother. 9: 1059–1071

    PubMed  CAS  Google Scholar 

  • Bielau H, Mawrin C, Krell Dieter et al. (2005 a) Differences in activation of the dorsal raphe nucleus depending on performance of suicide.

    Google Scholar 

  • Brain Research 1–2: 43–52, doi: 10.1016/j.brainres.2005.01. 055

    Google Scholar 

  • Bielau H, Trubner K, Krell D, Agelink MW et al. (2005 b) Volume deficits of subcortical nuclei in mood disorders. A postmortem study. Eur Arch Psychiatry Clin Neurosci 255: 401–412

    Google Scholar 

  • Bilder RM, Wu H, Bogerts B et al. (1999) Cerebral volume asymmetries in schizophrenia and mood disorders: a quantitative magnetic resonance imaging study. Int J Psychophysiol 34: 197–205

    PubMed  CAS  Google Scholar 

  • Bogerts B (1996) Plastizität von Hirnstruktur und -funktion als neurobiologische Grundlage der Psychotherapie. Z Klin Psychol Psychopathol Psychother 44: 243–252

    CAS  Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophrenia Bull 23: 423–435

    CAS  Google Scholar 

  • Bogerts B (2002) Bedeutung des Frontalhirns für die Pathophysiologie schizophrener Erkrankungen. In: Förstl H (Hrsg) Das Frontalhirn – Funktionen und Erkrankungen. Springer, Berlin Heidelberg New York Tokio, S 181–205

    Google Scholar 

  • Bogerts B, Lieberman J (1993) Neuropathology in the study of psychiatric disease. In: Costa e Silva ACJ, Nadelson CC (eds) International review of psychiatry, vol 1. American Psychiatric Press, Washington, pp 515–555

    Google Scholar 

  • Bogerts B, Steiner J, Bernstein HG (2009) Brain abnormalities in schizophrenia. In: Kasper S, Papadimitriou GN (eds) Schizophrenia – Biopsychosocial approaches and current challenges. Informa pp 99–116

    Google Scholar 

  • Bowley MP, Drevets WC, Ongür D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52(5): 404–412

    PubMed  Google Scholar 

  • Braun K, Bogerts B (2001) Erfahrungsgesteuerte neuronale Plastizität – Bedeutung für Pathogenese und Therapie psychischer Erkrankungen. (Experience guided neuronal plasticity. Significance for pathogenesis and therapy of psychiatric diseases.) Nervenarzt 72: 3–10

    PubMed  CAS  Google Scholar 

  • Brisch R, Bernstein H-G, Stauch R et al. (2008) The volumes of the fornix in schizophrenia and affective disorders: a post-mortem study. Psychiatry Research 164: 265–273

    PubMed  Google Scholar 

  • Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a metaanalysis. Am J Psychiatry 161: 598–607

    PubMed  Google Scholar 

  • Cannon TD, Mednick SA, Parnas J et al. (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contribution of genetic and perinatal factors. Arch Gen Psychiatry 50: 551–564

    PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5- HTT gene. In: Science 5631: 386–389. doi: 10.1126/science. 1083968

    Google Scholar 

  • Chance SA, Walker M, Crow TJ (2005) Reduced density of calbindinimmunoreactive interneurons in the planum temporale in schizophrenia. Brain Res 1046: 32–37

    PubMed  CAS  Google Scholar 

  • Choudary PV, Molnar M, Evans SJ et al. (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 102(43): 15653– 15658

    PubMed  CAS  Google Scholar 

  • Cotter D, Mackay D, Landau S et al. (2001 a) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. In: Arch Gen Psychiatry 58: 545–553

    CAS  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001 b) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55: 585–595

    CAS  Google Scholar 

  • Cotter D, Mackay D, Chana G et al. (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. In: Cerebral Cortex 12(4): 386–394

    PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine- containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta Physiol Scand 62 (Suppl 232): 1–55

    Google Scholar 

  • Danos P, Baumann B, Bernstein H-G (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbuminimmunoreactive thalamo-cortical projection neurons. Psychiatr Res Neuroimaging 82: 1–10

    CAS  Google Scholar 

  • Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (ed) Current problems in neuropsychiatry. Br J Psychiatry Special Publication 4: 113–187

    Google Scholar 

  • De Bellis MD, Clark DB, Beers SR et al. (2000) Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157: 737–744

    PubMed  Google Scholar 

  • De Haan L, Bakker JM (2004) Overview of neuropathological theories of schizophrenia: from degeneration to progressive developmental disorder. Psychopathology 37: 1–7

    PubMed  Google Scholar 

  • Degreef G, Bogerts B, Falkai P et al. (1992 a) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res (Neuroimaging) 45: 1–13

    CAS  Google Scholar 

  • Degreef G, Ashtari M, Bogerts B et al. (1992 b) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49: 531–537

    CAS  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13: 3839–3847

    PubMed  CAS  Google Scholar 

  • Dracheva S, Elhakem SL, McGurk SR et al. (2004) GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 76: 581–592

    PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988 a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24: 515–521

    CAS  Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988 b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1: 157– 158

    Google Scholar 

  • Falkai P, Honert WG, David B et al. (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25: 48–53

    PubMed  CAS  Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10: 363–395

    PubMed  CAS  Google Scholar 

  • Förstl H (Hrsg) (2005) Frontalhirn – Funktionen und Erkrankungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Förstl H, Bickel H, Kurz A (Hrsg) (1999) Alzheimer Demenz. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Geddes JR, Lawrie S (1995) Obstetric complications and schizophrenia. A meta-analysis. Br J Psychiatry 167: 786–793

    PubMed  CAS  Google Scholar 

  • Glantz LA, Lewis DA (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specifity. Arch Gen Psychiatry 54: 943–952

    PubMed  CAS  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73

    PubMed  CAS  Google Scholar 

  • Gos T, Krell D, Bielau H et al. (2008 a) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is elevated in violent suicidal depressive patients. Eur Arch Psychiatr Clin Neurosci 258: 513– 520

    Google Scholar 

  • Gos T, Krell D, Brisch Ralf. (2008 b) Demonstration of decreased activity of dorsal raphe nucleus neurons in depressed suicidal patients by the AgNOR staining method. In: J Affect Disord 111: 251–260

    Google Scholar 

  • Gos T, Günther K, Bielau H, Dobrowolny H et al. (2009 a) Suicide and depression in the quantitative analysis of glutamic acid decarboxylase- Immunoreactive neuropil. In: J Affect Disorders 113: 45–55

    CAS  Google Scholar 

  • Gos T, Krell D, Bielau H et al. (2009 b) Demonstration of disturbed activity of orbitofrontal pyramidal neurons in depressed patients by the AgNOR staining method. J Affect Disord 118: 131–138

    CAS  Google Scholar 

  • Gos T, Krell D, Bielau H et al. (2009 c) Demonstration of disturbed activity of external globus pallidus projecting neurons in depressed patients by the AgNOR staining method. In: J Affect Disord 119: 149–155

    Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 46: 809–817

    PubMed  CAS  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI et al. (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55(2): 145–152

    PubMed  CAS  Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55: 563–569

    PubMed  Google Scholar 

  • Harper CG, Krill JJ (1985) Brain shrinkage in chronic alcoholics: A pathological study. Br Med J 290: 501–504

    CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624

    PubMed  Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacol 174: 151–162

    CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68; image 5

    PubMed  CAS  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T et al. (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. In: Arch Gen Psychiatry 64: 193–200

    CAS  Google Scholar 

  • Hasler G, Nugent AC, Carlson PJ et al. (2008) Altered cerebral gammaaminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. In: Arch Gen Psychiatry 65: 1166–1175

    Google Scholar 

  • Heinsen H, Gössmann E, Rüb U et al. (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anatomica 157: 226–237

    PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20: 78–84

    PubMed  CAS  Google Scholar 

  • Herrmann M, Bartels C, Wallesch CW (1993) Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correaltions and functional implications. J Neurol Neurosurg Psychiatry 56: 672–678

    PubMed  CAS  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Schwabe, Basel

    Google Scholar 

  • Hillbom E (1951) Schizophrenia-like psychoses after brain trauma. Acta Psychiatr Neurol Scand 60: 36–47

    Google Scholar 

  • Hof PR, Haroutunian V, Copland C et al. (2002). Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27: 1193–1200

    PubMed  CAS  Google Scholar 

  • Huber G (1961) Chronische Schizophrenie. Synopsis klinischer und neuroradiologischer Untersuchungen an defektschizophrenen Anstaltspatienten. Einzeldarstellungen aus der theoretischen und klinischen Medizin, Bd 13. Hüthig, Heidelberg

    Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ et al. (2000) Jonotropic glutamat receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157: 1811–1823

    PubMed  CAS  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transmiss 65: 303–326

    CAS  Google Scholar 

  • Jarskog LF (2006) Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 19: 307–312

    PubMed  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2: 924–926

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820

    PubMed  CAS  Google Scholar 

  • Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in Schizophrenia – An update: 1996 and future directions. Biol Psychiatry 42: 213–224

    PubMed  CAS  Google Scholar 

  • Knutson B, Bhanji JP, Cooney R et al. (2008) Neural responses to monetary incentives in major depression. Biol Psychiatry 63: 686– 692

    PubMed  Google Scholar 

  • Konopaske GT, Sweet RA, Wu Q et al. (2006) Regional specificity of chandelier neuron axon terminal alterations in schizophrenia. Neuroscience 138: 189–196

    PubMed  CAS  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157: 831–833

    PubMed  CAS  Google Scholar 

  • Krishnan KR, McDonald WM, Escalona PR et al. (1992) Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Arch Gen Psychiatry 49: 553–557

    PubMed  CAS  Google Scholar 

  • Kubicki M, Westin CF, Maier SE et al. (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159: 813–820

    PubMed  Google Scholar 

  • Lawrie SM, Abukmeil SS (1998) Brain asbnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110–120 (Review)

    PubMed  CAS  Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of periventricular grey matter. Eur Arch Psychiatr Neurol Sci 234: 212–219

    CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6: 312–324

    PubMed  CAS  Google Scholar 

  • Mann K, Widmann U (1995) Zur Neurobiologie der Alkoholabhängigkeit. Fortschr Neurol Psychiatrie 63: 238–247

    CAS  Google Scholar 

  • McCarley RW, Hsiao JK, Freedman R et al. (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophr Bull 22: 703–725

    PubMed  CAS  Google Scholar 

  • McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4: 407–418

    Google Scholar 

  • McNeil TF, Cantor-Graae E, Weinberger DR (2000) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157: 203–212

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1986) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 1–70

    Google Scholar 

  • Miklos GL, Maleszka R (2004) »Microarray reality checks in the context of a complex disease. « Nat Biotechnol. 22: 615–21

    PubMed  CAS  Google Scholar 

  • Millner R (1992) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Moises HW, Zoega T, Gottesman II (2002) The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2: 8

    PubMed  Google Scholar 

  • Narr KL, Thompson PM, Sharma T et al. (2001) Three-dimensional mapping of temporolimbic regions and the lateral ventricle in schizophrenia: gender effects. Biol Psychiatry 50: 84–97

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the Brain. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Northoff G, Waters H, Mooren I et al. (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatry Res 91: 45–54

    PubMed  CAS  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47: 1023–1028

    PubMed  CAS  Google Scholar 

  • Palkovits M, Zaborski L (1979) Neural connections of the hypothalamus. In: Morgane PJ (ed) Anatomy of the hypothalamus. Decker, New York, pp 379–509

    Google Scholar 

  • Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psychosis, a further evaluation of PSE profiles. Br J Psychiatry 146: 155–163

    Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Drabant EM et al. (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience 8: 828–834

    PubMed  CAS  Google Scholar 

  • Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13: 829, 833–857

    Google Scholar 

  • Price RB, Shungu DC, Mao X et al. (2009) Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry 65: 792–800

    PubMed  CAS  Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC et al. (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinol 60: 436–444

    CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Makkos Z et al. (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57: 127–138

    PubMed  Google Scholar 

  • Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49: 741–752

    PubMed  CAS  Google Scholar 

  • Rajkowska G, O'Dwyer G, Teleki Z et al. (2007) GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacol 32: 471–482

    CAS  Google Scholar 

  • Ranft K, Dobrowolny H, Krell D et al. (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psycholog Med 40: 557–567

    CAS  Google Scholar 

  • Raz S (1993) Structural cerebral pathology in schizophrenia: Regional or diffuse? J Abnorm Psychol 102: 445–452

    PubMed  CAS  Google Scholar 

  • Rioux L, Nissanov J, Lauber K, Bilker WB, Arnold SE (2003) Distribution of microtubule-associated protein MAP2-immunoreactive interstitial neurons in the parahippocampal white matter in subjects with schizophrenia. Am J Psychiatry 160: 149–155

    PubMed  Google Scholar 

  • Rothermundt M, Falkai P, Ponath G et al. (2004) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9: 897–899

    PubMed  CAS  Google Scholar 

  • Sartorius A, Henn FA (2007) Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses 69: 1305–1308

    PubMed  Google Scholar 

  • Savitz J, Nugent AC, Bogers W et al. (2010) Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage 49: 2966– 2976

    PubMed  Google Scholar 

  • Sawada K, Barr AM, Nakamura M et al. (2005) Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 62: 263–272

    PubMed  CAS  Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY et al. (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848

    PubMed  CAS  Google Scholar 

  • Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45: 17–25

    PubMed  CAS  Google Scholar 

  • Sheline YI, Barch DM, Donnelly JM et al. (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. In: Biol Psychiatry 50: 651–658

    CAS  Google Scholar 

  • Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109: 95–150

    PubMed  CAS  Google Scholar 

  • Staal WG, Hulshoff-Pol HE, Schnack H et al. (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia.. Am J Psychiatry 155: 1784–1786

    PubMed  CAS  Google Scholar 

  • Steen RG, Mull C, McClure R et al. (2006) Brain volume in first-episode schizophrenia. Brit J Psychiatry 188: 510–518

    Google Scholar 

  • Steiner J, Bielau H, Brisch R et al. (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatric Res 42: 151–157

    Google Scholar 

  • Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophrenia Res 73: 79–89

    Google Scholar 

  • Victor M, Adams RD, Collins G (1989) The Wernicke-Korsakow Syndrome and related neurologic disorders due to alcoholism and malnutrition. Davis, Philadelphia

    Google Scholar 

  • Vogeley K, Schneider-Axmann T, Pfeiffer U et al. (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157: 34–39

    PubMed  CAS  Google Scholar 

  • Walter M, Bermpohl Felix, Mouras H et al. (2008 a) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40: 1482–1494

    Google Scholar 

  • Walter M, Stadler J, Tempelmann C et al. (2008 b) High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. Magma 21: 103–111

    Google Scholar 

  • Walter M, Henning A, Grimm S et al. (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. In: Arch Gen Psychiatry 66: 478–486

    CAS  Google Scholar 

  • Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Ärzte und Studierende, Bd 2. Fischer, Kassel, S 229–242

    Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin- containing class of cortical local circuit neurons. Am J Psychiatry 154: 1013–1015

    PubMed  CAS  Google Scholar 

  • Wright IC, Rabe-Hesketh SR, Woodruff PWR et al. (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25

    PubMed  CAS  Google Scholar 

  • Young KA, Manaye KF, Liang CL et al. (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47: 944–953

    PubMed  CAS  Google Scholar 

  • Zipurski RB, Marsh L, Lim KO et al. (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35: 501–516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogerts, B., Walter, M. (2011). Funktionell-neuroanatomische und neuropathologische Grundlagen psychischer Erkrankungen. In: Möller, HJ., Laux, G., Kapfhammer, HP. (eds) Psychiatrie, Psychosomatik, Psychotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03637-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03637-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03636-1

  • Online ISBN: 978-3-642-03637-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics