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Abstract. We show that an RSA private key with small public exponent
can be efficiently recovered given a 0.27 fraction of its bits at random. An
important application of this work is to the “cold boot” attacks of Hal-
derman et al. We make new observations about the structure of RSA keys
that allow our algorithm to make use of the redundant information in
the typical storage format of an RSA private key. Our algorithm itself is
elementary and does not make use of the lattice techniques used in other
RSA key reconstruction problems. We give an analysis of the running
time behavior of our algorithm that matches the threshold phenomenon
observed in our experiments.

1 Introduction

In this paper, we present a new algorithm for the problem of reconstructing RSA
private keys given a random δ-fraction of their bits. For RSA keys with small
public exponent, our algorithm reconstructs the private key with high probability
when δ ≥ 0.27. The runtime analysis of our algorithm relies on an assumption
(Conjecture 1) and is thus heuristic; but we have verified experimentally that it
succeeds with high probability.

Motivation: cold boot attacks. An important application of our algorithm is key
recovery from the randomly distributed unidirectional bit corruption observed
in the recent work of Halderman et al. [10], which demonstrated that DRAM
remanence effects make possible practical, nondestructive attacks that recover
(a degraded version of) secret keys stored in a computer’s memory. Using these
“cold boot” attacks, attackers with physical access to a machine can break pop-
ular disk encryption systems or recover an SSL server’s private key.

One consequence of the nature of the attack is that a perfect image of the
contents of memory may not be available to the attacker; instead, some bits may
have been flipped. Halderman et al. observe that, within a DRAM region, the
decay is overwhelmingly either 0 → 1 or 1 → 0. The decay direction for a region
can be determined by comparing the number of 0s and 1s. (In an uncorrupted
key we expect these to be approximately equal.) For a region of 1 → 0 decay, a
1 bit in the decayed version is known (with high probability) to correspond to a

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 1–17, 2009.
c© International Association for Cryptologic Research 2009



2 N. Heninger and H. Shacham

1 bit in the original key, whereas a 0 bit might correspond to either a 0 or 1 bit
in the original key. If a ρ fraction of bits decays and 0s and 1s were present in
equal numbers in the key then we will know, given the degraded representation,
a δ = (1 − ρ)/2 fraction of key bits.

Halderman et al. further showed that it is possible to exploit redundancy in
key data to create algorithms for reconstructing DES, AES, and cipher tweak
keys from their degraded in-memory representations. In addition, they experi-
mented with reconstructing RSA keys by using the public modulus N to correct
its partly-known factors p and q. We extend this idea to take into account other
fields of an RSA private key and provide an analysis of the resulting algorithm’s
runtime behavior. Our improvement makes a significant difference in practice:
their algorithm takes several minutes to recover a 2048-bit RSA key from 12%
unidirectional corruption; ours takes under a second to recover a 2048-bit key
from as much as 46% unidirectional corruption.

Our algorithm and its performance. Our two main results in this paper are: (1)
an algorithm for reconstructing RSA private keys given a random δ-fraction of
their bits; and (2) an analysis of the algorithm’s runtime behavior for random
inputs that shows that it will succeed in expected quadratic time when δ ≥ .27.
The runtime analysis depends crucially on both a uniformly random distribution
of known bits and the assumption that the effect of a bit error during recon-
struction is propagated uniformly through subsequent bits of the key.

Our algorithm performs better than the algorithm given by Halderman et al.
because it is able to make use of five components of the RSA private key: p, q, d,
dp, and dq. We can use known bits in d, dp, and dq to make progress where bits
in p and q are not known. To relate d to the rest of the private key, we make use
of techniques due to Boneh, Durfee, and Frankel [4]; to relate dp and dq to the
rest of the private key, we make new observations about the structure of RSA
keys that may be of independent interest. This is discussed in Section 2.

If the algorithm has access to fewer components of the RSA private key, the
algorithm will still perform well given a sufficiently large fraction of the bits. For
example, it can efficiently recover a key given

δ = .27 fraction of the bits of p, q, d, dp, and dq.
δ = .42 fraction of the bits of p, q, and d.
δ = .57 fraction of the bits of p and q.

The reconstruction algorithm itself, described in Section 3, is elementary and
does not make use of the lattice basis reduction or integer programming tech-
niques that have been applied to other kinds of RSA key reconstruction prob-
lems. At each step, it branches to explore all possible keys, and prunes these
possibilities using our understanding of the structure of RSA keys and the par-
tial information we are given about key bits. We give an analysis of the al-
gorithm for random inputs in Section 4. We obtain a sharp threshold around
2 − 2(4/5) ≈ 27% of known key bits. Below this threshold, the expected number
of keys examined is exponential in the number of bits of the key, and above this
threshold, the expected number of keys examined is close to linear. Note that
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this threshold applies only to our particular approach. We suspect these results
could be improved using more sophisticated methods.

Finally, we have implemented our algorithm and performed extensive experi-
ments using it. The results are described in Section 5. The algorithm’s observed
behavior matches our analytically derived bounds and validates the heuristic
assumptions made in the analysis.

Small public-exponent RSA. Our algorithm is specialized to the case where
the public exponent e is small. The small-e case is, for historical reasons, the
overwhelmingly common one in deployed RSA applications such as SSL/TLS.
For example, until recently Internet Explorer would reject TLS server certifi-
cates with an RSA public exponent longer than 32 bits [5, p. 8]. The choice
e = 65537 = 216 + 1 is especially widespread. Of the certificates observed in the
UCSD TLS Corpus [23] (which was obtained by surveying frequently-used TLS
servers), 99.5% had e = 65537, and all had e at most 32 bits.

Related work. Inspired by cold boot attacks, Akavia, Goldwasser, and Vaikun-
tanathan [1] formally introduced memory attacks, a class of side-channel attacks
in which the adversary is leaked a (shrinking) function of the secret key. One
research direction, pursued by Akavia, Goldwasser, and Vaikuntanathan and,
in followup work, Naor and Segev [18], is constructing cryptosystems provably
secure against memory attacks.1 Another research direction is to evaluate the
security of existing cryptosystems against memory attacks. Our work is along
this latter direction.

There is a great deal of work on both factoring and reconstructing RSA private
keys given a fraction of the bits.

Maurer [14] shows that integers can be factored in polynomial time given
oracle access to an ε fraction of the bits of a factor.

In a slightly stricter model, the algorithm has access to a fixed subset of con-
secutive bits of the integer factors or RSA private keys. Rivest and Shamir [21]
first solved the problem for a 2/3-fraction of the least significant bits of a fac-
tor using integer programming. This was improved to 1/2 of the least or most
significant bits of a factor using lattice-reduction techniques pioneered by Cop-
persmith [6]; we refer the reader surveys by Boneh [3] and May [16] as well as
May’s Ph. D. thesis [15] for bibliographies. More recently, Herrmann and May
extended these techniques to efficiently factor given at most log logN known
blocks of bits [12].

The problem we seek to solve can be viewed as a further relaxation of the con-
ditions on access to the key bits to a fully random subset. These lattice-reduction
techniques are not directly applicable to our problem because they rely on recov-
ering consecutive bits of the key (expressed as small integer solutions to modular
equations), whereas the missing bits we seek to find are randomly distributed

1 There has been substantial other recent work on designing cryptosystems secure in
related key-leakage models (e.g., [20,8,2]); for a survey, see Goldwasser’s invited talk
at Eurocrypt 2009 [9] and the references therein.
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throughout the degraded keys. It is possible to express our reconstruction prob-
lem as a knapsack, and there are lattice techniques for solving knapsack problems
(see, e.g., Nguyen and Stern [19]), but we have not managed to improve on our
solution by this approach.

2 RSA Private Keys

The PKCS#1 standard specifies [22, Sect. A.1.2] that an RSA private key include
at least the following information:

– the (n-bit) modulus N and public exponent e;
– the private exponent d;
– the prime factors p and q of N ;
– d modulo p − 1 and q − 1, respectively denoted dp and dq; and
– the inverse of q modulo p, denoted q−1

p .

In practice, an RSA key in exactly this format can be recovered from the RAM of
a machine running Apache with OpenSSL [10]. The first items – N and e – make
up the public key and are already known to the attacker. A näıve RSA imple-
mentation would use d to perform the private-key operation c �→ cd mod N , but
there is a more efficient approach, used by real-world implementations such as
OpenSSL, that is enabled by the remaining private-key entries. In this approach,
one computes the answer modulo p and q as (c mod p)dp and (c mod q)dq , re-
spectively; then combines these two partial answers by means of q−1

p and the
Chinese Remainder Theorem (CRT). This approach requires two exponentia-
tions but of smaller numbers, and is approximately four times as fast as the
näıve method [17, p. 613].

Observe that the information included in PKCS#1 private keys is highly re-
dundant. In fact, knowledge of any single one of p, q, d, dp, and dq is sufficient
to reveal the factorization of N .2 It is this redundancy that we will use in recon-
structing a corrupted RSA key.

We now derive relations between p, q, d, dp, and dq that will be useful in
mounting the attack. The first such relation is obvious:

N = pq . (1)

Next, since d is the inverse of e modulo ϕ(N) = (p− 1)(q − 1) = N − p− q + 1,
we have

ed ≡ 1 (mod ϕ(N))

and, modulo p − 1 and q − 1,

edp ≡ 1 (mod p − 1) and edq ≡ 1 (mod q − 1) .

2 This is obvious for p and q and well known for d (cf. [7]); dp reveals p as
gcd(aedp−1 − 1, N) with high probability for random a provided dp �= dq, and simi-
larly for dq; if dp and dq are equal to each other then they are also equal to d.



Reconstructing RSA Private Keys from Random Key Bits 5

As it happens, it is more convenient for us to write explicitly the terms hidden
in the three congruences above, obtaining

ed = k(N − p − q + 1) + 1 (2)
edp = kp(p − 1) + 1 (3)
edq = kq(q − 1) + 1 . (4)

It may appear that we have thereby introduced three new unknowns: k, kp, and
kq. But in fact for small e we can compute each of these three variables given
even a badly-degraded version of d.

Computing k. The following argument, due to Boneh, Durfee, and Frankel [4],
shows that k must be in the range 0 < k < e. We know d < ϕ(N). Assume e ≤ k;
then ed < kϕ(N) + 1, which contradicts (2). The case k = 0 is also impossible,
as can be seen by reducing (2) modulo e. This shows that we can enumerate all
possible values of k, having assumed that e is small.

For each such choice k′, define

d̃(k′) def=
⌊

k′(N + 1) + 1
e

⌋
.

As Boneh, Durfee, and Frankel observe, when k′ equals k, this gives an excellent
approximation for d:

0 ≤ d̃(k) − d ≤ k(p + q)/e < p + q .

In particular, when p and q are balanced, we have p + q < 3
√

N , which means
that d̃(k) agrees with d on their 	n/2
 − 2 most significant bits. (Our analysis
applies also in the less common case when p and q are unbalanced, but we omit
the details.) This means that small-public-exponent RSA leaks half the bits of
the private exponent in one of the candidate values d̃(1), . . . , d̃(e − 1).

The same fact allows us to go in the other direction, using information about d
to determine k, as again noted by Boneh, Durfee, and Frankel. We are given d̃,
a corrupted version of d. We enumerate d̃(1), . . . , d̃(e − 1) and check which of
these agrees, in its more significant half, with the known bits of d̃. Provided
that δn/2 � lg e, there will be just one value of k′ for which d̃(k′) matches;
that value is k. Even for 1024-bit N and 32-bit e, there is, with overwhelming
probability, enough information to compute k for any δ we consider in this paper.
This observation has two implications:

1. we learn the correct k used in (2); and
2. we correct the more significant half of the bits of d̃, by copying from d̃(k).

Computing kp and kq. Once we have determined k, we can compute kp and
kq. First, observe that by an analysis like that above, we can show that 0 <
kp, kq < e. This, of course, means that kp = (kp mod e) and kq = (kq mod e);
when we solve for kp and kq modulo e, this will reveal the actual values used in
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(3) and (4). Now, reducing equations (1)–(4) modulo e, we obtain the following
congruences:

N ≡ pq (5)
0 ≡ k(N − p − q + 1) + 1 (6)
0 ≡ kp(p − 1) + 1 (7)
0 ≡ kq(q − 1) + 1 . (8)

These are four congruences in four unknowns: p, q, kp, and kq; we solve them as
follows. From (7) and (8) we write (p−1) ≡ −1/kp and (q−1) ≡ −1/kq; we sub-
stitute these into the equation obtained from using (5) to reexpress ϕ(N) in (6):
0 ≡ k(N−p−q+1)+1 ≡ k(p−1)(q−1)+1 ≡ k(−1/kp)(−1/kq)+1 ≡ k/(kpkq)+1,
or

k + kpkq ≡ 0 . (9)

Next, we return to (6), substituting in (7), (8), and (9):

0 ≡ k(N − p − q + 1) + 1
≡ k(N − 1) − k(p − 1 + q − 1) + 1
≡ k(N − 1) − (−kpkq)(−1/kp − 1/kq) + 1
≡ k(N − 1) − (kq + kp) + 1 ;

we solve for kp by substituting kq = −k/kp, obtaining

0 ≡ k(N − 1) − (kp − k/kp) + 1 ,

or, multiplying both sides by kp and rearranging,

k2
p − [

k(N − 1) + 1
]
kp − k ≡ 0 . (10)

This congruence is easy to solve modulo e and, in the common case where e is
prime, has two solutions, just as it would over C. One of the two solutions is the
correct value of kp; and it is easy to see, by symmetry, that the other must be
the correct value of kq. We need therefore try just two possible assignments to
kp and kq in reconstructing the RSA key. When e has m distinct prime factors,
there may be up to 2m roots [4].

Note that we also learn the values of p and q modulo e. If we then use the
procedure outlined below to decode the r least significant bits of p (up to a
list of possibilities), we will know p mod e2r; we can then factor N , provided
r + lg e > n/4, by applying Boneh, Durfee, and Frankel’s Corollary 2.2 ([4]; a
generalization of Coppersmith’s attack on RSA with known low-order bits [6,
Theorem 5] that removes the restriction that the partial knowledge of p must be
modulo a power of 2).

3 The Reconstruction Algorithm

Once we have the above relationships between key data, the remainder of the
attack consists of enumerating all possible partial keys and pruning those that
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do not satisfy these constraints. More precisely, given bits 1 through i − 1 of a
potential key, generate all combinations of values for bit i of p, q, d, dp, dq, and
keep a candidate combination if it satisfies (1), (2), (3), and (4) mod 2i.

The remainder of this section details how to generate and prune these partial
solutions.

In what follows, we assume that we know the values of kp and kq. When
equation (10) has two distinct solutions, we must run the algorithm twice, once
for each of the possible assignments to kp and kq.

Let p [i] denote the ith bit of p, where the least significant bit is bit 0, and
similarly index the bits of q, d, dp and dq. Let τ(x) denote the exponent of the
largest power of 2 that divides x.

As p and q are large primes, we know they are odd, so we can correct p [0] =
q [0] = 1. It follows that 2 | p − 1, so 21+τ(kp) | kp(p − 1). Thus, reducing (3)
modulo 21+τ(kp), we have

edp ≡ 1 (mod 21+τ(kp)) .

Since we know e, this allows us immediately to correct the 1 + τ(kp) least sig-
nificant bits of dp. Similar arguments using (4) and (2) allow us to correct the
1 + τ(kq) and 2 + τ(k) bits of dq and d, respectively.

What is more, we can easily see that, having fixed bits < i of p, a change
in p [i] affects dp not in bit i but in bit i + τ(kp); and, similarly, a change in
q [i] affects dq

[
i + τ(kq)

]
, and a change in p [i] or q [i] affects d

[
i + τ(k)

]
. When

any of k, kp, or kq is odd, this is just the trivial statement that changing bit i
of the right-hand side of an equation changes bit i of the left-hand side. Powers
of 2 in kp shift left the bit affected by p [i], and similarly for the other variables.

Having recovered the least-significant bits of each of our five variables, we now
attempt to recover the remaining bits. For each bit index i, we consider a slice
of bits:

p [i] q [i] d
[
i + τ(k)

]
dp

[
i + τ(kp)

]
dq

[
i + τ(kq)

]
.

For each possible solution up to bit slice i − 1, generate all possible solutions
up to bit slice i that agree with that solution at all but the ith position. If we
do this for all possible solutions up to bit slice i−1, we will have enumerated all
possible solutions up to bit slice i. Above, we already described how to obtain
the only possible solution up to i = 0; this is the solution we use to start the
algorithm. The factorization of N will be revealed in one or more of the possible
solutions once we have reached i = 	n/2
.3

All that remains is how to lift a possible solution (p′, q′, d′, d′p, d′q) for slice i−1
to possible solutions for slice i. Näıvely there are 25 = 32 such possibilities, but
in fact there are at most 2 and, for large enough δ, almost always fewer.

First, observe that we have four constraints on the five variables: equations
(1), (2), (3), and (4). By plugging in the values up to slice i − 1, we obtain

3 In fact, as we discussed in Section 2 above, information sufficient to factor N will be
revealed much earlier, at i = �n/4 − lg e�.
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from each of these a constraint on slice i, namely values c1, . . . , c4 such that the
following congruences hold modulo 2:

p [i] + q [i] ≡ c1 (mod 2)

d
[
i + τ(k)

]
+ p [i] + q [i] ≡ c2 (mod 2)

dp

[
i + τ(kp)

]
+ p [i] ≡ c3 (mod 2)

dq

[
i + τ(kq)

]
+ q [i] ≡ c4 (mod 2) .

(11)

For example, if N and p′q′ agree at bit i, c1 = 0; if not, c1 = 1. Four constraints
on five unknowns means that there are exactly two possible choices for bit slice i
satisfying these four constraints. (Expressions for the cis are given in (13).)

Next, it may happen that we know the correct value of one or more of the
bits in the slice, through our partial knowledge of the private key. These known
bits might agree with neither, one, or both of the possibilities derived from the
constraints above. If neither possible extension of a solution up to i − 1 agrees
with the known bits, that solution is pruned. If δ is sufficiently large, the number
of possibilities at each i will be kept small.

4 Algorithm Runtime Analysis

The main result of this section is summarized in the following informal theorem.

Theorem 1. Given the values of a δ = .27 fraction of the bits of p, q, d, d mod
p, and d mod q, the algorithm will correctly recover an n-bit RSA key in expected
O(n2) time with probability 1 − 1

n2 .

The running time of the algorithm is determined by the number of partial keys
examined. To bound the total number of keys seen by the program, we will first
understand how the structure of the constraints on the RSA key data determines
the number of partial solutions generated at each step of the algorithm. Then we
will use this understanding to calculate some of the distribution of the number of
solutions generated at each step over the randomness of p and q and the missing
bits. Finally we characterize the global behavior of the program and provide a
bound on the probability that the total number of branches examined over the
entire run of the program is too large.

Lifting solutions mod 2i. The process of generating bit i of a partial solution
given bits 0 through i−1 can be seen as lifting a solution to the constraint equa-
tions mod 2i to a solution mod 2i+1. Hensel’s lemma characterizes the conditions
when this is possible.

Lemma 1 (Multivariate Hensel’s Lemma). A root r = (r1, r2, . . . , rn) of
the polynomial f(x1, x2, . . . , xn) mod πi can be lifted to a root r+b mod πi+1 if
b = (b1π

i, b2π
i, . . . , bnπi), 0 ≤ bj ≤ π − 1 is a solution to the equation

f(r + b) = f(r) +
∑

j

bjπ
ifxj (r) ≡ 0 (mod πi+1) .

(Here, fxj is the partial derivative of f with respect to xj .)



Reconstructing RSA Private Keys from Random Key Bits 9

We can rewrite the lemma using the notation of Section 3. Write r in base
π = 2 and assume the i first bits are known. Then the lemma tells us that the
next bit of r, r[i] = (r1[i], r2[i], . . .), must satisfy

f(r)[i] +
∑

j

fxj(r)rj [i] ≡ 0 (mod 2) . (12)

In our case, the constraint polynomials generated in Section 2, equations (1)–
(4) form four simultaneous equations in five variables. Given a partial solution
(p′, q′, d′, d′p, d

′
q) up to slice i of the bits, we apply the condition in equation (12)

above to each polynomial and reduce modulo 2 to obtain the following conditions,
modulo 2, on bit i:

p [i] + q [i] ≡ (n − p′q′) [i]

d
[
i + τ(k)

]
+ p [i] + q [i] ≡ (

k(N + 1) + 1 − k(p′ + q′) − ed′
) [

i + τ(k)
]

dp

[
i + τ(kp)

]
+ p [i] ≡ (

kp(p′ − 1) + 1 − ed′p
) [

i + τ(kp)
]

dq

[
i + τ(kq)

]
+ q [i] ≡ (

kq(q′ − 1) + 1 − ed′q
) [

i + τ(kq)
]

.

(13)

These are precisely (11).

4.1 Local Branching Behavior

Without additional knowledge of the keys, the system of equations in (13) is
underconstrained, and each partial satisfying assignment can be lifted to two
partial satisfying assignments for slice i. If bit i − 1 of a variable x is known,
the corresponding x [i − 1] is fixed to the value of this bit, and the new partial
satisfying assignments correspond to solutions of (13) with these bit values fixed.
There can be zero, one, or two new solutions at bit i generated from a single
solution at bit i − 1, depending on the known values.

Now that we have a framework for characterizing the partial solutions gener-
ated at step i from a partial solution generated at step i−1, we will assume that
a random fraction δ of the bits of the key values are known, and estimate the
expectation and variance of the number of these solutions that will be generated.

In order to understand the number of solutions to the equation, we would like
to understand the behavior of the ci when the partial solution may not be equal
to the real solution. Let Δx = x − x′, then substituting x′ = x − Δx into (13)
we see that any solution to (11) corresponds to a solution to

Δp [i] + Δq [i] ≡ (qΔp + pΔq + ΔpΔq) [i] (mod 2)

Δd
[
i + τ(k)

]
+ Δp [i] + Δq [i] ≡ (eΔd + kΔp + kΔq))

[
i + τ(k)

]
(mod 2)

Δdp

[
i + τ(kp)

]
+ Δp [i] ≡ (eΔdp − kpΔp)

[
i + τ(kp)

]
(mod 2)

Δdq

[
i + τ(kq)

]
+ Δq [i] ≡ (eΔdq − kqΔq)

[
i + τ(kq)

]
(mod 2)

and Δx [i] is restricted to 0 if bit i of x is fixed.



10 N. Heninger and H. Shacham

Incorrect solutions generated from a correct solution. When the partial satisfying
assignment is correct, all of the Δx will be equal to 0. If all of the Δx [i] are
unconstrained or if only Δd [i + τ(k)] is set to 0, there will be two possible
solutions (of which we know one is “good” and the other is “bad”), otherwise
there will be a single good solution. Let Zg be a random variable denoting the
number of bad solutions at bit i+1 generated from a single good solution at bit
i. Since each Δx [i] is set to 0 independently with probability δ, the expected
number of bad solutions generated from a good solution is equal to

EZg = δ(1 − δ)4 + (1 − δ)5 and EZ2
g = EZg .

Both these expressions are dependent only on δ.

Incorrect solutions generated from an incorrect solution. When the partial sat-
isfying assignment is incorrect, at least one of the Δx is nonzero. The expected
number of new incorrect satisfying assignments generated from an incorrect sat-
isfying assignment is dependent both on δ and on the behavior of the bj .

We conjecture the following is close to being true:

Conjecture 1. For random p and q and for Δx not all zero and satisfying

qΔp + pΔq − ΔpΔq = 0 (mod 2i)

eΔd + kΔp + kΔq = 0 (mod 2i+τ(k))

eΔdp − kpΔp = 0 (mod 2i+τ(kp))

eΔdq − kqΔq = 0 (mod 2i+τ(kq)) ,

the next bit of each congruence is 0 or 1 independently with probability near 1/2.

We tested this empirically; each value of the vector (b1, b2, b3, b4) occurs with
probability approximately 1/16. (The error is approximately 5% for δ = 0.25
and n = 1024, and approximately 2% for δ = 0.25 and n = 4096.)

Let Wb be a random variable denoting the number of bad solutions at bit i+1
generated from a single bad solution at bit i. Assuming Conjecture 1,

EWb =
(2 − δ)5

16
and EW 2

b = EWb + δ(1 − δ)4 + 2(1 − δ)5 .

Note that the expectation is over the randomness of p and q and the positions
of the unknown bits of the key.

When partial knowledge of some of the values (p, q, d, dp, dq) is totally un-
available, we can obtain a similar expression.

4.2 Global Branching Behavior at Each Step of the Program

Now that we have characterized the effect that the constraints have on the
branching behavior of the program, we can abstract away all details of RSA
entirely and examine the general branching process of the algorithm. We are
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able to characterize the behavior of the algorithm, and show that if the expected
number of branches from any partial solution to the program is less than one,
then the total number of branches examined at any step of the program is
expected to be constant. All of the following analysis assumes Conjecture 1.

Let Xi be a random variable denoting the number of bad assignments at step
i, and recall that Zg and Wb are random variables denoting the number of bad
solutions at bit i + 1 generated from a single good or bad solution at bit i.

Theorem 2
EXi =

EZg

1 − EWb
(1 − (E Wb)i)

This expression can be calculated in a number of ways; we demonstrate how to
do so using generating functions in Appendix A.

When EWb < 1, we can bound EXi from above.

EXi ≤ EZg

1 − EWb

In the previous section, we calculated expressions for E Zg and E Wb depen-
dent only on δ, thus when EWb < 1, EXi can be bounded above by a constant
dependent on δ and not on i.

We can evaluate this expression numerically using the values for the expected
number of bad solutions discovered in the last section.

In the case with four equations and five unknowns (that is, we have partial
knowledge of p, q, d, dp, and dq), E Wb < 1 at δ > 2 − 2

4
5 . For δ = .2589,

EXi < 93247; for δ = .26, E Xi < 95; and for δ = .27 E Xi < 9.
In a similar fashion we can obtain the following complicated expression for

the variance VarXi = EX2 − (E X)2.

Theorem 3
VarXi = α1 + α2(E Wb)i + α3(E Wb)2i (14)

with

α1 =
E Zg VarWb + (1 − EWb)VarZg

(1 − (E Wb)2)(1 − EWb)

α2 =
E W 2

b + E Wb − 2 EWb E Zg − E Zg

1 − EWb
+ 2

(
EZg

1 − EWb

)2

α3 = −α1 − α2 .

Again evaluating numerically for five unknowns and four equations, at δ = .26
VarXi < 7937, at δ = .27 VarXi < 80, and at δ = .28 Var Xi < 23.

4.3 Bounding the Total Number of Keys Examined

Now that we have some information about the distribution of the number of
partial keys examined at each step, we would like to understand the distribution
of the total number of keys examined over an entire run of the program.
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We know the expected total number of keys examined for an n-bit key is

E

[
n∑

i=0

Xi

]
≤ EZg

1 − EWb
n .

We will bound how far the total sum is likely to be from this expectation. First,
we apply the following bound on the variance of a sum of random variables:

Lemma 2

Var
n∑

i=1

Xi ≤ n2 max
i

VarXi

The proof writes the variance of the sum in terms of covariance, and applies
Schwartz’s inequality and

√
ab ≤ a+b

2 .
Apply Chebyshev’s inequality to bound the likelihood that

∑
Xi is too large:

Pr(|∑i Xi − E
∑

i Xi| ≥ nα) ≤ 1
(nα)2

Var
∑

i Xi .

Apply the above lemma to obtain

Pr(|∑i Xi − E
∑

i Xi| ≥ nα) ≤ 1
α2

max
i

VarXi .

When δ = .27, setting α > 9n gives that, for an n-bit key, the algorithm will
examine more than 9n2 + 71n potential keys with probability less than 1

n2 .

4.4 Missing Key Fields

The same results apply when we have partial knowledge of fewer key fields.

– If the algorithm has partial knowledge of d, p, and q but no information on
dp and dq, we know that

EZg = δ(1 − δ)2 + (1 − δ)3 EZ2
g = EZg

E Wb =
(2 − δ)3

4
E W 2

b = EWb + δ(1 − δ)2 + 2(1 − δ)3 ,

so EWb < 1 when δ > 2− 2
3
4 ≈ .4126. Then for δ = .42 the probability that

the algorithm examines more than 22n2 + 24n keys is less than 1
n2 .

– If the algorithm has partial knowledge of p and q but no information on the
other values,

E Zg = (1 − δ)2 EZ2
g = E Zg

EWb =
(2 − δ)2

2
E W 2

b = E Wb + 2(1 − δ)2 .

Then EWb < 1 when δ > 2−2
1
2 ≈ .5859. When δ = .59 the probability that

the algorithm examines more than 29n2 + 29n keys is less than 1
n2 .
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5 Implementation and Performance

We have developed an implementation of our algorithm in approximately 850
lines of C++, using NTL version 5.4.2 and GMP version 4.2.2. Our tests were
run, in 64-bit mode, on an Intel Core 2 Duo processor at 2.4 GHz with 4 MB of
L2 cache and 4 GB of DDR2 SDRAM at 667 MHz on an 800 MHz bus.

We ran experiments for key sizes between 512 bits and 8192 bits, and for
δ values between 0.40 and 0.24. The public exponent is always set to 65537. In
each experiment, a key of the appropriate size is randomly censored so that ex-
actly a δ fraction of the bits of the private key components considered together
is available to be used for reconstruction. To reduce the time spent on key gen-
eration, we reused keys: We generated 100 keys for each key size. For every δ
and keysize, we ran 100 experiments with each one of the pregenerated keys, for
a total of 10,000 experimental runs. In all, we conducted over 1.1 million runs.

For each run, we recorded the length and width. The length is the total number
of keys considered in the run of the algorithm, at all bit indices; the width is the
maximum number of keys considered at any single bit index. These correspond
essentially to

∑n/2
i=1 Xi and maxi Xi, in the notation of Section 4, but can be

somewhat larger because we run the algorithm twice in parallel to account for
both possible matchings of solutions of (10) to kp and kq. To avoid thrashing,
we killed runs as soon as the width for some index i exceeded 1,000,000.

When the panic width was not exceeded, the algorithm always ran to com-
pletion and correctly recovered the factorization of the modulus.

Of the 900,000 runs of our algorithm with δ ≥ 0.27, only a single run (n =
8192, δ = 0.27) exceeded the panic width. Applying a Chebyshev bound in this
case (with E Xi = 9 and VarXi = 80) suggests that a width of 1,000,000 should
happen with extremely low probability.

Even below δ = 0.27, our algorithm almost always finished within the allotted
time. Table 1 shows the number of runs (out of 10,000) in which the panic width
was exceeded for various parameter settings. Even for n = 8192 and δ = 0.24,
our algorithm recovered the factorization of the modulus in more than 97% of
all runs. And in many of the overly long runs, the number of bits recovered
before the panic width was exceeded suffices to allow recovering the rest using
the lattice methods considered in Section 2; this is true of 144 of the 274 very
long runs at n = 8192 and δ = 0.24, for example.

Table 1. Runs (out of 10,000) in which width exceeded 1,000,000

n = 512 768 1024 1536 2048 3072 4096 6144 8192

δ = 0.27 0 0 0 0 0 0 0 0 1

0.26 0 0 0 0 1 5 3 4 8

0.25 0 0 3 6 8 10 17 35 37

0.24 4 5 7 27 50 93 121 201 274
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Fig. 1. Boxplot for total number of keys examined by algorithm for n = 2048, varying δ

As expected, search runtime was essentially linear in the total number of keys
examined. For n = 1024, for example, examining a single key took approximately
5 μsec; for n = 6144, approximately 8 μsec. The setup time varied depending
on whether k was closer to 0 or to e, but never exceeded 210 msec, even for
n = 8192.

The plot in Figure 1 gives the behavior for n = 2048. For each value of δ we
show, using a boxplot, the distribution of the total number of keys examined by
runs of the algorithm – i.e., the length of the run. (In our boxplot, generated
using R’s boxplot function, the central bar corresponds to the median, the
hinges to the first and third quartiles, and the whisker extents depend on the
interquartile range.)

In the full version of this paper [11] we undertake additional analysis of the
runtime data.
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A Computing the Expectation and Variance

In this appendix, we derive expressions for the expectation and variance of the
number of incorrect keys generated at each step of the program. Let Xi be a
random variable denoting the number of bad assignments at step i. We will
calculate the expectation EXi and variance VarXi. (We know that the number
of good assignments is always equal to one.)

To calculate these values, we will use probability generating functions. For
more information on this approach, see e.g., [13, Ch. 8]. A probability generat-
ing function F (s) =

∑
Pr[X = k]sk represents the distribution of the discrete

random variable X . F (s) satisfies the following identities:

F (1) = 1 , E X = F ′(1) , and VarX = F ′′(1) + F ′(1) − F ′(1)2 .

Let Gi(s) be the probability generating function for the Xi, z(s) the proba-
bility generating function for the Zg (the number of bad assignments generated
from a correct assignment) and w(s) the probability generating function for the
Wb (the number of bad assignments generated from a bad assignment).

From Section 4, we know that

z′(1) = E Zg , z′′(1) = EZ2
g − E Zg ,

w′(1) = E Wb , and w′′(1) = E W 2
b − E Wb .

Expectation of Xi. We will calculate E Xi = G′
i(1). Gi(s) satisfies the recurrence

Gi+1(s) = Gi(w(s))z(s) , (15)

that is, that the number of bad solutions at each step is equal to the number
of bad solutions lifted from bad solutions plus the number of bad solutions
produced from good solutions. (Recall that a generating function for the sum of
two independent random variables is given by the convolution of their generating
functions.) We also have that

G0(s) = 1 ,

http://www.rsa.com/rsalabs/node.asp?id=2125
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because initially there are no bad solutions. Differentiating (15) gives

G′
i(s) = (Gi−1(w(s))w′(s)z(s) + Gi−1(w(s))z′(s) . (16)

Set s = 1 and use the fact that Gi(1) = w(1) = z(1) = 1 to obtain

G′
i(1) = w′(1)G′

i−1(1) + z′(1) .

Solving the recurrence yields

G′
i(1) =

z′(1)
1 − w′(1)

(1 − (w′(1))i) . (17)

If w′(1) < 1, then w′(1)i tends to 0 as i increases and

EXi = G′
i(1) <

z′(1)
1 − w′(1)

(18)

for all i. The expected number of bad solutions at any step of the process will
be bounded by a value dependent only on δ and not on i.

Variance of Xi. To compute the variance VarXi = G′′
i (1) + G′

i(1) − (G′
i(1))2,

we differentiate (16) again to obtain

G′′
i (s) = G′′

i−1(w(s))w′(s)w′(s)z(s) + G′
i−1(w(s))w′′(s)z(s)

+ 2G′
i−1(w(s))w′(s)z′(s) + Gi−1(w(s))z′′(s) .

(19)

Evaluating at s = 1 gives

G′′
i (1) = G′′

i−1(1)w′(1)2 + G′
i−1(1)w′′(1) + 2G′

i−1(1)w′(1)z′(1) + z′′(1) .

Substitute in (17) to get

G′′
i (1) = G′′

i−1(1)w′(1)2 +
z′(1)

1 − w′(1)
(1 − (w′(1))i)w′′(1)

+ 2
z′(1)

1 − w′(1)
(1 − (w′(1))i)w′(1)z′(1) + z′′(1) .

(20)

The general solution to this recurrence is

G′′
i (1) = c1 + c2w

′(1)i + c3w
′(1)2i (21)

with

c1 =
1

1 − w′(1)2

(
z′(1)

1 − w′(1)
(w′′(1) + 2w′(1)z′(1)) + z′′(1)

)

c2 = − 1
1 − w′(1)

(w′′(1) + 2w′(1)z′(1))

c3 = −c1 − c2 .
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