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Abstract. This paper shows new preimage attacks on reduced Tiger
and SHA-2. Indesteege and Preneel presented a preimage attack on Tiger
reduced to 13 rounds (out of 24) with a complexity of 2128.5. Our new
preimage attack finds a one-block preimage of Tiger reduced to 16 rounds
with a complexity of 2161. The proposed attack is based on meet-in-the-
middle attacks. It seems difficult to find “independent words” of Tiger
at first glance, since its key schedule function is much more compli-
cated than that of MD4 or MD5. However, we developed techniques to
find independent words efficiently by controlling its internal variables.
Surprisingly, the similar techniques can be applied to SHA-2 including
both SHA-256 and SHA-512. We present a one-block preimage attack
on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of 2240 and 2480, respectively. To the best of our knowledge,
our attack is the best known preimage attack on reduced-round Tiger
and our preimage attack on reduced-step SHA-512 is the first result. Fur-
thermore, our preimage attacks can also be extended to second preimage
attacks directly, because our attacks can obtain random preimages from
an arbitrary IV and an arbitrary target.

Keywords: hash function, preimage attack, second preimage attack,
meet-in-the-middle, Tiger, SHA-256, SHA-512.

1 Introduction

Cryptographic hash functions play an important role in the modern cryptology.
Many cryptographic protocols require a secure hash function which holds several
security properties such as classical ones: collision resistance, preimage resistance
and second preimage resistance. However, a lot of hash functions have been
broken by collision attacks including the attacks on MD4 [3], MD5 [11] and SHA-
1 [12]. These hash functions are considered to be broken in theory, but in practice
many applications still use these hash functions because they do not require
collision resistance. However, (second) preimage attacks are critical for many
applications including integrity checks and encrypted password systems. Thus
analyzing the security of the hash function with respect to (second) preimage
resistance is important, even if the hash function is already broken by a collision
attack. However, the preimage resistance of hash functions has not been studied
well.
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Table 1. Summary of our results

Target Attack Attacked steps Complexity
(first or second preimage) (rounds)

Tiger (full 24 rounds) first [4] 13 2128.5

first (this paper) 16 2161

second [4] 13 2127.5

second (this paper) 16 2160

SHA-256 (full 64 steps) first [10] 36 2249

first (this paper) 24 2240

second (this paper) 24 2240

SHA-512 (full 80 steps) first (this paper) 24 2480

second (this paper) 24 2480

Tiger is a dedicated hash function producing a 192-bit hash value designed
by Anderson and Biham in 1996 [2]. As a cryptanalysis of Tiger, at FSE 2006,
Kelsey and Lucks proposed a collision attack on 17-round Tiger with a com-
plexity of 249 [5], where full-version Tiger has 24 rounds. They also proposed a
pseudo-near collision attack on 20-round Tiger with a complexity of 248. This
attack was improved by Mendel et al. at INDOCRYPT 2006 [8]. They proposed
a collision attack on 19-round Tiger with a complexity of 262, and a pseudo-near
collision attack on 22-round Tiger with a complexity of 244. Later, they proposed
a pseudo-near-collision attack of full-round (24-round) Tiger with a complexity
of 244, and a pseudo-collision (free-start-collision) attack on 23-round Tiger [9].
The above results are collision attacks and there is few evaluations of preim-
age resistance of Tiger. Indesteege and Preneel presented preimage attacks on
reduced-round Tiger [4]. Their attack found a preimage of Tiger reduced to 13
rounds with a complexity of 2128.5.

In this paper, we introduce a preimage attack on reduced-round Tiger. The
proposed attack is based on meet-in-the-middle attacks [1]. In this attack, we
need to find independent words (“neutral words”) in the first place. However, the
techniques used for finding independent words of MD4 or MD5 cannot be applied
to Tiger directly, since its key schedule function is much more complicated than
that of MD4 or MD5. To overcome this problem, we developed new techniques to
find independent words of Tiger efficiently by adjusting the internal variables. As
a result, the proposed attack finds a preimage of Tiger reduced to 16 (out of 24)
rounds with a complexity of about 2161. Surprisingly, our new approach can be
applied to SHA-2 including both SHA-256 and SHA-512. We present a preimage
attack on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of about 2240 and 2480, respectively. As far as we know, our attack
is the best known preimage attack on reduced-round Tiger and our preimage
attack on reduced-step SHA-512 is the first result. Furthermore, we show that
our preimage attacks can also be extended to second preimage attacks directly
and all of our attacks can obtain one-block preimages, because our preimage
attacks can obtain random preimages from an arbitrary IV and an arbitrary
target. These results are summarized in Table 1.
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This paper is organized as follows. Brief descriptions of Tiger, SHA-2 and
the meet-in-the-middle approach are given in Section 2. A preimage attack on
reduced-round Tiger and its extensions are shown in Section 3. In Section 4, we
present a preimage attack on reduced-step SHA-2. Finally, we present conclu-
sions in Section 5.

2 Preliminaries

2.1 Description of Tiger

Tiger is an iterated hash function that compresses an arbitrary length message
into a 192-bit hash value. An input message value is divided into 512-bit message
blocks (M (0), M (1), ..., M (t−1)) by the padding process as well as the MD family.
The compression function of Tiger shown in Fig. 1 generates a 192-bit output
chaining value H(i+1) from a 512-bit message block M (i) and a 192-bit input
chaining value H(i) where chaining values consist of three 64-bit variables, A

(i)
j ,

B
(i)
j and C

(i)
j . The initial chaining value H(0) = (A(0)

0 , B
(0)
0 , C

(0)
0 ) is as follows:

A
(0)
0 = 0x0123456789ABCDEF,

B
(0)
0 = 0xFEDCBA9876543210,

C
(0)
0 = 0xF096A5B4C3B2E187.

In the compression function, a 512-bit message block M (i) is divided into eight 64-
bit words (X0, X1, ..., X7). The compression function consists of three pass func-
tions and between each of them there is a key schedule function. Since each pass
function has eight round functions, the compression function consists of 24 round
functions. The pass function is used for updating chaining values, and the key
schedule function is used for updating message values. After the third pass func-
tion, the following feedforward process is executed to give outputs of the compres-
sion function with input chaining values and outputs of the third pass function,

A′
24 = A0 ⊕A24, B′

24 = B0 −B24, C′
24 = C0 + C24,

where Ai, Bi and Ci denote the i-th round chaining values, respectively, and
A′

24, B
′
24 and C′

24 are outputs of the compression function.
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In each round of the pass function, chaining values Ai, Bi and Ci are updated
by a message word Xi as follows:

Bi+1 = Ci ⊕Xi, (1)
Ci+1 = Ai − even(Bi+1), (2)
Ai+1 = (Bi + odd(Bi+1))×mul, (3)

where mul is the constant value ∈ {5, 7, 9} which is different in each pass func-
tion. The nonlinear functions even and odd are expressed as follows:

even(W ) = T1[w0]⊕ T2[w2]⊕ T3[w4]⊕ T4[w6], (4)
odd(W ) = T4[w1]⊕ T3[w3]⊕ T2[w5]⊕ T1[w7], (5)

where 64-bit value W is split into eight bytes {w7, w6, ..., w0} with w7 is the
most significant byte and T1, ..., T4 are the S-boxes: {0, 1}8 → {0, 1}64. Figure 2
shows the round function of Tiger.

even
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Bi Ci
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64 64 64
64

Ai+1 Bi+1 Ci+1

Fig. 2. Tiger round function

<<19

const1

const2

1
s
t
 
s
t
e
p

2
n
d
 
s
t
e
p

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X8 X9 X10 X11 X12 X13 X14 X15

<<19

>>23

>>23

Fig. 3. Key schedule function

The key schedule function (KSF ) updates message values. In the first pass
function, eight message words X0, ..., X7, which are identical to input message
blocks of the compression function, are used for updating chaining values. Re-
maining two pass functions use sixteen message words which are generated by
applying KSF :

(X8, ..., X15) = KSF (X0, ..., X7), (6)
(X16, ..., X23) = KSF (X8, ..., X15). (7)

The function KSF which updates the inputs X0, ..., X7 in two steps, is shown
in Table 2. The first step shown in the left table generates internal variables
Y0, ..., Y7 from inputs X0, ..., X7, and the second step shown in the right table
calculates outputs X8, ..., X15 from internal variables Y0, .., Y7, where const1 is
0xA5A5A5A5A5A5A5A5 and const2 is 0x0123456789ABCDEF. By using the same
function, X16, ..., X23 are also derived from X8, ..., X15. Figure 3 shows the key
schedule function of Tiger.
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Table 2. Algorithm of the key schedule function KSF

Y0 = X0 − (X7 ⊕ const1), (8)

Y1 = X1 ⊕ Y0, (9)

Y2 = X2 + Y1, (10)

Y3 = X3 − (Y2 ⊕ (Y1 � 19)), (11)

Y4 = X4 ⊕ Y3, (12)

Y5 = X5 + Y4, (13)

Y6 = X6 − (Y5 ⊕ (Y4 � 23)), (14)

Y7 = X7 ⊕ Y6. (15)

X8 = Y0 + Y7, (16)

X9 = Y1 − (X8 ⊕ (Y7 � 19)), (17)

X10 = Y2 ⊕ X9, (18)

X11 = Y3 + X10, (19)

X12 = Y4 − (X11 ⊕ (X10 � 23)), (20)

X13 = Y5 ⊕ X12, (21)

X14 = Y6 + X13, (22)

X15 = Y7 − (X14 ⊕ const2). (23)

2.2 Description of SHA-256

We only show the structure of SHA-256, since SHA-512 is structurally very
similar to SHA-256 except for the number of steps, word size and rotation values.
The compression function of SHA-256 consists of a message expansion function
and a state update function. The message expansion function expands 512-bit
message block into 64 32-bit message words W0, ..., W63 as follows:

Wi =
{

Mi (0 ≤ i < 16),
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X � 3),
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X � 10).

The state update function updates eight 32-bit chaining values, A, B, ..., G, H in
64 steps as follows:

T1 = Hi + Σ1(Ei) + Ch(Ei, Fi, Gi) + Ki + Wi, (24)
T2 = Σ0(Ai) + Maj(Ai, Bi, Ci), (25)

Ai+1 = T1 + T2, (26)
Bi+1 = Ai, (27)
Ci+1 = Bi, (28)
Di+1 = Ci, (29)
Ei+1 = Di + T1, (30)
Fi+1 = Ei, (31)
Gi+1 = Fi, (32)
Hi+1 = Gi, (33)
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where Ki is a step constant and the function Ch, Maj, Σ0 and Σ1 are given as
follows:

Ch(X, Y, Z) = XY ⊕XZ,

Maj(X, Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 step, a feedfoward process is executed with initial state variable by
using word-wise addition modulo 232.

2.3 Meet-in-the-Middle Approach for Preimage Attack

We assume that a compression function F consists of a key scheduling function
(KSF ) and a round/step function as shown in Fig. 4. The function F has two
inputs, an n-bit chaining variable H and an m-bit message M , and outputs
an n-bit chaining variable G. The function KSF expands the message M , and
provides them into the round/step function.

We consider a problem that given H and G, find a message M satisfying
G = F (H, M). This problem corresponds to the preimage attack on the com-
pression function with a fixed input chaining variable. In this model, a feedfor-
ward function does not affect the attack complexity, since the targets H and G
are arbitrary values. If we obtain a preimage from arbitrary values of H and G,
we can also compute a preimage from H and H ⊕G instead of G.

In the meet-in-the-middle preimage attack, we first divide the round function
into two parts: the forward process (FP ) and the backward process (BP ) so
that each process can compute an �-bit meet point S independently. We also
need independent words X and Y in KSF to compute S independently. The
meet point S can be determined from FP and BP independently such that
S = FP (H, X) and S = BP (G, Y ).

If there are such two processes FP and BP , and independent words X and Y ,
we can obtain a message M satisfying S with a complexity of 2�/2 F evaluations,
assuming that FP and BP are random ones, and the computation cost of BP is al-
most same as that of inverting function of BP . Since remaining internal state value

FP
(Forward Process)

BP
(Backward Process)

Round / Step Function

KSF
(Key Scheduling Function)

H G

M

X Y

F

S

m

n
l l

n

T
n - l n - l

Fig. 4. Meet-in-the-middle approach



Preimage Attacks on Reduced Tiger and SHA-2 145

T is (n − �) bits, the desired M can be obtained with a complexity of 2n−�/2(=
2n−�+�/2). Therefore, if FP and BP up to the meet point S can be calculated inde-
pendently, a preimage attack can succeed with a complexity of 2n−�/2. This type
of preimage attacks on MD4 and MD5 was presented by Aoki and Sasaki [1].

In general, it is difficult to find such independent words in a complicated KSF .
We developed new techniques to construct independent transforms in KSF by
controlling internal variabes to obtain independent words.

3 Preimage Attack on Reduced-Round Tiger

In this section, we propose a preimage attack on 16-round Tiger with a com-
plexity of 2161. This variant shown in Fig. 5 consists of two pass functions and
one key schedule function. First, we show properties of Tiger which are used for
applying the meet-in-the-middle attack. Next, we show how to apply the meet-
in-the-middle attack to Tiger, and then introduce the algorithm of our attack.
Finally, we evaluate the required complexity and memory of our attack.

pass
function

pass
functionH(0)

KSF

M(0)

X0,...,X7

512

512 512

192 192 192
H(1)

A0,B0,C0

192

X8,...,X15

A8,B8,C8 A16,B16,C16

Fig. 5. Reduced-round Tiger (2-pass = 16-round)

3.1 Properties of Tiger

We show five properties of Tiger, which enable us to apply the meet-in-the-
middle attack.

Property 1: The pass function is easily invertible.

Property 1 can be obtained from the design of the round function. From Eq. (1)
to Eq. (3), Ai, Bi, and Ci can be determined from Ai+1, Bi+1, Ci+1 and Xi. The
computation cost is almost same as the cost of calculating Ai+1, Bi+1 and Ci+1

from Ai, Bi, Ci and Xi. Since the round function is invertible, we can construct
the inverse pass function.

Property 2: In the inverse pass function, the particular message words are
independent of particular state value.

The detail of the Property 2 is that once Xi, Ai+3 Bi+3 and Ci+3 are fixed,
then Ci, Bi+1, Ai+2 and Bi+2 can be determined from Eq. (1) to Eq. (3) inde-
pendently of Xi+1 and Xi+2. Thus the property 2 implies that Xi+1 and Xi+2

are independent of Ci in the inverse pass function.
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Property 3: In the round function, Ci+1 is independent of odd bytes of Xi.

The property 3 can be obtained from the property of the non-linear function
even.

Property 4: The key schedule function KSF is easily invertible.

The property 4 implies that we can build the inverse key schedule function
KSF−1. Moreover, the computation cost of KSF−1 is almost the same as that
of KSF .

Property 5: In the inverse key schedule function KSF−1, if input values are
chosen appropriately, there are two independent transforms.

The property 5 is one of the most important properties for our attack. In the
next section, we show this in detail.

3.2 How to Obtain Two Independent Transforms in the KSF −1

Since any input word of KSF−1 affects all output words of KSF−1, it appears
that there is no independent transform in the KSF−1 at first glance.

However, we analyzed the relation among the inputs and the outputs of
KSF−1 deeply, and then found a technique to construct two independent trans-
forms in the KSF−1 by choosing inputs carefully and controlling internal vari-
ables. Specifically, we can show that a change of input word X8 only affects
output words X0, X1, X2 and X3, and also modifications of X13, X14 and X15

only affect X5 and X6 if these input words are chosen properly. We present the
relation among inputs, outputs and internal variables of KSF−1 and then show
how to build independent transforms in the KSF−1.

As shown in Fig. 6, changes of inputs X13, X14 and X15 only propagate in-
ternal variables Y0, Y1, Y5, Y6 and Y7. If internal variables Y6 and Y7 are fixed

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4
Y5 Y6 Y7

X8 X9 X10 X11 X12 X13 X14 X15

absorb

<<19

const1

const2

<<19

>>23

>>23

Fig. 6. Relation among inputs and outputs of KSF−1
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even when X13, X14 and X15 are changed, it can be considered that an internal
variable Y0, Y1 and an output X7 are independent of changes of X13, X14 and
X15. From Eq. (22) and (23), Y6 and Y7 can be fixed to arbitrary values by
choosing X13, X14 and X15 satisfying the following formulae:

X14 = Y6 + X13, (34)
X15 = Y7 − (X14 ⊕ const2). (35)

Therefore modifications of inputs X13, X14 and X15 only propagate X5 and X6

by selecting these input values appropriately. In addition, a modification of X8

only affects X0, ..., X3.
As a result, we obtain two independent transforms in KSF−1 by choosing

X13, X14 and X15 properly, since in this case a change of X8 only affects X0, ...,
X3, and changes of X13, X14 and X15 only propagate X5 and X6.

3.3 Applying Meet-in-the-Middle Attack to Reduced-Round Tiger

We show the method for applying the meet-in-the-middle attack to Tiger by
using above five properties. We define the meet point as 64-bit C6, the process
1 as rounds 1 to 6, and the process 2 as rounds 7 to 16.

In the process 2, intermediate values A9, B9 and C9 can be calculated from
A16, B16, C16 and message words X9 to X15, since Tiger without the feedforward
function is easily invertible. From the property 2, C6 can be determined from
A8, B8 and X6. It is also observed that A8 and B8 are independent of X8, because
these values are calculated from A9, B9 and C9. From the property 5, X8 does
not affect X6. Therefore, C6, the output of the process 2, can be determined
from X6, X9 to X15, A16, B16 and C16.

In the process 1, the output C6 can be calculated from X0 to X5, A0, B0 and
C0. If some changes of the message words used in each process do not affect the
message words used in the other process, C6 can be determined independently
in each process.

The message words X0 to X4 are independent of changes of X6 and X13

to X15, if X9 to X12 are fixed and X13 to X15 are calculated as illustrated in
the section 3.2. Although changes of X13, X14 and X15 propagate X5, from the
property 3, C6 in the process 1 is not affected by changes of odd bytes of X5.
Therefore, if even bytes of X5 are fixed, C6 in the process 1 can be determined
independently from a change of X5.

We show that the even bytes of X5 can be fixed by choosing X11, X12 and
X13 properly. From Eq. (21), Y5 is identical to X13 when X12 equals zero, and
from Eq. (13), X5 is identical to Y5 when Y4 equals zero. Thus X5 is identical to
X13 when both X12 and Y4 are zero. Consequently, if the even bytes of X13 are
fixed, and X12 and Y4 equal zero, the even bytes of X5 can be fixed. Y4 can be
fixed to zero by choosing X11 as X11 ← X10 � 23. Therefore, if the following
conditions are satisfied, C6 in the process 1 can be independent of changes of
X13, X14 and X15.
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Fig. 7. Meet-in-the-middle attack on 16-round Tiger

– X9 and X10 are fixed arbitrarily,
– X11 = X10 � 23, X12 = 0,
– X13, X14 and X15 are chosen properly.

By choosing inputs of the inverse pass function satisfying the above conditions,
we can execute the process 1 and the process 2 independently. Specifically, if only
X13, X14 and X15 are treated as variables in the process 2, then the process 2
can be executed independently from the process 1. Similarly, if only X8 is treated
as a variable in the process 1, then the process 1 is independent of the process
2, as long as X8 to X15 satisfy the above conditions. These results are shown in
Fig. 7.

3.4 (Second) Preimage Attack on 16-Round Tiger Compression
Function

We present the whole algorithm of the (second) preimage attack on the com-
pression function of Tiger reduced to 16 rounds. The attack consists of three
phases: preparation, first and second phase.

The preparation phase sets Xi(i ∈ {4, 7, 9, 10, 11, 12}), Yi(i ∈ {2, 3, 4, 6, 7})
and even bytes of X13 as follows:

Preparation

1: Let A′
16, B

′
16 and C′

16 be given targets. Choose A0, B0 and C0 arbitrarily, and
set A16, B16 and C16 as follows:

A16 ← A0 ⊕A′
16, B16 ← B0 −B′

16, C16 ← C′
16 − C0.
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2: Choose X9, X10, Y6, Y7 and even bytes of X13 arbitrarily, set X12 and Y4 to
zero, and set X7, X11, Y2, Y3 and X4 as follows:

X7 ← Y6⊕Y7, X11 ← X10 � 23, Y2 ← X9⊕X10, Y3 ← X11−X10, X4 ← Y3.

The first phase makes a table of (C6, odd bytes of X13) pairs in the process 2 as
follows:

First Phase

1: Choose odd bytes of X13 randomly.
2: Set X5, X6, X14 and X15 as follows:

X5 ← X13,X6 ← Y6+X13,X14 ← Y6+X13,X15 ← Y7−((Y6+X13)⊕const2).

3: Compute C6 from A16, B16, C16, X6 and X9 to X15.
4: Place a pair (C6, odd bytes of X13) into a table.
5: If all 232 possibilities of odd bytes of X13 have been checked, terminate this

phase. Otherwise, set another value, which has not been set yet, to odd bytes
of X13 and return to the step 2.

The second phase finds the desired message values X0 to X15 in the process 1
by using the table as follows:

Second Phase

1: Choose X8 randomly.
2: Set Y0, Y1, X0, X1, X2 and X3 as follows:

Y0 ← X8 −X7,

Y1 ← X9 + (X8 ⊕ (Y7 � 19)),
X0 ← Y0 + (X7 ⊕ const1),
X1 ← Y0 ⊕ Y1,

X2 ← Y2 − Y1,

X3 ← Y3 + (Y2 ⊕ (Y1 � 19)).

3: Compute C6 from X0 to X4, even bytes of X5, A0, B0 and C0.
4: Check whether this C6 is in the table generated in the first phase. If C6 is in

the table, the corresponding X0 to X7 are a preimage for the compression
function of the target A′

16, B
′
16, C

′
16 and successfully terminates the attack.

Otherwise, set another value, which has not been set yet, to X8 and return
to the step 2.

By repeating the second phase about 232 times for different choices of X8,
we expect to obtain a matched C6. The complexity of the above algorithm is
232(= 232 · 6

16 +232 · 1016 ) compression function evaluations, and success probability
is about 2−128. By executing the above algorithm 2128 times with different fixed
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values, we can obtain a preimage of the compression function. In the prepara-
tion phase, A0, B0, C0, X9, X10, Y6, Y7 and even bytes of X13 can be chosen
arbitrarily. In other words, this attack can use these values as free words. These
free words are enough for searching 2128 space. Accordingly, the complexity of
the preimage attack on the compression function is 2160(= 232 · 2128). Also, this
algorithm requires 232 96-bit or 235.6 bytes memory.

3.5 One-Block (Second) Preimage Attack on 16-Round Tiger

The preimage attack on the compression function can be extended to the one-
block preimage attack on 16-round Tiger hash function. For extending the attack,
A0, B0, C0 are fixed to the IV words, the padding word X7 is fixed to 447
encoded in 64-bit string, and the remaining 224 bits are used as free bits in the
preparation phase. Although our attack cannot deal with another padding word
X6, the attack still works when the least significant bit of X6 equals one.

Hence, the success probability of the attack on the hash function is half of that
of the attack on the compression function. The total complexity of the one-block
preimage attack on 16-round Tiger hash function is 2161 compression function
computations.

This preimage attack can also be extended to the one-block second preimage
attack directly. Our second preimage attack obtains a one-block preimage with
the complexity of 2161. Moreover, the complexity of our second preimage attack
can be reduced by using the technique given in [4]. In this case, the second
preimage attack obtains the preimage which consists of at least two message
blocks with a complexity of 2160.

4 Preimage Attack on Reduced-Round SHA-2

We apply our techniques to SHA-2 including both SHA-256 and SHA-512 in
straightforward and present a preimage attack on SHA-2 reduced to 24 (out
of 64 and 80, respectively) steps. We first check the properties of SHA-2, then
introduce the algorithm of the preimage attack on 24-step SHA-2.

4.1 Properties of 24-Step SHA-2

We first check whether SHA-2 has similar properties of Tiger. The pass function
of Tiger corresponds to the 16-step state update function of SHA-2, and the key
schedule function of Tiger corresponds to the 16-step message expansion function
of SHA-2. Since the state update function and the message expansion function
of SHA-2 are easily invertible, the compression function of SHA-2 without the
feedforward function is also invertible.

In the inverse state update function, A18, B18, ..., H18 are determined from
A24, B24, ..., H24 and W18 to W23, and A11 only depends on A18, ..., H18. Thus
A11 is independent of W11 to W17 when A18, ..., H18 and W18 to W23 are fixed.
It corresponds to the property 2 of Tiger.

Then we check whether there are independent transforms in the inverse mes-
sage expansion function of SHA-2. It corresponds to the property 5 of Tiger. For



Preimage Attacks on Reduced Tiger and SHA-2 151

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

W16 W17 W18 W19 W20 W21 W22 W23

Fig. 8. Message expansion function of 24-step SHA-2

the 24-step SHA-2, 16 message words W0 to W15 used in the first 16 steps are
identical to input message blocks of the compression function, and 8 message
words W16 to W23 used in the remaining eight steps are derived from W0 to W15

by the message expansion function shown in Fig. 8. Table 3 shows the relation
among message words in the message expansion function. For example, W16 is
determined from W14, W9, W1 and W0. By using these relation and techniques
introduced in previous sections, we can configure two independent transforms in
the message expansion function of SHA-2.

We show that, in the inverse message expansion function of 24-step SHA-2, i)
a change of W17 only affects W0, W1, W3 and W11, and ii) W19, W21 and W23 only
affect W12 by using the message modification techniques. In Tab. 3, asterisked
values are variables of i), and underlined values are variables of ii).

First, we consider the influence of W23. Though W23 affects W7, W8, W16

and W21, this influence can be absorbed by modifying W21 → W19 → W12.
Consequently, we obtain a result that W19, W21 and W23 only affect W12 by
choosing these values properly, since W12 does not affect any other values in the
inverse message expansion function.

Similarly, we consider the influence of W17 in the inverse message expansion
function. W17 affects W1, W2, W10 and W15. This influence can be absorbed by
modifying W1 → W0. W17 is also used for generating W19. In order to cancel
this influence, W3 →W11 are also modified. As a result, we obtain a result that
W17 only affects W0, W1, W3 and W11 by choosing these values appropriately.

Table 3. Relation among message values W16 to W23

computed value values for computing

W16 W14, W9, W1∗, W0∗
W17∗ W15, W10, W2, W1∗
W18 W16, W11∗, W3∗, W2

W19 W17∗, W12, W4, W3∗
W20 W18, W13, W5, W4

W21 W19, W14, W6, W5

W22 W20, W15, W7, W6

W23 W21, W16, W8, W7
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Fig. 9. Meet-in-the-middle attack on 24-step SHA-2

4.2 (Second) Preimage Attack on 24-Step SHA-256 Compression
Function

As shown in Fig. 9, we define the meet point as 32-bit A11, the process 1 as
steps 1 to 11, and the process 2 as steps 12 to 24. In the process 1, A11 can be
derived from A0, ..., H0 and W0 to W10. Similarly, in the process 2, A11 can be
determined from A24, ..., H24 and W18 to W23. Since the process 1 and process
2 are independent of each other for A11 by using the above properties of SHA-2,
we apply the meet-in-the-middle attack to SHA-2 as follows:

Preparation

1: Let A′
24, ..., H

′
24 be given targets. Choose A0, ..., H0 arbitrarily, and compute

A24, ..., H24 by the feedforward function.
2: Choose 32-bit value CON and Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18})

arbitrarily, and then calculate W20 and W22.

First Phase

1: Choose W23 randomly.
2: Determine W21, W19 and W12 as follows1:

W21 ← σ−1
1 (W23 −W16 − σ0(W8)−W7),

W19 ← σ−1
1 (W21 −W14 − σ0(W6)−W5),

W12 ← W19 − CON.

1 The method how to calculate σ−1
1 is illustrated in the appendix.
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3: Compute A11 from A24, ..., H24 and W18 to W23.
4: Place a pair (A11, W23) into a table.
5: If 216 pairs of (A11, W23) have been listed in the table, terminate this algo-

rithm. Otherwise, set another value, which has not been set yet, to W23 and
return to the step 2.

Second Phase

1: Choose W17 randomly.
2: Determine W0, W1, W3 and W11 as follows:

W1 ← W17 − σ1(W15)−W10 − σ0(W2),
W0 ← W16 − σ1(W14)−W9 − σ0(W1),
W3 ← CON− σ1(W17)− σ0(W4),

W11 ← W18 − σ1(W16)− σ0(W3)−W2.

3: Compute A11 from A0, ..., H0 and W0 to W10.
4: Check whether this A11 is in the table generated in the first phase. If A11 is

in the table, the corresponding W0 to W23 is a preimage of the compression
function of the target A′

24, ..., H
′
24 and successfully terminates the attack.

Otherwise, set another value, which has not been set yet, to W17 and return
to the step 2.

By repeating the second phase about 216 times for different W17, we expect to
obtain a matched A11. The complexity of the preimage attack on the compression
function is 2240(= 2256−32/2) compression function evaluations. The required
memory is 216 64-bit or 219 bytes. In this attack, the words A0, ..., H0, CON and
Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18}) can be used as free words. The
total free words are 22 words or 704 bits.

4.3 One-Block (Second) Preimage Attack on 24-Step SHA-2 Hash
Function

The preimage attack on the compression function can be extended to the (sec-
ond) preimage attack on the hash function directly, since our preimage attack
can obtain random preimages from an arbitrary IV and an arbitrary target,
and can deal with the padding words W14 and W15. Thus the complexities of
the preimage attack and the second preimage attack on 24-step SHA-256 are
2240. Furthermore, this attack can also be extended to the (second) preimage
attack on 24-step SHA-512. The complexities of the (second) preimage attack
on 24-step SHA-512 are 2480(= 2512−64/2).

5 Conclusion

In this paper, we have shown preimage attacks on reduced-round Tiger, reduced-
step SHA-256 and reduced-step SHA-512. The proposed attacks are based on



154 T. Isobe and K. Shibutani

meet-in-the-middle attack. We developed new techniques to find “independent
words” of the compression functions. In the attack on reduced-round Tiger,
we found the “independent transforms” in the message schedule function by
adjusting the internal variables, then we presented there are independent words
in the compression function of Tiger. In the attack on reduced-round SHA-2,
we found the “independent transforms” in the message expansion function by
modifying the messages, then we showed that there are independent words in
the compression function of SHA-2.

Our preimage attack can find a preimage of 16-step Tiger, 24-step SHA-256
and 24-step SHA-512 with a complexity of 2161, 2240 and 2480, respectively.
These preimage attacks can be extended to second preimage attacks with the
almost same complexities. Moreover, our (second) preimage attacks can find a
one-block preimage, since it can obtain random preimages from an arbitrary IV
an arbitrary target, and can also deal with the padding words.

Acknowledgments. The authors thank to the anonymous referees for their
valuable comments.
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Appendix A

Here, we show how to calculate the inverse function σ−1
1 . Let (x31, ..., x0) and

(y31, ..., y0) be outputs and inputs of σ−1
1 respectively, where xi, yi ∈ {0, 1}, and

x31 and y31 are the most significant bit. The inverse function σ−1
1 is calculated

as follows:

(x31, x30, ..., x0)t = Mσ−1
1
· (y31, y30, ..., y0)t,

where

Mσ−1
1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0

0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0

1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1

0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1

1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0

0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0

1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0

0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1

0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0

0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1

0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1

0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1

1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1

0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1

1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0

1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0

1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0

1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1

1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0

0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0

1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1

1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1

0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0

0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1

1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0

0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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