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Abstract. CRYPTO 2008 saw the introduction of the hash function
MD6 and of cube attacks, a type of algebraic attack applicable to crypto-
graphic functions having a low-degree algebraic normal form over GF(2).
This paper applies cube attacks to reduced round MDG6, finding the full
128-bit key of a 14-round MD6 with complexity 222 (which takes less
than a minute on a single PC). This is the best key recovery attack an-
nounced so far for MD6. We then introduce a new class of attacks called
cube testers, based on efficient property-testing algorithms, and apply
them to MD6 and to the stream cipher Trivium. Unlike the standard
cube attacks, cube testers detect nonrandom behavior rather than per-
forming key extraction, but they can also attack cryptographic schemes
described by nonrandom polynomials of relatively high degree. Applied
to MD6, cube testers detect nonrandomness over 18 rounds in 2*7 com-
plexity; applied to a slightly modified version of the MD6 compression
function, they can distinguish 66 rounds from random in 2** complexity.
Cube testers give distinguishers on Trivium reduced to 790 rounds from
random with 23° complexity and detect nonrandomness over 885 rounds
in 227, improving on the original 767-round cube attack.

1 Introduction
1.1 Cube Attacks

Cube attacks [29,[9] are a new type of algebraic cryptanalysis that exploit im-
plicit low-degree equations in cryptographic algorithms. Cube attacks only re-
quire black box access to the target primitive, and were successfully applied
to reduced versions of the stream cipher Trivium [6] in [9]. Roughly speaking,
a cryptographic function is vulnerable to cube attacks if its implicit algebraic
normal form over GF(2) has degree at most d, provided that 2¢ computations
of the function is feasible. Cube attacks recover a secret key through queries
to a black box polynomial with tweakable public variables (e.g. chosen plaintext
or IV bits), followed by solving a linear system of equations in the secret key
variables. A one time preprocessing phase is required to determine which queries
should be made to the black box during the on-line phase of the attack. Low-
degree implicit equations were previously exploited in [T1,27211T0] to construct
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distinguishers, and in [32L[I2}[15] for key recovery. Cube attacks are related to
saturation attacks [I7] and to high order differential cryptanalysis [16].

Basics. Let F,, be the set of all functions mapping {0,1}"™ to {0,1}, n > 0,
and let f € F,. The algebraic normal form (ANF) of f is the polynomial p over
GF(2) in variables z1, ..., z, such that evaluating p on = € {0,1}" is equivalent
to computing f(x), and such that it is of the for
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for some (ag,...,a2n_1) € {0,1}%", and where i; denotes the j-th digit of the
binary encoding of ¢ (and so the sum spans all monomials in z1,...,2,). A key
observation regarding cube attacks is that for any function f : {0,1}™ — {0,1},
the sum (XOR) of all entries in the truth table

> f@)

z€{0,1}n

equals the coefficient of the highest degree monomial x1 - - -z, in the algebraic
normal form (ANF) of f. For example, let n =4 and f be defined as

f(x1, 22, 23, T4) = T1 + T1T2X3 + T1T2T4 + T3 .

Then summing f(x1,x2,x3,x4) over all 16 distinct inputs makes all monomials
vanish and yields zero, i.e. the coeflicient of the monomial x;x2x324. Instead,
cube attacks sum over a subset of the inputs; for example summing over the four
possible values of (x1,z2) gives

f(070a zs3, $4) + f(O, 17$37$4) + f(l, 07$3, $4) + f(17 1a $37$4) =3 + x4 )
where (z3 4 x4) is the polynomial that multiplies x125 in f:
f(x1, @2, 23, 24) = 21 + T122(23 + T4) + 73 .

Generalizing, given an index set I C {1,...,n}, any function in F,, can be
represented algebraically under the form

flae,.. o zn) =tr-p(--+) +qlzr, ..., zn)

where t; is the monomial containing all the z;’s with ¢ € I, p is a polynomial
that has no variable in common with ¢;, and such that no monomial in the
polynomial ¢ contains ¢; (that is, we factored f by the monomial ¢;). Summing
f over the cube t; for other variables fixed, one gets

Ztl'p("')'i_Q(xla”-van):ZtI'p<"'):p("')7
I I

! The ANF of any f € F,, has degree at most n, since 2 = z;, for z; € GF(2), d > 0.
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that is, the evaluation of p for the chosen fixed variables. Following the termi-
nology of [9], p is called the superpoly of I in f. A cube t is called a mazterm if
and only if its superpoly p has degree 1 (i.e., is linear but not a constant). The
polynomial f is called the master polynomial.

Given access to a cryptographic function with public and secret variables, the
attacker has to recover the secret key variables. Key recovery is achieved in two
steps, a preprocessing and an online phase, which are described below.

Preprocessing. One first finds sufficiently many maxterms ¢; of the master
polynomial. For each maxterm, one computes the coefficients of the secret vari-
ables in the symbolic representation of the linear superpoly p. That is, one
reconstructs the ANF of the superpoly of each t;. Reconstruction is achieved
via probabilistic linearity tests [5], to check that a superpoly is linear, and to
identify which variables it contains. The maxterms and superpolys are not key-
dependent, thus they need to be computed only once per master polynomial.
The main challenge of the cube attack is to find maxterms. We propose the
following simple preprocessing heuristic: one randomly chooses a subset I of k
public variables. Thereafter one uses a linearity test to check whether p is linear.
If the subset I is too small, the corresponding superpoly p is likely to be a
nonlinear function in the secret variables, and in this case the attacker adds a
public variable to I and repeats the process. If I is too large, the sum will be a
constant function, and in this case he drops one of the public variables from [
and repeats the process. The correct choice of I is the borderline between these
cases, and if it does not exist the attacker retries with a different initial I.

Online Phase. Once sufficiently many maxterms and the ANF of their super-
polys are found, preprocessing is finished and one performs the online phase.
Now the secret variables are fixed: one evaluates the superpoly’s p by summing
f(z) over all the values of the corresponding maxterm, and gets as a result a lin-
ear combination of the key bits (because the superpolys are linear). The public
variables that are not in the maxterm should be set to a fixed value, and to the
same value as set in the preprocessing phase.

Assuming that the degree of the master polynomial is d, each sum requires
at most 297! evaluations of the derived polynomials (which the attacker obtains
via a chosen plaintext attack). Once enough linear superpolys are found, the key
can be recovered by simple linear algebra techniques.

1.2 MD6

Rivest presented the hash function MD6 [2425] as a candidate for NIST’s hash
competitiorﬂ MD6 shows originality in both its operation mode—a parametrized
quadtree [7]—and its compression function, which repeats hundreds of times a
simple combination of XOR’s, AND’s and shift operations: the r-round compres-
sion function of MD6 takes as input an array Ay, ..., Agg of 64-bit words, recur-
sively computes Asg, . . ., A1gr+88, and outputs the 16 words A16,473, - - -, A16r+88:

2 See http://www.nist.gov/hash-competition
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for i =89,...,16r + 88
T —Si®Aim17 @ Ai_go ® (Ai—1s N Aim21) @ (Ai—s1 A Aie7)
x—x®(x>r)
A —x®(x < ly)

return Ajgr173,...16r+88

A step is one iteration of the above loop, a round is a sequence of 16 steps.
The values S;, 75, and ¢; are step-dependent constants (see Appendix [A]). MD6

generates the input words Ay, ..., Ags as follows:
1. Ay,..., Ay, contain constants (fractional part of v/6; 960 bits)
2. Ais, ..., Ao contain a key (512 bits)
3. Asg, Agy contain parameters (key length, root bit, digest size, etc.; 128 bits)
4. Ass,..., Ags contain the data to be compressed (message block or chain

value; 4096 bits)

The proposed instances of MD6 perform at least 80 rounds (1280 steps) and at
most 168 (2688 steps). Resistance to “standard” differential attacks for collision
finding is proven for up to 12 rounds. The designers of MD6 could break at most
12 rounds with high complexity using SAT-solvers.

The compression function of MD6 can be seen as a device composed of 64 non-
linear feedback shift registers (NFSR’s) and a linear combiner: during a step the
64 NFSR’s are clocked in parallel, then linearly combined. The AND operators
(M) progressively increase nonlinearity, and the shift operators provide wordwise
diffusion. This representation will make our attacks easier to understand.

1.3 Trivium

The stream cipher Trivium was designed by De Canniére and Preneel [6] and sub-
mitted as a candidate to the eSTREAM project in 2005. Trivium was eventually
chosen as one of the four hardware ciphers in the eSTREAM portofoli(E. Re-
duced variants of Trivium underwent several attacks [23|[1920,31182]10,12.22],
including cube attacks [9].

Trivium takes as input a 80-bit key and a 80-bit IV, and produces a keystream
after 1152 rounds of initialization. Each round corresponds to clocking three feed-
back shift registers, each one having a quadratic feedback polynomial. The best
result on Trivium is a cube attack [9] on a reduced version with 767 initialization
rounds instead of 1152.

1.4 The Contributions of This Paper

First we apply cube attacks to keyed versions of the compression function of
MD6. The MD6 team managed to break up to 12 rounds using a high complex-
ity attack based on SAT solvers. In this paper we show how to break the same
12 round version and recover the full 128-bit key with trivial complexity using

3 See http://www.ecrypt.eu.org/stream/
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Table 1. Summary of the best known attacks on MD6 and Trivium (“,/” designates
the present paper)

#Rounds Time Attack Authors
MD6
12 hours inversion [25]
14 222 key recovery Vv
18 217 nonrandomness Vv
66* 224 nonrandomness Vv
Trivium

736 233 distinguisher [10]
736° 230 key-recovery @
T67° 236 key-recovery @
772 22 distinguisher Vv
785 227 distinguisher Vv
790 230 distinguisher v
842 224 nonrandomness Vv
885 227 nonrandomness Vv

*: for a modified version where S; = 0.
°®: cost excluding precomputation.

a cube attack, even under the assumption that the attacker does not know any-
thing about its design (i.e., assuming that the algorithm had not been published
and treating the function as a black box polynomial). By exploiting the known
internal structure of the function, we can improve the attack and recover the
128-bit key of a 14-round MD6 function in about 222 operations, which take less
than a minute on a single PC. This is the best key recovery attack announced
so far on MD6.

Then we introduce the new notion of cube tester, which combines the cube
attack with efficient property-testers, and can be used to mount distinguishers or
to detect nonrandomness in cryptographic primitives. Cube testers are flexible
attacks that are adaptable to the primitive attacked. Some cube testers don’t
require the function attacked to have a low degree, but just to satisfy some
testable property with significantly higher (or lower) probability than a random
function. To the best of our knowledge, this is one of the first explicit applications
of property-testing to cryptanalysis.

Applying cube testers to MD6, we can detect nonrandomness in reduced ver-
sions with up to 18 rounds in just 2'7 time. In a variant of MD6 in which all
the step constants S; are zero, we could detect nonrandomness up to 66 rounds
using 224 time. Applied to Trivium, cube testers give distinguishers on up to
790 in time 239, and detect nonrandomness on up to 885 rounds in 227. Table[dl
summarizes our results on MD6 and Trivium, comparing them with the previous
attacks .

As Table [[l shows, all our announced complexities are quite low, and presum-
ably much better results can be obtained if we allow a complexity bound of 2°°



6 J.-P. Aumasson et al.

(which is currently practical on a large network of PC’s) or even 289 (which
may become practical in the future). However, it is very difficult to estimate the
performance of cube attacks on larger versions without actually finding the best
choice of cube variables, and thus our limited experimental resources allowed us
to discover only low complexity attacks. On the other hand, all our announced
attacks are fully tested and verified, whereas other types of algebraic attacks are
often based on the conjectured independence of huge systems of linear equations,
which is impossible to verify in a realistic amount of time.

2 Key Recovery on MD6

2.1 Method

We describe the attack on reduced-round variants of a basic keyed version of the
MD6 compression function. The compression function of the basic MD6 keyed
version we tested uses a key of 128 bits, and outputs 5 words. Initially, we used
the basic cube attack techniques that treat the compression function as a black
box, and were able to efficiently recover the key for up to 12 rounds. We then
used the knowledge of the internal structure of the MD6 compression function
to improve on these results. The main idea of the improved attack is to choose
the public variables in the cube that we sum over so that they do not mix
with the key in the initial mixing rounds. In addition, the public variables that
do not belong to the cube are assigned predefined constant values that limit
the diffusion of the private variables and the cube public variables in the MD6
array for as many rounds as possible. This reduces the degree of the polynomials
describing the output bits as functions in the private variables and the cube
public variables, improving the performance of the cube attack.

The improved attack is based on the observation that in the feedback function,
Ai depends on Ai_17, Ai_sg, Ai_lg, Ai_gl and Ai—67- HOWQVGI‘, since Ai_lg is
ANDed with A; 21, the dependency of A; on A;_15 can be eliminated regardless
of its value, by zeroing A;_o1 (assuming the value of A;_9; can be controlled by
the attacker). Similarly, dependencies on A; 21, A;_31 or A;_g7 can be eliminated
by setting the corresponding ANDed word to zero. On the other hand, removing
the linear dependencies of A; on A;_17 or A;_gg is not possible if their value
is unknown (e.g. for private variables), and even if their values are known (e.g.
for public variables), the elimination introduces another dependency, which may
contribute to the diffusion of the cube public variables (for example it is possible
to remove the dependency of A; on A; g9 by setting A;_17 to the same value,
introducing the dependency of A;_17 on A;_gg).

These observations lead to the conclusion that the attacker can limit the
diffusion of the private variables by removing as many quadratic dependencies
of the array variables on the private variables as possible. The basic MD6 keyed
version that we tested uses a 2-word (128-bit) key, which is initially placed in
Aqs and Aj6. Note that the MD6 mode of operation dedicates a specific part of
the input to the key in words Ajs, ..., A2e (512 bits in total).
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Table [ describes the diffusion of the key into the MD6 compression function
array up to step 189 (the index of the first outputted word is 89).

In contrast to the predefined private variable indexes, the attacker can choose
the indexes of the cube public variables, and improve the complexity of the attack
by choosing such cube public variables that diffuse linearly to the MD6 array
only at the later stages of the mixing process. Quadratic dependencies of an array
word on cube public variables can be eliminated if the attacker can control the
value of the array word that is ANDed with the array word containing the cube
public variables. It is easy to verify that the public variable word that is XORed
back to the MD6 array at the latest stage of the mixing process is A71, which
is XORed in step 160 to Aigp. Thus, the array word with index 71 and words
with index just under 71, seem to be a good choice for the cube public variables.
Exceptions are Agg and Agg which are mixed with the key in steps 135 and 136
and should be zeroed. We tested several cubes, and the best preprocessing results
were obtained by choosing cube indexes from Ags. One of the reason that Ags
gives better results than several other words (e.g. A71) is that it is ANDed with
just 2 words before it is XORed again into the array in step 154, whereas A7y
is ANDed with 4 words before step 170. This gives the attacker more freedom
to choose the values of the fixed public variables, and limit the diffusion of the
private and cube public variables for more rounds.Table Bl describes the diffusion
of Ags into the MD6 compression function array up to step 185 (the index of the
first outputted word is 89).

2.2 Results

We were able to prevent non-linear mixing of the cube public variables and
the private variables for more than 6 MD6 compression function rounds. This
was made possible by zeroing all the MD6 array words whose indexes are listed
in the third column of Table 2l and Table [ (ignoring the special ”L” values).
As described in the previous section, we set the values of several of the 63
attacker controlled words, excluding Ags (from which the cube public variables
were chosen), to predefined constants that zero the words specified in the third
column. Public variables whose value does not affect the values of the listed
MD6 array words were set to zero. We were not able to limit the diffusion of the
cube public variables and the private variables as much when all the cube public
variable indexes were chosen from words other than Ags.

We describe the cube attack results on the keyed MDG6 version. The results
were obtained by running the preprocessing phase of the cube attack with the
special parameters describes above. We found many dense maxterms for 13-
round MD6, with associated cubes of size 5. Each of the maxterms passed at
least 100 linearity tests, thus the maxterm equations are likely to be correct for
most keys. During the online phase, the attacker evaluates the superpolys by
summing over the cubes of size 5. This requires a total of about 2'2 chosen IVs.
The total complexity of the attack is thus no more than 2'2.

We were able to find many constant superpolys for 14 rounds of MD6, with
associated cubes of size 7. However, summing on cubes of size 6 gives superpolys
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Table 2. Diffusion of the private variables into the MD6 compression function array in
the initial mixing steps. The third column specifies the MD6 array index of the word
that is ANDed with the key-dependent array word index in the step number specified
by the first column. The output of step ¢ is inserted into A;. If the key-dependent
array word is diffused linearly, then L is written instead. Note that once a dependency
of an MD6 array word on the private variables can be eliminated, it does not appear
any more as key-dependent (i.e. we assume that this dependency is eliminated by the
attacker).

Step Key-dependent array index ANDed index

104 15 L

105 16 L

121 104 L

122 105 L

122 104 101
123 105 102
125 104 107
126 105 108
135 104 68
136 105 69
138 121 L

139 122 L

139 121 118
140 122 119
142 121 124
143 122 125
152 121 85
153 122 86
155 138 L

156 139 L

156 138 135
157 139 136
159 138 141
160 139 142
169 138 102
170 139 103
171 104 140
172 105 141
172 155 L

173 156 L

173 155 152
174 156 153
176 155 158
177 156 159
186 155 119
187 156 120
187 121 157

188 122 158
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Table 3. Diffusion of Ags into the MD6 compression function array in the initial mixing
rounds (if the key-dependent array word is diffused linearly, then L is written instead)

Step Ags-dependent array index Multiplicand index

96 65 29
132 65 101
154 65 L

171 154 L

172 154 151
175 154 157
185 154 118

of high degree in the key bits. In order to further eliminate most (but not all)
high degree terms from the superpolys obtained by summing on cubes of size
6, we added more public variable indexes from words other than Ags. The best
results were obtained by choosing the remaining indexes from Agy, Ass, A4g
and Asp (which are directly XORed with key bits in steps 121, 122, 138 and
139). Using this approach, we found many dense maxterms for 14-round MD6,
with associated cubes of size 15. Some of these results are listed in Table
(Appendix[Al), many more linearly independent maxterms can be easily obtained
by choosing other cube indexes from the same words listed in Table Bl During the
online phase, the attacker evaluates the superpolys by summing over the cubes
of size 15. This requires a total of about 222 chosen IVs. The total complexity
of the attack is thus no more than 2%2. In fact every IV gives many maxterms,
so the required total of chosen IVs is lower than 222, and the total complexity
of the attack is less than 222.

We were able to find many constant superpolys for 15 rounds of MD6, with
associated cubes of size 14. We were not able to find low degree superpolys for 15-
round MD6. However, it seems likely that low degree equation for 15-round MD6
can be obtained using approaches similar to the one we used to recover the key
for 14-round MD6. Hence we believe that cube attacks can efficiently recover the
key for 15-round MD6. Furthermore, we believe that cube key recovery attacks
will remain faster than exhaustive search for 18-19 MD6 rounds.

3 Cube Testers

3.1 Definitions

Recall that F,, denotes the set of all functions mapping {0,1}" to {0,1}, n > 0.
For a given n, a random function is a random element of F,, (we have |F,| =
22”). In the ANF of a random function, each monomial (and in particular, the
highest degree monomial z; - - - z;,) appears with probability 1/2, hence a random
function has maximal degree of n with probability 1/2. Similarly, it has degree
(n — 2) or less with probability 1/2"+1. Note that the explicit description of a
random function can be directly expressed as a circuit with, in average, 27!
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gates (AND and XOR), or as a string of 2™ bits where each bit is the coefficient
of a monomial (encoding the truth table also requires 2™ bits, but hides the
algebraic structure).

Informally, a distinguisher for a family F C F,, is a procedure that, given a
function f randomly sampled from F* € {F,F,}, efficiently determines which
one of these two families was chosen as F*. A family F is pseudorandom if and
only if there exists no efficient distinguisher for it. In practice, e.g. for hash
functions or ciphers, a family of functions is defined by a k-bit parameter of
the function, randomly chosen and unknown to the adversary, and the function
is considered broken (or, at least, “nonrandom”) if there exists a distinguisher
making significantly less than 2¥ queries to the function. Note that a distin-
guisher that runs in exponential time in the key may be considered as “efficient”
in practice, e.g. 210,

We would like to stress the terminology difference between a distinguisher and
the more general detection of pseudorandomness, when speaking about crypto-
graphic algorithms; the former denotes a distinguisher (as defined above) where
the parameter of the family of functions is the cipher’s key, and thus can’t be
modified by the adversary through its queries; the latter considers part of the
key as a public input, and assumes as secret an arbitrary subset of the input
(including the input bits that are normally public, like IV bits). The detection
of nonrandomness thus does not necessarily correspond to a realistic scenario.
Note that related-key attacks are captured by neither one of those scenarios.

To distinguish F € F,, from F,, cube testers partition the set of public
variables {z1,...,z,} into two complementary subsets:

— cube variables (CV)
— superpoly variables (SV)

We illustrate these notions with the example from LT} recall that, given
f(w1, 22,73, 24) = 21 + 210273 + 117274 + T3,
we considered the cube x1xo and called (x5 4 x4) its superpoly, because
f(z1, 22,23, 24) = 21 + T122(T3 + 24) + 23 .

Here the cube variables (CV) are x; and x2, and the superpoly variables (SV)
are r3 and x4. Therefore, by setting a value to z3 and x4, e.g. x3 =0, x4 = 1,
one can compute (x5 + x4) = 1 by summing f(x1, 22, 23,24) for all possibles
choices of (z1,z2). Note that it is not required for a SV to actually appear in
the superpoly of the maxterm. For example, if f(z1,22,23,24) = 1 + T1T223,
then the superpoly of z1xs is x3, but the SV’s are both x3 and z4.

Remark. When f is, for example, a hash function, not all inputs should be
considered as variables, and not all Boolean components should be considered
as outputs, for the sake of efficiency. For example if f maps 1024 bits to 256 bits,
one may choose 20 CV and 10 SV and set a fixed value to the other inputs. These
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fixed inputs determine the coefficient of each monomial in the ANF with CV and
SV as variables. This is similar to the preprocessing phase of key-recovery cube
attacks, where one has access to all the input variables. Finally, for the sake
of efficiency, one may only evaluate the superpolys for 32 of the 256 Boolean
components of the output.

3.2 Examples

Cube testers distinguish a family of functions from random functions by testing
a property of the superpoly for a specific choice of CV and SV. This section
introduces this idea with simple examples. Consider

f(z1, 22,23, x4) = T1 + T1X2X3 + T1T2T4 + T3

and suppose we choose CV z3 and x4 and SV z; and xo, and evaluate the
superpoly of x3xy4:

f(xlax2a070) + f($17$2,07 1) + f(xlax27 1a0) + f(xlaan 17 1) =0 )

This yields zero for any (z1,x2) € {0,1}?, i.e. the superpoly of xzz4 is zero,
i.e. none of the monomials z3x4, T1T3T4, ToT3Ty4, Or T1x2x324 appears in f. In
comparison, in a random function the superpoly of 3z, is null with probability
only 1/16, which suggests that f was not chosen at random (indeed, we chose it
particularly sparse, for clarity). Generalizing the idea, one can deterministically
test whether the superpoly of a given maxterm is constant, and return “random
function” if and only if the superpoly is not constant. This is similar to the test
used in [10].

Let f € F,,, n > 4. We present a probabilistic test that detects the presence
of monomials of the form zi1xox3%; ..., (e.8. T1T2x3, T1T2T3Ty, €tC.):

1. choose a random value of (z4,...,z,) € {0,1}774
2. sum f(z1,...,2,) over all values of (z1,z2,z3), to get

Z flae, .. zn) = p(xay ..oy 20)

(z1,22,23)€{0,1}3

where p is a polynomial such that
flae,. ... zn) = zixozs - p(Ta, ..., Tn) + q(z1, ..., 20)

where the polynomial ¢ contains no monomial with x;x2x3 as a factor in its
ANF
3. repeat the two previous steps N times, recording the values of p(x4, ..., xy,)

If f were a random function, it would contain at least one monomial of the
form x1xow32; ... x; with high probability; hence, for a large enough number of
repetitions N, one would record at least one nonzero p(xy4,...,x,) with high
probability. However, if no monomial of the form x xox32; ... x; appears in the
ANF, p(x4,...,x,) always evaluates to zero.
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3.3 Building on Property Testers

Cube testers combine an efficient property tester on the superpoly, which is
viewed either as a polynomial or as a mapping, with a statistical decision rule.
This section gives a general informal definition of cube testers, starting with
basic definitions. A family tester for a family of functions F takes as input a
function f of same domain D and tests if f is close to F, with respect to a
bound € on the distance

5(f, F) = min 112 € DI @ 7 9@}

geF |’D‘

The tester accepts if 6(f,F) = 0, rejects with high probability if f and F are
not e-close, and behaves arbitrarily otherwise. Such a test captures the notion of
property-testing, when a property is defined by belonging to a family of functions
P; a property tester is thus a family tester for a property P.

Suppose one wishes to distinguish a family F C F, from F,, i.e., given a
random f € F*, to determine whether F* is F or F,, (for example, in Trivium,
F may be a superpoly with respect to CV and SV in the IV bits, such that
each f € F is computed with a distinct key). Then if F is efficiently testable
(see [26,[14]), then one can use directly a family tester for F on f to distinguish
it from a random function.

Cube testers detect nonrandomness by applying property testers to super-
polys: informally, as soon as a superpoly has some “unexpected” property (that
is, is anormally structured) it is identified as nonrandom. Given a testable prop-
erty P C F,, cube testers run a tester for P on the superpoly function f, and
use a statistical decision rule to return either “random” or “nonrandom”. The
decision rule depends on the probabilities |P|/|F,| and |P N F|/|F| and on a
margin of error chosen by the attacker. Roughly speaking, a family F will be
distinguishable from F,, using the property P if

Pl _ Ipﬂfl‘
[l | 7]

is non-negligible. That is, the tester will determine whether f is significantly
closer to P than a random function. Note that the dichotomy between structure
(e.g. testable properties) and randomness has been studied in [30].

3.4 Examples of Testable Properties

Below, we give examples of efficiently testable properties of the superpoly, which
can be used to build cube testers (see [14] for a general characterization of
efficiently testable properties). We let C be the size of CV, and S be the size of
SV; the complexity is given as the number of evaluations of the tested function
f. Note that each query of the tester to the superpoly requires 2¢ queries to the
target cryptographic function. The complexity of any property tester is thus,
even in the best case, exponential in the number of CV.
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Balance. A random function is expected to contain as many zeroes as ones in
its truth table. Superpolys that have a strongly unbalanced truth table can thus
be distinguished from random polynomials, by testing whether it evaluates as
often to one as to zero, either deterministically (by evaluating the superpoly for
each possible input), or probabilistically (over some random subset of the SV).

For example, if CV are z1,...,z¢ and SV are z¢41,...,2,, the deterministic
balance test is

1. c«—0

2. for all values of (zoy1,--.,%n)

3. compute

P(TO41s -y Tn) = Z f(z1,...,2zn) €{0,1}
(1,...,zC)
4. c—c+p@osly. .. Tn)

5. return D(c) € {0,1}

where D is some decision rule. A probabilistic version of the test makes N < 2°
iterations, for random distinct values of (x¢41,...,z,). Complexity is respec-
tively 2" and N - 2¢.

Constantness. A particular case of balance test considers the “constantness”
property, i.e. whether the superpoly defines a constant function; that is, it detects
either that f has maximal degree strictly less than C' (null superpoly), or that f
has maximal degree exactly C' (superpoly equals the constant 1), or that f has
degree strictly greater than C' (non-constant superpoly). This is equivalent to
the maximal degree monomial test used in [10], used to detect nonrandomness
in 736-round Trivium.

Low Degree. A random superpoly has degree at least (S — 1) with high proba-
bility. Cryptographic functions that rely on a low-degree function, however, are
likely to have superpolys of low degree. Because it closely relates to probabilisti-
cally checkable proofs and to error-correcting codes, low-degree testing has been
well studied; the most relevant results to our concerns are the tests for Boolean
functions in [IL28]. The test by Alon et al. [1], for a given degree d, queries the
function at about d - 4% points and always accepts if the ANF of the function
has degree at most k, otherwise it rejects with some bounded error probability.
Note that, contrary to the method of ANF reconstruction (exponential in S), the
complexity of this algorithm is independent of the number of variables. Hence,
cube testers based on this low-degree test have complexity which is independent
of the number of SV’s.

Presence of Linear Variables. This is a particular case of the low-degree test,
for degree d = 1 and a single variable. Indeed, the ANF of a random function
contains a given variable in at least one monomial of degree at least two with
probability close to 1. One can thus test whether a given superpoly variable
appears only linearly in the superpoly, e.g. for x1 using the following test similar
to that introduced in [B):
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1. pick random (z2,...,xg)
2. ifp(07$27...,33s):p(l,.rQ,...,mS)
3. return nonlinear

4. repeat steps 1 to 3 N times
5. return linear

This test answers correctly with probability about 1 — 27, and computes N -
2¢+1 times the function f. If, say, a stream cipher is shown to have an IV bit
linear with respect to a set of CV in the IV, independently of the choice of the
key, then it directly gives a distinguisher.

Presence of Neutral Variables. Dually to the above linearity test, one can
test whether a SV is neutral in the superpoly, that is, whether it appears in at
least one monomial. For example, the following algorithm tests the neutrality of
x1, for N < 25-1.

1. pick random (z2,...,xg)

2. ifp(07x27 < ~’xS) #p(lax27 < 'axs)
3. return not neutral

4. repeat steps 1 to 3 N times

5. return neutral

This test answers correctly with probability about 1 — 2" and runs in time
N-2¢. For example, if 21, x2, x3 are the CV and x4, x5, x¢ the SV, then x¢ is neu-
tral with respect to x1xox3 if the superpoly p(x4, x5, 26) satisfies p(xy4, x5,0) =
p(z4,25,1) for all values of (z4,25). A similar test was implicitly used in [12],
via the computation of a neutrality measure.

Remarks. Except low degree and constantness, the above properties do not
require the superpoly to have a low degree to be tested. For example if the
maxterm x122 has the degree-5 superpoly

T3T5T6 + T3T5Tex7xg + T5X8 + To

then one can distinguish this superpoly from a random one either by detecting
the linearity of zg or the neutrality of x4, with a cost independent on the degree.
In comparison, the cube tester suggested in [9] required the degree to be bounded
by d such that 2¢ is feasible.

Note that the cost of detecting the property during the preprocessing is larger
than the cost of the on-line phase of the attack, given the knowledge of the
property. For example, testing that z; is a neutral variable requires about N -2¢
queries to the function, but once this property is known, 2¢ queries are sufficient
to distinguish the function from a random one with high probability.

Finally, note that tests based on the nonrandom distribution of the monomi-
als [I1,27,21] are not captured by our definition of cube testers, which focus
on high-degree terms. Although, in principle, there exist cases where the former
tests would succeed while cube testers would fail, in practice a weak distribution
of lower-degree monomials rarely comes with a good distribution of high-degree
ones, as results in [I0] and of ourselves suggest.
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4 Cube Testers on MD6

We use cube testers to detect nonrandom properties in reduced-round versions
of the MD6 compression function, which maps the 64-bit words Ay, ..., Ass
to A16r4735- .-, A16r+88, With 7 the number of rounds. From the compression
function f : {0,1}64%89 — {0,1}54%16 our testers consider families of functions
{fm} where a random f; : {0,1}64>89=k [0 1}64%16 has k input bits set to a
random k-bit string. The attacker can thus query f;, for a randomly chosen key
i, on (64 x 89 — k)-bit inputs.
The key observations leading to our improved attacks on MD6 are that:
1. input words appear either linearly (as A,_gg or A;_17) or nonlinearly (as
A187 Agl, 14317 or A67) within a step
2. words Ay, ..., Aoy are input once, Ass, ..., As7 are input twice, Ass, ..., Agr
are input three times, Agg, Agg, A7 four times, A7y five times, and Aro, . . .,
Agg six times
3. all input words appear linearly at least once (Ao, ..., A71), and at most twice
(A72,..., Ags)
4. As7 is the last word input (at step 124, i.e. after 2 rounds plus 3 steps)
5. A7y is the last word input linearly (at step 160, i.e. after 4 rounds plus 7
steps)
6. differences in a word input nonlinearly are “absorbed” if the second operand
is zero (e.g. A;—18 A A;—21 = 0 if A;_1g is zero, for any value of A;_o1)

Based on the above observations, the first attack (A) makes only black-box
queries to the function. The second attack (B) can be seen as a kind of related-
key attack, and is more complex and more powerful. Our best attacks, in terms
of efficiency and number of rounds broken, were obtained by testing the balance
of superpolys.

4.1 Attack A

This attack considers CV, SV, and secret bits in A7q: the MSB’s of A7y contain
the CV, the LSB’s contain the 30 secret bits, and the 4 bits “in the middle” are
the SV. The other bits in A7y are set to zero. To minimize the density and the
degree of the ANF, we set A; = S; for ¢ = 0,...,57 in order to eliminate the
constants S; from the expressions, and set A; = 0 for ¢ = 58,...,88 in order to
eliminate the quadratic terms by “absorbing” the nonzero Ass, ..., As7 through
AND’s with zero values.

The attack exploits the fact that A7; is the last word input linearly. We set
initial conditions on the message such that modifications in A7y are only effective
at step 160, and so CV and SV are only introduced (linearly) at step 160: in
order to absorb A7 before step 160, one needs Ags = A7y = Ass = Ajg7 = 0,
respectively for steps 89, 92, 102, and 138.

Given the setup above, the attack evaluates the balance of the superpoly for
each of the 1024 output components, in order to identify superpolys that are
constant for a large majority of inputs (SV). These superpolys may be either
constants, or unbalanced nonlinear functions. Results for reduced and modified
MD6 are given in subsequent sections.
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4.2 Attack B

This attack considers CV, SV, and secret bits in Asy, at the same positions as
in Attack A. Other input words are set by default to S; for Ay, ..., As7, and to
zero otherwise.

The attack exploits the fact that As4 and A7y are input linearly only once, and
that both directly interact with Aj43. We set initial conditions on the message
such that CV and SV are only effective at step 232. Here are the details of this
attack:

step 143: input variables are transfered linearly to Aj43

— step 160: Aj43 is input linearly; to cancel it, and thus to avoid the introduc-
tion of the CV and SV in the ANF, one needs A71 = S160 @ A143

— step 92: A7y is input nonlinearly; to cancel it, in order to make Aj3g inde-
pendent of Ay43, we need A74 =0

— step 138: A7 is input nonlinearly; to cancel it, one needs Ajg7 =0

— step 161: Aq43 is input nonlinearly; to cancel it, one needs Ay49 =0

— step 164: Aq43 is input nonlinearly; to cancel it, one needs A4 = 0

— step 174: Ay43 is input nonlinearly; to cancel it, one needs Ajg7 = 0 (as for
step 138)

— step 210: Aq43 is input nonlinearly; to cancel it, one needs Ay79 =0

— step 232: Ajy3 is input linearly, and introduces the CV and SV linearly into

the ANF

To satisfy the above conditions, one has to choose suitable values of A;, As,
Asq, As7, A7y, These values are constants that do not depend on the input in
A54.

Given the setup above, the attack evaluates the balance of the superpoly for
each of the 1024 output components, in order to identify superpolys that are
constant for large majority of inputs (SV). Results for reduced and modified
MD6 are given in §4.3

4.3 Results

In this subsection we report the results we obtained by applying attacks A and
B to reduced versions of MD6, and to a modified version of MD6 that sets all
the constants 5; to zero. Recall that by using C' CV’s, the complexity of the
attack is about 2¢ computations of the function. We report results for attacks
using at most 20 CV (i.e. doable in less than a minute on a single PC):

— with attack A, we observed strong imbalance after 15 rounds, using 19 CV.
More precisely, the Boolean components corresponding to the output bits
in As;7 and Asgs all have (almost) constant superpoly. When all the S;
constants are set to 0, we observed that all the outputs in Aj939 and Ajg47
have (almost) constant superpoly, i.e. we can break 60 rounds of this modified
MD6 version using only 14 CV’s.
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— with attack B, we observed strong imbalance after 18 rounds, using 17 CV’s.
The Boolean components corresponding to the output bits in Azgg and Aszrg
all have (almost) constant superpoly. When S; = 0, using 10 CV’s, one finds
that all outputs in Aj114 and Aq122 have (almost) constant superpoly, i.e. one
breaks 65 rounds. Pushing the attack further, one can detect nonrandomness
after 66 rounds, using 24 CV’s.

The difference of results between the original MD6 and the modified case in which
S; = 0 comes from the fact that a zero S; makes it possible to keep a sparse state
during many rounds, whereas a nonzero S; forces the introduction of nonzero
bits in the early steps, thereby quickly increasing the density of the implicit
polynomials, which indirectly facilitates the creation of high degree monomials.

5 Cube Testers on Trivium

Observations in [0, Tables 1,2,3] suggest nonrandomness properties detectable
in time about 2'2 after 684 rounds, in time 224 after 747 rounds, and in time 23°
after 774 rounds. However, a distinguisher cannot be directly derived because
the SV used are in the key, and thus cannot be chosen by the attacker in an
attack where the key is fixed.

5.1 Setup

We consider families of functions defined by the secret key of the cipher, and
where the IV corresponds to public variables. We first used the 23-variable index
sets identified in [8, Table 2]; even though we have not tested all entries, we
obtained the best results using the IV bits (starting from zero)

{3,4,6,9,13,17,18, 21, 26, 28, 32, 34, 37, 41, 47, 49, 52, 58, 59, 65, 70, 76, 78} .

For this choice of CV, we choose 5 SV, either

— in the IV, at positions 0, 1,2, 35,44 (to have a distinguisher), or
— in the key, at positions 0,1,2,3,4 (to detect nonrandomness)

For experiments with 30 CV, we use another index set discovered in [§]:

{1,3,6,12, 14, 18,22, 23, 24, 26, 30, 32, 33, 35, 36, 39, 40, 44, 47, 49, 50, 53, 59, 60, 61, 66, 68, 69, 72, 75} .

IV bits that are neither CV nor SV are set to zero, in order to minimize the degree
and the density of the polynomials generated during the first few initialization
steps. Contrary to MDG6, we obtain the best results on Trivium by testing the
presence of neutral variables. We look for neutral variables either for a random
key, or for the special case of the zero key, which is significantly weaker with
respect to cube testers.

In addition to the cubes identified in [8, Table 2], we were able to further
improve the results by applying cube testers on carefully chosen cubes, where the
indexes are uniformly spread (the distance between neighbors is at least 2). These
cubes exploit the internal structure of Trivium, where non linear operations are



18

J.-P. Aumasson et al.

only performed on consecutive cells. The best results were obtained using the
cubes below:

{0,3,6,9,12,15, 18,21, 24, 27, 33, 36, 39, 42, 45, 48, 51, 60, 63, 66, 69, 72, 75, 79}
{0,3,6,9,12, 15,18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

{0,2,4,6,8,10,12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

5.2 Results

We obtained the following results, by testing the neutrality of the SV in the
superpoly:

— with 23 CV, and SV in the IV, we found a distinguisher on up to 749 rounds

(runtime 223); SV 0, 1, 2, and 3 are neutral after 749 initialization rounds.
Using the zero key, neutral variables are observed after 755 rounds (SV 0, 1
are neutral).

— with 23 CV, and SV in the key, we observed nonrandomness after 758 initial-

ization rounds (SV 1, 2, 3 are neutral). Using the zero key, nonrandomness
was observed after 761 rounds (SV 0 is neutral).

— with 30 CV, and SV in the key, we observed nonrandomness after 772 initial-

ization rounds (SV 0, 2, 4 are neutral). Using the zero key, nonrandomness
was observed after 782 rounds (SV 2, 3, 4 are neutral).

With the the new chosen cubes we obtain the following results:

— with 24 CV, we observe that the resultant superpoly after 772 initialization

rounds is constant, hence we found a distinguisher on up to 772 rounds.
Using the neutrality test, for the zero key, we detected nonrandomness over
up to 842 rounds (the 4 first key bits are neutral).

— with 27 CV, we observe that the resultant superpoly after 785 initialization

rounds is constant, hence we found a distinguisher on up to 785 rounds.
Using the neutrality test, for the zero key, we detected nonrandomness over
up to 885 rounds (bits 0, 3, and 4 of the key are neutral).

— with 30 CV, we observe that the resultant superpoly after 790 initialization

rounds is constant, hence we found a distinguisher for Trivium with up to
790 rounds.

Better results are obtained when the SV’s are in the key, not the IV; this is
because the initialization algorithm of Trivium puts the key and the IV into
two different registers, which make dependency between bits in a same register
stronger than between bits in different registers.

In comparison, [I0], testing the constantness of the superpoly, reached 736

rounds with 33 CV. The observations in [8], obtained by testing the linearity of
SV in the key, lead to detectable nonrandomness on 748 rounds with 23 CV, and
on 771 rounds with 30 CV.
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6 Conclusions

We applied cube attacks to the reduced-round MD6 compression function, and
could recover a full 128-bit key on 14-round MD6 with a very practical complex-
ity of 222 evaluations. This outperforms all the attacks obtained by the designers
of MDG6.

Then we introduced the notion of cube tester, based on cube attacks and
on property-testers for Boolean functions. Cube testers can be used to mount
distinguishers or to simply detect nonrandomness in cryptographic algorithms.
Cube testers do not require large precomputations, and can even work for high
degree polynomials (provided they have some “unexpected” testable property).

Using cube testers, we detected nonrandomness properties after 18 rounds of
the MD6 compression function (the proposed instances have at least 80 rounds).
Based on observations in [9], we extended the attacks on Trivium a few more
rounds, giving experimentally verified attacks on reduced variants with up to
790 rounds, and detection of nonrandomness on 885 rounds (against 1152 in the
full version, and 771 for the best previous attack).

Our results leave several issues open:

1. So far cube attacks have resulted from empirical observations, so that one
could only assess the existence of feasible attacks. However, if one could
upper-bound the degree of some Boolean component (e.g. of MD6 or Triv-
ium) after a higher number of rounds, then one could predict the existence
of observable nonrandomness (and one may build distinguishers based on
low-degree tests [1]). The problem is closely related to that of bounding the
degree of a nonlinear recursive Boolean sequence which, to the best of our
knowledge, has remained unsolved.

2. Low-degree tests may be used for purposes other than detecting nonrandom-
ness. For example, key-recovery cube attacks may be optimized by exploit-
ing low-degree tests, to discover low-degree superpolys, and then reconstruct
them. Also, low-degree tests for general fields [I3] may be applicable to hash
functions based on multivariate systems [4], which remain unbroken over
fields larger than GF(2) [2].

3. Our attacks on MD6 detect nonrandomness of reduced versions of the com-
pression function, and even recover a 128-bit key. It would be interesting to
extend these attacks to a more realistic scenario, e.g. that would be applica-
ble to the MD6 operation mode, and/or to recover larger keys.

4. One may investigate the existence of cube testers on other primitives that are
based on low-degree functions, like RadioGatin, Panama, the stream cipher
MICKEY, and on the SHA-3 submissions ESSENCE [18], and Keccak [3]. We
propose to use cube attacks and cube testers as a benchmark for evaluating
the algebraic strength of primitives based on a low-degree component, and
as a reference for choosing the number of rounds. Our preliminary results on
Grain-128 outperform all previous attacks, but will be reported later since
they are still work in progress.
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Details on MD6

The word S; is a round-dependent constant: during the first round (i.e., the first
16 steps) S; = 0123456789abcdef, then at each new round it is updated as

S; « (So < 1)@ (Sp > 63) ® (S;_1 A 7311c2812425cfa).

The shift distances r; and ¢; are step-dependent constants, see Table @l

Table 4. Distances of the shift operators used in MD6, as function of the step index
within a round

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r, 10 5 13 10 11 12 2 7 14 15 7 13 11 7 6 12
g 11 24 9 16 15 9 27 15 6 2 29 8 15 5 31 9
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The number of rounds r depends on the digest size: for a d-bit digest, MDG6
makes 40 + d/4 rounds.

Table 5. Examples of maxterm equations for 14-round MD6, with respect specified
cube are listed

Maxterm equation Output index
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