
Gel: A Generic Extensible Language

Jose Falcon and William R. Cook

Department of Computer Science
University of Texas at Austin

jofalcon@mail.utexas.edu, wcook@cs.utexas.edu

Abstract. Both XML and Lisp have demonstrated the utility of generic syn-
tax for expressing tree-structured data. But generic languages do not provide the
syntactic richness of custom languages. Generic Extensible Language (Gel) is a
rich generic syntax that embodies many of the common syntactic conventions
for operators, grouping and lists in widely-used languages. Prefix/infix opera-
tors are disambiguated by white-space, so that documents which violate common
white-space conventions will not necessarily parse correctly with Gel. With some
character replacements and adjusting for mismatch in operator precedence, Gel
can extract meaningful structure from typical files in many languages, including
Java, Cascading Style Sheets, Smalltalk, and ANTLR grammars. This evalua-
tion shows the expressive power of Gel, not that Gel can be used as a parser for
existing languages. Gel is intended to serve as a generic language for creating
composable domain-specific languages.

1 Introduction

The traditional approach to implementing concrete syntax for a language is to define
a custom grammar and a parser to read the language, and possibly a pretty-printer to
output or reformat programs. Examples include programming languages, grammars for
parser generators, configuration files, CSS styles, and makefiles.

C/Java: int m(int[] a) { return o.m(2 * a[x++], !done); }
CSS: a:link { font-family: courier; color: #FF0000 }
Smalltalk: ˆ o m: 2 * (a at: x inc) n: done not.

ANTLR: call : ID ’(’ (a=e (’,’ b=e { a.add(b); })*)? ’)’;

A custom-designed language is generally easy for humans to read and write, al-
though they must learn specialized syntax and lexical conventions for each language.
There are many tools for creating custom languages [19,25,17] and also for creating
extensions to custom languages [7].

A second approach is to use a generic language that provides a standard concrete syn-
tax representing generic abstract trees. Examples of this approach include XML [9] and
Lisp S-Expressions [23]. A custom language can be defined within a generic language
as a subset: the Lisp programming language is a subset of S-Expressions, XHTML is a
subset of all possible XML documents. Krishnamurthi has called this technique bicam-
eral parsing [21]. A language designer can choose how to encode high-level concepts

W.M. Taha (Ed.): DSL 2009, LNCS 5658, pp. 58–77, 2009.
c© IFIP International Federation for Information Processing 2009

Gel: A Generic Extensible Language 59

using the generic syntax. For example, if x<3 then print(x) could be represented this
way:

Lisp: (if (< x 3) (print x))

XML: <if><test op=“lt”><var name=“x”/><const>3</const></test>
<then><call fun=“print”><arg>x</arg></call></then></if>

It is easy to embed or compose different languages in one document. Humans only
have to learn one set of syntactic conventions. Parsing, pretty-printing, and other tools
can be reused.

A major negative of generic languages is that humans generally find them less ap-
pealing to read and write than custom languages. Compared to languages with a custom
grammar, both Lisp and XML are impoverished syntactically: a few delimiters and sim-
ple syntactic forms are repeated many times.

In this paper we present Generic Extensible Language (Gel), a language that embod-
ies many of the common syntactic conventions of popular languages, including C/Java,
Smalltalk [15], Cascading Style Sheets (CSS) [22] and some grammar notations [25].
The goal of this research is to define a generic language based on the syntactic conven-
tions that have evolved over the last 40 years.

Gel has a uniform fixed syntax supporting arbitrary prefix, suffix, and infix operators,
lists, grouping, keywords, sequences of adjacent expressions. and string interpolation.
It has a novel quoting construct to support meta-languages.

Gel is extensible in the sense that XML is extensible. It allows user-defined operators
and flexible use of available syntactic forms. Any practical language using Gel would
define a subset of the possible syntactic forms, just as a language defined over text is a
subset of all possible strings. Defining a language using Gel involves careful selection
of operators with appropriate precedences and selection of keywords and appropriate
grouping and expression patterns.

We evaluate Gel by analyzing how well the Gel AST corresponds to the AST created
by a traditional parser. Ignoring some conflicts in operator precedence, Gel extracts a
good representation of the structure of Java programs, CSS styles, Smalltalk programs,
and Corba IDL definitions. These examples demonstrate the expressive power of Gel.
The goal is not to create actual parsers for these languages, but to use Gel as a stan-
dard input format for future domain-specific languages. The benefit is that Gel can eas-
ily support embedding one domain-specific language in another; for example, allowing
a Java-like language to include CSS-like fragments directly in an expression, without
switching to a different parser.

2 Introduction to Gel

This section introduces Gel by example. For reference, an informal summary of Gel
syntax in EBNF is given in Figure 1. A formal grammar is given in Section 3. Gel
expressions include familiar identifiers, numbers, strings which can be combined with
binary operators and grouped in the familiar way.

60 J. Falcon and W.R. Cook

Precedence of expressions, highest first
e := s | t | (e) | [e] | • 10. symbol, string, group, op

| ‘e 9. quoted expression
| ee 8. sequence/function application
| e•e 7. binary without spaces
| •e | e• | •e• 6. unary prefix and/or suffix
| e e 5. sequence with space
| e • e 4. binary with spaces
| e ? , ? e 3. comma list
| e: | :e | :e: | {e} 2. keyword forms and braces
| e ? ; ? e 1. semicolon list

• := ‘∗[., ˆ˜, */%, +-, @#, <>, !=, &, |, :?$]+ arbitrary operators
s := [a-zA-Z0-9]+ symbols
t := ’r∗’ | "p∗" strings
r := \xXX | \uXXXX | \[tnr’"\$] | char text encoding
p := $s•?g∗ | r string interpolation
g := [e] | (e) | {p∗} interpolation group

:= white-space or begin/end of group/file

Fig. 1. Informal summary of Gel syntax with expression precedence

s1 = x * 3 && c == "str" (&& (= s1 (* x 3)) (== c “str”))
(s1 = (x * 3)) && (c == "str") (&& (= s1 (* x 3)())() (== c “str”)())
{s1 = [x * 3]} && [c == "str"] (&& (= s1 (* x 3)[]){} (== c “str”)[])

The expression on the left is input text. The expression on the right is a Lisp-like
presentation of the generic abstract syntax tree (GAST) that results from parsing the text
on the left using Gel. The grouping symbols are indicated in GAST by a superscript. The
GAST notation preserves the complete structure of the input, even though parentheses
are often ignored in later semantic processing of expressions. Remember that Gel only
specifies syntax; the semantics of these notations are defined by the particular language
encoded using Gel.

Gel interprets any contiguous digits, letters, and underscores as symbols. As a result,
Gel accepts 3F5BA2, 10pt, 3 D and 10e23 as symbols. The validity of these symbols
is determined by the client program using Gel. Handling of more complex floating point
formats is discussed in Section 2.4.

The set of operators is not fixed. Instead, operators are constructed like identifiers:
any combination of operator symbols is an operator.

{1..9} :-> [c =*= "str"] (:-> (.. 1 9){} (=*= c “str”)[])

Several other languages, including Haskell[18], Scala[24] and Smalltalk[15], allow
arbitrary infix operators.

The precedence of most operators is defined by their first character as defined in Fig-
ure 2. There is a special case for assignment operators [24] which end in [[=]] and do not
start with [[!=<>]], where [[!=<>]] represents the set of characters {!,=,<, >}.

Gel: A Generic Extensible Language 61

precedence first character middle last description
13 [[.]] any not [[=]] dots
12 [[ˆ˜]] any not [[=]] high
11 [[*/%]] any not [[=]] multiplicative
10 [[+-]] any not [[=]] additive
9 [[@#]] any not [[=]] middle
8 [[<>]] any any relational
7 [[!=]] any any equality
6 [[&]] any not [[=]] and
5 [[|]] any not [[=]] or
4 [[:?$]] any not [[=]] low
3 not [[!=<>]] if len>1 any [[=]] assignment
2 [[,]] — — comma list
1 [[;]] — — semicolon list

where any = [[ˆ˜*/%+-@#!=<>&|:?$‘]]

Fig. 2. Gel precedence table of operator patterns and precedence levels

The comma, semicolon, and grouping characters are called punctuation in Gel. Punc-
tuation symbols do not combine with other operators, and are always taken as single
characters. Also, white space is always ignored around punctuation, while it is signifi-
cant around other operators, as described below.

Multiple uses of the same operator are collected together into an n-ary application,
so they have no associativity. Different operators with the same precedence level use
right-associativity. While the operators resemble the precedence of many languages,
they do not match any perfectly. Although Gel can parse Java code, some operators are
given the wrong precedence; the goal of Gel is not to create a better Java parser, but to
be able to parse Java-like languages generically. Gel does not support ternary operators,
but Java’s c ? a : b operator can be parsed as a combination of binary operators.

c ? a : b + 2 (? c (: a (+ b 2)))

Many programming languages use comma and semicolon to represent lists of iden-
tifiers and lists of statements.

{ 2, 3, 5, 7, 13 } (, 2 3 5 7 13){}

one; two; three (; one two three)
(a, 1); (a + 1, b + 2) (; (, a 1)() (, (+ a 1) (+ b 2))())
a, 1; a + 1, b + 2 (; (, a 1) (, (+ a 1) (+ b 2))

Comma has higher precedence than semicolon, and they both have lower precedence
than other operators, so the last two examples above are equivalent. An empty object ε
is inserted when list items are missing, even at the end of a list:

a,,b (, a ε b)
{ a *= b + 1; } (; (*= a (+ b 1)) ε){}

62 J. Falcon and W.R. Cook

Operators are treated as symbols in situations where they do not make sense as binary
(or unary) operations. Comma and semicolon are always treated as operators, unless
they are directly enclosed in a group.

ops = (*, +, -, /) (= ops (, * + - /)()))
others = [(,) + (;) + ($)] (= others (+ ,() ;() $())[])

2.1 Unary Operators

Any operator (other than comma and semicolon) can be used as a prefix or suffix unary
operator, on any expression:

x?, *p++, !done, pat* (, [x]? *[p]++ ![done] [pat]*)

In the abstract notation on the right, unary operators have a special notation. For any
expression x and any operators ◦ and �, the prefix form is ◦[x] , the suffix form is [x]�
and a combined prefix/suffix form is ◦[x]� .

The combination of binary and unary operators allows Gel to represent the typical
notation for regular expressions which are also used in modern versions of Extended
BNF and other notations for patterns.

(a+ | b+)? | x* (| [(| [a]+ [b]+)]? [x]*)

Gel does not support compound grouping symbols, although they can be represented
by a prefix and/or suffix operator on a standard group.

@["a", "b"] @[(, “a” “b”)[]]

=[x, y, z]= =[(, x y z)[]]=
<{ #2342; @:option** }> <[(; #[2342] @:[option]**){}]>

2.2 Sequences

Gel allows sequences of expressions that are not separated by an operator. In Haskell,
sequences of expressions denote function application. In Smalltalk, a sequence of identi-
fiers following an expression represent postfix unary operators. In both cases sequences
have higher precedence than binary operators.

Haskell: f a 3 + g 10 (+ (f a 3) (g 10))
Smalltalk: obj size + item max (+ (obj size) (item max))

In the abstract syntax on the right, a sequence a b is represented by an whitespace
operator: (a b). It does not matter to Gel that the interpretation of these syntactic
forms is completely different in Haskell and in Smalltalk. What matters is that they
follow common syntactic conventions.

Java and C do not have explicit sequence operators, but sequences arise in declara-
tions, statements and in some expressions.

Gel: A Generic Extensible Language 63

static int f (int x, bool y) (static int f (, (int x) (bool y))())
if (x > y) { return x; } (if (> x y)() (; (return x) ε){})
(String) x == a [i] (== (String() x) (a i[]))

Sequences are also used in grammars and regular expressions.

p ::= id | ’(’ p ’)’ (::= p (| id (’(’ p ’)’)))
(’+’ | ’-’)? (’0’ .. ’9’)+ ([(| ’+’ ’-’)()]? [(.. ’0’ ’9’)()]+)

Sequences enable Gel to parse compound expressions without any specific informa-
tion about what the sequence should contain.

2.3 Spaces

The combination of arbitrary infix, prefix and suffix operators with sequences of ex-
pressions is highly ambiguous. There would not be any reasonable way to parse the
following generic grammar without additional syntactic clues:

e ::= e op e | op e | e op | e e

The simple expression a + * b can be parsed five different ways (assuming + and
* are separate operators). Gel is based on common conventions for formatting expres-
sions, using white spaces, that distinguish these cases. Parsers are traditionally written
to ignore white-space, but humans do not ignore it. Gel uses white-space to distinguish
three of the interpretations of this expression (here, an equivalent parenthesized version
is provided):

a + *b ≡ a + (*b) (+ a *[b])
a+ * b ≡ (a+) * b (* [a]+ b)
a+ *b ≡ (a+) (*b) ([a]+ *[b])

Two other interpretations require parentheses in Gel:

(a+)* b ≡ ((a+)*) b ([[a]+]* b)
a +(*b) ≡ a (+(*(b)) (a +[*[b]])

There is one remaining way to include white-space in the expression. It is not clear
how this expression should be parsed.

a + * b

One option is to make it an error. However, it is similar to a more common situation
with a freestanding operator before or after an expression. In this case, Gel interprets
the operator as if it were in parentheses:

* x + 3 ≡ (*) x + 3 (* (+ x 3))
a [@ 1] $ ≡ a [(@) 1] ($) (a (@ 1)[] $)
[+ -, * /] ≡ [(+) (-), (*) (/)] (, (+ -) (* /))[]

a + * b ≡ a (+) * b (* (a +) b)

The final example illustrates how the ambiguous expression above is covered by this
rule. The last operator is taken as a binary operator, while previous operators are parsed

64 J. Falcon and W.R. Cook

as symbols. The motivation for this choice is to allow Gel to act as a flexible tokenizer.
Gel does not reject expressions that might have a meaningful interpretation.

Spaces are significant in most languages. For example, in Java int x does not
mean the same thing as intx. Fortran is the only language we know for which spaces
are truly optional [1].

The precedence rules for sequences and operators do not allow Java to be parsed
perfectly, even using the pretty-printing conventions. In some cases sequences should
have higher precedence than comma, and in other cases comma should have higher
precedence:

fun(int x, int y) (fun (, (int x) (int y))())
int x, y; (; (, (int x) y) ε)

There is no way to parse both int x, int y and int x, y correctly with
generic precedence for sequences and comma. Gel assigns sequence higher precedence
than comma so that function headers, as in the first example, could be parsed correctly.
This precedence ordering, however, does not correctly parse the second example. We
argue that this is not a defect of Gel, but rather an inconsistency in the precedence of
the comma operator in Java.

2.4 Spaced and Non-spaced Operators

Spacing also affects the interpretation of binary operators in Gel. The examples in
Section 2.2 depend on sequences of expressions having higher precedence than binary
operators. However, there are other situations in which binary operators should have
higher precedence. One example comes from ANTLR grammars, which use an equal
sign as a high-precedence binary operator.

exp : a=term (’+’ b=term)*

Does “a=b c” parse as (= a (b c)) or as ((= a b) c)? In this case the desired
parse is the latter, but this violates the rule that sequences have higher precedence than
binary operators. Note that the convention in ANTLR is to have no white-space around
the = operator, in contrast to the convention when formatting assignment operators in
Java.

The solution in Gel is to make operators without white space have higher precedence
than operators surrounded by white-space, including sequences separated by white-
space. This is clearly a controversial decision. It matches conventions in languages
as diverse as Haskell and ANTLR, as examples illustrate below. Using this rule, the
ANTLR expression parses correctly in Gel:

exp : a=term (’+’ b=term)*
(: exp ((= a term)〈〉 [(’+’ (= b term)〈〉)()]*))

The general rule is that a chunk of text with no spaces or punctuation is always
parsed as a unit, as if it were parenthesized. These chunks are then combined by any
operators with spaces. The same precedence rules are applied to non-spaced and spaced
operators. Thus white-space acts as an implicit grouping operator, in effect a kind of

Gel: A Generic Extensible Language 65

parentheses. This idea is represented explicitly in the abstract representation using a 〈〉

as a grouping operator.
Unary prefix and suffix operators can only occur at the beginning or end of a chunk,

and they always apply to the result of the entire chunk.

2 * -3.14ˆ20 (* 2 −[(ˆ (. 3 14) 20)])
x=A* | y=B? (| [(= x A)]* [(= y B)]?)
&a+b+c* &[(+ a b c)]*

The first example illustrates how the decimal point in floating point numbers is in-
terpreted as a binary operator. Java breaks sequences of operator characters into tokens,
but Gel does not. For example, the Gel expression x--*++y has the binary operator
--*++ but in Java it parses as (x--)*(++y). In Gel it must be written x-- * ++y.
Java is not completely consistent in this respect, because it fails to parse x+++++y.

A sequence without spaces, which has high precedence than all other operators, can
be used for casting, function application and array access in Java. Note that sequence
has higher precedence than dot in Gel, but lower precedence in Java.

f(x, y)[n] (f (, x y)() n[])〈〉

(Integer)a.b (. (Integer() a) b)〈〉

(Integer) a.b (Integer() (. a b)〈〉)
o.m(a) (. o (m a()))〈〉

o.m (a) ((. o m)〈〉 a())

These examples illustrate how spaces affect the grouping of operators. The punc-
tuation characters (parentheses, brackets, braces, comma and semicolon) are always
interpreted the same whether or not they have white-space around them.

Gel can also parse typical email addresses and URLs, although it does not conform
to the full specification of either.

wcook@cs.utexas.edu (@ wcook (. cs utexas edu))〈〉

http://google.com/search?query=Gel&n=1#m
(:// http (? (/ (. google com) search) (# (& (= query Gel) (= n 1)) m)))〈〉

This example is only meant to be suggestive of the kinds of notations that Gel could
parse, in more restricted contexts. The actual email and URL standards [11,2] allow
many other characters that would be interpreted as operators in Gel and ruin the parse.

The Haskell period symbol uses a special case of the general rule for spaces and
operators. Without spaces, the period between identifiers represents module paths, but
with spaces it is a binary operator, as seen in this one-line implementation of the Unix
sort command:

(sequence . map putStrLn . List.sort . lines) =<< getContents

Gel parses this Haskell expression correctly:

(=<< (. sequence (map putStrLn) (. List sort)〈〉 lines)() getContents))

66 J. Falcon and W.R. Cook

2.5 Keywords and Curly Braces

A keyword is a special identifier often used to indicate a particular syntactic structure.
In most languages keywords are reserved words that cannot be used for any other pur-
pose. One common use is to identify control flow structures, for example for, while,
if/else, switch/case, try/catch and return. Some keywords act as oper-
ators, for example new and instanceof in Java. The set of keywords differs from
language to language. Some languages, including Smalltalk, do not have any keywords.

Many uses of keywords in Java can be parsed in Gel without any specific information
about keywords.

while (!b) { b = next(); } (while ![b] () (; (= b (next ε())〈〉) ε){})
p = new Point(3, 4) (= p (new (Point (, 3 4)())〈〉))
if (a>b) f(i); else return; (; (if (> a b)() (f i())〈〉) (else re-

turn))
if (e instanceof Point) m(e) (if (e instanceof Point)() (m e())〈〉)
for (i = 9; i > 1; i--) f(i) (for (; (= i 9) (> i 1) [i]−−)() (f i())〈〉)

This is not a general solution, however. The statement return x + y parses in-
correctly as (return x) + y because sequence has higher precedence than +. A
similar situation happens in ML or Haskell, which do not require parentheses as in Java
and C, so control flow statements do not parse correctly in Gel.

if a = b then 1 else 2 (= (if a) (b then 1 else 2))

These examples illustrate a common purpose for keywords — to label or combine
expressions to form statements. When viewed from this perspective, keywords can be
understood as a kind of low-precedence operator. In Gel, keywords are identified by
a prefix or suffix unary colon operator. Keywords enable more of Java to be parsed
correctly with Gel:

return: x + y; (; ([return]: (+ x y)) ε)
if: a = b then: 1 else: 2 ([if]: (= a b) [then]: 1 [else]: 2)

Keywords have precedence greater than semicolon but less than comma. In the ab-
stract syntax (on the right) keywords are combined by a double-barred sequence opera-
tor, . Gel generalizes the notion of a keyword to allow any expression with a prefix or
suffix colon operator to be a keyword.

n-val: 23; (test): 5 (; ([(- n val)]: 23) ([test()]: 5))

In addition, groups in curly braces are also treated as keywords. This convention
mirrors usage in C/Java and CSS, where such groups are not included in sequences.
Compare these examples:

a + b [more] ≡ a+(b[more]) (+ a (b more[]))
a + b { more } ≡ (a+b){more} ((+ a b) more{})

Gel: A Generic Extensible Language 67

As a result, Gel parses these forms correctly:

class: C implements: A, B { ... }
([class]: C [implements]: (, A (B ...{}))

.info,h1 { color: #6CADDF }
((, .[info] h1) ([color]: #[6CADDF]){})

if: (b) { ... } a = 3; (; ([if]: (b() ...{})) (= a 3) ε)

If these groups were not treated the same as keywords, they would parse as
class: C implements: A, (B { ... })

and
if: (((b) { ... } a) = 3);
The last example above illustrates a final special case: when a curly group is inside

a semicolon operator, the group has an implicit semicolon added after it. In C++ the
semicolon is required after a class declaration, but not after a method body. This special
case for curly groups affects some other languages badly. For example, many parser
generators use curly groups to enclose parser actions, so they do not parse correctly in
Gel. The solution is to add a unary operator to the group, as in *{ ...}, or to use a
different grouping operator.

Gel also cannot meaningfully parse languages that use keywords for grouping, e.g.
begin/end or if...end if, although more modern languages tend to use {} for
indicating block structures. Parsing these examples correctly would require specific
knowledge of the structure of statements.

There is a special case for keywords or curly braces that are the direct argument of a
binary operator. In this case they keyword is nested inside the binary operator.

p = new: Point(3, 4) (= p ([new]: (Point (, 3 4)())〈〉))
x = {a} + b * test: x ((= x (+ a{} (* b ([test]: x)))))
b * k1: k2: 99 (* b ([k1]: [k2]: 99))

The design of keywords is the most difficult part of Gel. We explored the option of
user-defined keywords in a document or block header, but this complicated the language
and interrupted the flow of content in a document. The colon marker is lightweight and
explicit.

2.6 Quoting

Quoting is useful to indicate that a syntactic form has a special meaning. In Lisp, any
expression can be quoted. Syntactically, this wraps the expression in a list beginning
with the symbol quote, which tells the Lisp interpreter to use the expression as a literal
data value. Quotes are also useful in defining grammars. They can be used to distinguish
the syntax being defined from the meta-syntax of the grammar definition language. To
illustrate, first consider a conventional presentation of the syntax of EBNF in EBNF:

68 J. Falcon and W.R. Cook

grammar EBNF {
grammar ::= "grammar" id "{" rule (";" rule)* "}" ;
rule ::= id "::=" pat ;
pat ::= id | str | pat pat | pat "|" pat | pat "*" ;
id ::= letter+ ;
str ::= quote any* quote

}
This is a typical grammar for parsing text streams, in which the tokens of the lan-

guage being defined are enclosed in quotes. It assumes that the patterns letter and
quote are predefined. This grammar is highly ambiguous, requiring significant work
to resolve these ambiguities. More work would be needed to deal with white-space.

Gel suggests another possibility where the operators "|" and "*" are parsed as
actual operators rather than strings. The operators that are part of the language being
defined are marked with a backquote character:

id | ‘id | pat pat | pat‘|pat | pat‘*

This is a tree grammar [14] that recognizes Gel trees that represent EBNF patterns.
The expression pat‘|pat is written as a chunk (without spaces) so that it will have
higher precedence than the other | operators. In the example below it is parenthesized
instead. The full grammar is below:

grammar EBNF {
grammar ::= (‘grammar ID { rule* });
rule ::= (ID ‘::= pat);
pat ::= ID | ‘ID | pat pat | (pat ‘| pat) | pat‘*;

}
In Gel any expression or operator can be quoted. A quoted operator has exactly the

same precedence as its unquoted version. That is, Gel will create the same structure for
a quoted expression and an unquoted version.

(grammar EBNF
(; (::= grammar (‘grammar ID [rule]* {})())

(::= rule (‘::= ID pat)())
(::= pat (| ID ‘ID (pat pat) (‘| pat pat) [pat]‘*))){})

Gel quoting can also be combined with a prefix operator to implement back-quote
substitution as in Lisp. This kind of structural substitution has a counterpart in strings
as defined in the next section.

2.7 Strings and Interpolation

Many languages allow variables or expressions to be embedded inside a string, a tech-
nique called string interpolation. For example, "the $nth word" is equivalent to
"the " + nth + " word". String interpolation is a short-hand for string con-
catenation. In Gel the $ character can be followed by an optional symbol, then an op-
tional operator, and then any number of groups. The parenthesis and square bracket

Gel: A Generic Extensible Language 69

groups contain Gel, while the curly bracket groups enclose strings. That is, the text
inside ${...} is implicitly quoted and can contain additional interpolations.

"$heading[2+n]{Section $n} equation: $={2+n}"
(+ (heading (+ 2 n)[] (“Section ” n$){})$ “ equation: ” (= “2+n”{})$)

Note that Gel’s interpolations generalized both Perl notation and also TEX [20]. After
substituting $ for \, Gel can extract meaningful structure from many (but not all) TEX
documents. Gel could be used for a Latex-like formatting language, but the Gel operator
syntax could be used for math instead of text encoding as in TEX.

3 Gel Specification

Gel is defined by a concrete grammar, an abstract syntax, and a set of rewrite rules to
handle keywords. The grammar of Gel is given in Figure 3. As is standard, x* means zero
or more repetitions of x, x+ is one or more, and x? means zero or one copy of x. A set of
characters in brackets [[abc]] represents exactly one character from the set. Character sets
preceded by a ¬ symbol represents exactly one character that is not in the character set,
and sets superscripted by a number n represent n repetitions. Ranges may also appear in
superscripts as n − m. White-space tokens are not ignored, but are represented explic-
itly in the grammar as [[]]. Comments can only occur in conjunction with white-space.
The reference parser for Gel is defined using Rats! [17], a Parsing Expression Grammar
system [13]. Syntactic predicates are needed in the rule for Bn+1 to identify extra oper-
ators as defined at the end of Section 2.3. More details and the Gel implementation are
available for download at http://www.utexas.edu/users/wcook/Gel.

The first three productions represent lists, separated by semicolon (op1) and comma
(op2), of optional items. The nonterminals B3 through Bn represent binary expressions
with opi surrounded by spaces. The [[]] terminal represents any number of white-space
characters, including single spaces, tabs, return feeds and new lines. These nonterminals
have lower precedence than sequence, which is a list of chunks that do not contain
spaces. The Bn+1 rule allows operators to be part of a sequence, when they cannot be
interpreted as binary operators. The nonterminals Ci are analogous to Bi except the
operators do not have spaces. The Cn+1 rule allows sequences of primaries that are not
separated by spaces.

Compound operators are composed of any sequence of operator characters. The
precedence order of operators is given by the table in Figure 2. For most operators
the precedence is given by the precedence of the first character. There is a special case
for assignment operators, which end with equal [[=]] and do not begin with [[!=<>]].

A primary is a symbol, string, or group. The string1 and string2 rules define strings
with single and double quotes, respectively. Both strings allow Java-style escaping with
backslash. The [[$]] character is an interpolation character in double-quoted strings. It
allows interpolation of Gel expressions into a string. The single back-quote character
(‘) is used for quoting. Any operator or primary may be quoted.

The behavior of keywords in Gel is not implemented by the parser, but is handled
by the rewrite rules in Figure 4 during construction of the abstract syntax tree. The first
rule combines operators to eliminate associativity. Keywords in a sequence are moved

70 J. Falcon and W.R. Cook

expression ::= list quote? [[;]] expression | list
list ::= optional quote? [[,]] list | optional

optional ::= [[]]? B3? [[]]?
Bi ::= Bi+1 [[]] opi [[]] Bi | Bi+1 for i ∈ {3..n}

Bn+1 ::= op [[]]? | (op [[]])* sequence ([[]] op)*
sequence ::= chunk ([[]] chunk)*

chunk ::= op? C3 op?
Ci ::= Ci+1 opi Ci | Ci+1 for i ∈ {3..n}

Cn+1 ::= primary+
opi ::= quote? [[‘:$@?|&!=<>+-*/\%˜ˆ#.]]+

where i is the precedence as defined in Figure 2
op ::= op1 | . . . | opn

quote ::= [[‘]]+
primary ::= quote? (symbol | group | string1 | string2)
symbol ::= [[a-zA-Z0-9]]+
group ::= [[{]] expression [[}]] | exprGroup

string1 ::= [[’]] (escape | ¬[[’]])* [[’]]
string2 ::= [["]] (escape | interpolate | ¬[["]])* [["]]
escape ::= [[\]][[u]][[0-9A-F]]4 | [[\]][[0-7]]1−3 | [[\]]

interpolate ::= [[$]] symbol? op? (string3 | exprGroup)*
string3 ::= [[{]] (escape | interpolate | ¬[[}]])* [[}]]

exprGroup ::= [[(]] expression [[)]] | [[[]] expression [[]]]
ignore ::= [[/]][[/]] (¬newline)* newline | [[/]][[*]] any* [[*]][[/]]

Fig. 3. Gel grammar, where n is the number of operator precedence levels

(� (� x̄) x) ⇒ (� x̄ x) (� x (� x̄)) ⇒ (� x x̄)
(k x) ⇒ (k x) (x k) ⇒ (x k)

(◦ (x̄ v1) v2) ⇒ (x̄ (◦ v1 v2)) (◦ v1 (v2 x̄)) ⇒ ((◦ v1 v2) x̄)
((x̄1) (x̄2)) ⇒ (x̄1 x̄2)

((x̄) x) ⇒ (x̄ x) (x (x̄)) ⇒ (x x̄)
(; x̄1 (x̄2 x{} x̄3) x̄4) ⇒(; x̄1 (x̄2 x{}) (x̄3) x̄4)

�, ◦ ∈ op, ◦ �∈ [[;]], x is any Gel, k ∈ { [x]: , :[x] , x{} }, v �∈ { x:, :x, x{}, (x̄) }

Fig. 4. Keyword rewrite rules

x ∈ Gel = symbol | “str” | (� x1 . . . xn) | �[x] | [x]� | �[x]� | ‘x | xG | ε

symbol ∈ [[a-zA-Z0-9]] +

� ∈ ; | , | [[‘:$@?|&!=<>+-*/\%˜˜ˆ#.]]+ | |
G ∈ Group = () | {} | [] | 〈〉

where means sequence, means keyword sequence, 〈〉 means chunk

Fig. 5. Gel abstract syntax

Gel: A Generic Extensible Language 71

outside of other operators. The last rule adds an implicit semicolon after a group. The
abstract syntax of Gel is defined in Figure 5.

4 Evaluation

We evaluate Gel by testing how well it can extract the structure from existing languages
that are defined by a custom grammar. It is not enough to determine whether Gel accepts
a given input, because Gel accepts almost any input with balanced grouping operators.
The key question is whether Gel can extract meaningful structure from typical doc-
uments that follow standard formatting conventions. These tests were instrumental in
designing Gel.

Let S be a source file of a language L, and let L(S) be the AST of S created by the
L parser. The same source file S can be parsed with Gel to produce a GAST, Gel(S).
The goal is to determine if Gel(S) has the same structure as L(S).

However, the L(S) AST cannot be compared to the GAST because each uses a dif-
ferent abstract syntax. To overcome this problem, we apply the idea that the structure of
an abstract tree can be made explicit in concrete syntax by adding parentheses at every
level of the tree. The implementation of this idea starts with a printer P for language
L having the property that L(P (T)) = T for any abstract tree T in L. We then con-
vert P into a parenthesizing printer P ′ that prints a tree T while adding parentheses
around every abstract node as it is printed. The output P ′(T) may not be a valid in-
stance of language L, but it can be parsed with Gel. The extra parentheses force Gel to
create a parse three that mirrors the structure of L(S). Gel has captured the structure
of L if Gel(P ′(L(S))) = Gel(S) ignoring parentheses. As an example, consider this
Smalltalk fragment and its parenthesized versions:

x min to: args size * 2 do: aBlock
((x min) [to]: (* (args size) 2) [do]: aBlock)

((x) min) to: (((args) size) * (2)) do: (aBlock)
((x() min)() [to]: (* (args() size)() 2())() [do]: aBlock())

Not all languages follow Gel’s syntactic standards. Although there can be signif-
icant differences, sometimes the differences are small, for example comment mark-
ers and operator choices may conflict. Smalltalk separates statements with a period,
which is a high-precedence binary operator in Gel. If Smalltalk used a semicolon,
as in Java, Gel would parse it more accurately. We handle minor syntactic issues by
converting symbols before parsing with Gel. This change preserves the key character-
istics of Smalltalk; it just uses a different symbol. A fixup transformation T for lan-
guage L is applied to the files before they are parsed by Gel. These transformations are
simple character or reserved word substitutions. With transformation, the comparison
is Gel(T (P ′(L(S)))) = Gel(T (S)). We have successfully applied this technique to
Smalltalk, Java, CSS and CORBA IDL. For a small set of representative sample docu-
ments, Gel extracts the exact same structure as the custom parser, in all but a few cases
as mentioned below. There may be other syntactic mismatches that did not show up in
our test documents.

72 J. Falcon and W.R. Cook

4.1 Java

Gel operators and precedence are based on Java, but Gel does not have exactly the same
operator precedences, so it will not parse Java precisely. We tested Gel against Java
documents whose operators align with Gel precedence. Other issues in Java are related
to sequences, where two syntactic structures are placed next to each other with just a
space between them.

– Declarations of multiple variables do not parse correctly, as described at the end of
Section 2.4.

– Java keywords do not parse correctly unless they are marked as Gel keywords as
mentioned in Section 2.5.

– The grammar we used for Java parses o.m() as ((. o m) ε()), while Gel parses it
as (. o (m ε())). It is debatable which of these is correct.

– Generics in Java are declared using the< and> characters, as inStack<String>.
We translated these to [...] before parsing.

– Typical white-space conventions must be followed: using white-space after a colon,
and around binary operators. Typical white-space means that int[] x must not
be written int []x although this is legal in Java, it violates coding conventions.
Similarly, p = *p2 must not be written p =* p2. We found that the reformat
command in Eclipse corrects most spacing issues in Java documents so that they
parse correctly with Gel.

A preprocessor used a total of 12 modifications rules to make the above changes to
all test cases. We tested Gel on a 300 line program and a 5740 line program generated
by the Rats! parser generator.

4.2 Smalltalk

The Gel syntax closely resembles and generalizes Smalltalk grammar. Keywords in
Smalltalk are identified by a colon suffix. Arbitrary binary operators use infix notation,
and have higher precedence than keywords. Unary messages are represented by a se-
quence of symbols separated by spaces, with higher precedence than binary operators.
Parentheses, braces, and brackets are used for grouping.

There are problems with parsing using Gel:

– Statements are terminated or separated by periods. We translated these semicolons
before parsing with Gel.

– Cascaded message sends are separated by semicolons. These become ambiguous
if period is replaced by semicolon. We insert a special “previous” token after the
semicolon to make reuse of the previous message target explicit. These message
sends must also be enclosed in parentheses if the target object is returned.

– Binary operators in Smalltalk all have the same precedence.
– The conventional storage format for Smalltalk programs (the method change list)

does not have grouping constructs that can be parsed by Gel.
– Typical white-space conventions must be followed: using white-space after a colon,

and around binary operators.

A preprocessor used a total of 2 modifications to make the above changes on a test
case of about 100 lines.

Gel: A Generic Extensible Language 73

4.3 CSS

Most of CSS follows a typical structure with semi-colons and braces. CSS also uses
keywords tagged with colon. It uses a variety of prefix and infix operators. However,
there are problems with parsing CSS with Gel:

– Identifiers that include hyphens, e.g. background-color, parse as chunks in
Gel. This works reasonably well, although Gel is breaking up more tokens than are
necessary.

– Typical white-space conventions must be followed: using white-space after a colon,
and not separating prefix operators from their.

– Pseudo-classes look like binary colon operators, of the form link:visible.
According to one CSS grammar they should be parsed as link (:visible)
but Gel parses them as (: link visible). This does not seem like a major
issue.

– The use of numbers with a dimension, as in 16pt, is handled in Gel as an identifier,
not as a sequence of number 16 and pt. It is simple to process these tokens to
extract the dimension.

A total of 4 modification rules made the above changes on 617 lines of CSS code
taken from various websites.

4.4 Python

Although Python does not adhere to many of the conventions discussed, Gel is able
to parse Python programs. The following problems must be addressed to parse Python
correctly:

– In Gel, logical blocks of code can only be created using the three types of grouping
operators. However, Python uses indentation to specify logical blocks of code. This
is currently handled by a pre-processor, which inserts {...} groups according to
indentation rules of Python. This preprocess is a lexical transformation.

– Many statement constructs in Python use the colon character, as in if x is
True:. These can be discarded once grouping operators are created around the
logical block.

– Python uses newline to separate statements. However, these would parse as white-
space tokens in Gel, so semicolons must be inserted.

No formal tests have been done on Python.

4.5 ANTLR and Other Parser Generators

We have used Gel to parse grammar specification languages, including ANTLR [25]
and Rats! [17]. These languages use {...} as parser actions within a rule. A prefix or
suffix must be added to prevent actions from terminating the expression (according to
the keyword rule in Section 2.5). In addition, Rats! uses [A-Z] as a character class, in
effect quoting an arbitrary set of characters, as in [({]. These must quoted as strings,
or converted to the form used by ANTLR: ’A’..’Z’.

No modifications were made to ANTLR source files. We tested Gel on a 1000 line
ANTLR implementation of the Java language.

74 J. Falcon and W.R. Cook

5 Related Work

Gel is related to other generic and extensible languages, include Lisp, XML and JSON.
Gel can parse Lisp-like data [23], if single-quote is converted to backqoute, comma to $,
comments to //. Common lisp atoms *val-list* are converted to Gel chunks *[(-
val list)]* with prefix/suffix * operators, which means that they have been over-analyzed
but are still recognizable. Any sequence of non-punctuation characters without spaces
can be parsed as Gel. Operators are the main problem, since Lisp always treats them
as ordinary symbols, but Gel may parse them as binary operators. Thus (a + b) is
incorrectly parsed as (+ a b) in Gel. To express something like the correct Lisp structure
(a + b) the operator must be changed, for example enclosed in a group (a {+} b).

XML [9] cannot be parsed by Gel at all. It uses < and > as grouping characters,
and tags as grouping for large-scale units. To parse XML-like structures, a more C-like
notation is needed.

<tag attr=“value” ...>...</tag> ⇒ tag: attr=“value” ... { ... }
text ⇒ “text”

Alternatively, Gel could simulate the text-oriented nature of XML and its history in
HTML by using an interpolation-based translation:

<tag attr=“value” ...>...</tag> ⇒ $tag(attr=“value” ...){ ... }
The JavaScript Object Notation (JSON) is a subset of JavaScript that is frequently

used as a generic data encoding language [12]. Correct parsing of JSON depends on
consistent white-space conventions. It works well if colon is treated as a binary operator.

"val" : 3, "name" : "Test" (, (: “val” 3) (: “name” “Test”))
"val": 3, "name": "Test" ([“val”]: (, 3 ([“name”]: “Test”)))
"val": 3; "name": "Test" (; ([“val”]: 3) ([“name”]: “Test”))

The keyword notation in the second example groups the values awkwardly: the sec-
ond keyword is within the body of the first keyword because of the comma. If JSON
used semi-colons then Gel could parse the keyword form more naturally, as in the third
example.

Another approach to extensible languages involves languages whose syntax can be
extended with additional rules. This approach has the advantage that specific syntax
is recognized and checked during parsing. Brabrand and Schwartzbach [5] provide a
detailed summary and comparison of different systems for syntax extension [10,6].
Extensible grammars and macros are an active research area [27,8,16]. Gel does not
compete with these approaches, but may be complementary. Since any language de-
fined using Gel is a subset of all Gel inputs, it is still necessary to recognize or validate
the input as legal. The issues in defining extensible languages (subsets) within Gel are
similar to those faced by traditional extensible grammars. The primary difference is if
Gel handles the initial syntactic recognition phase (including precedence and nesting),
these issues do not need to be addressed at the level of language extensions. More work
is needed to experiment with Gel as the initial phase of a complete language engineer-
ing framework. Examples of such systems include <bigwig> [4,5] and Stratego [28].
Lisp and Scheme macros provide a similar benefit in the context of the generic syntax

Gel: A Generic Extensible Language 75

of Lisp S-Expressions. Gel is not yet part of a complete system for language definition
and syntactic extension, so it is difficult to compare its effectiveness at this level. Given
that Gel is essentially a syntactic variant of Lisp S-Expressions, the techniques devel-
oped for Lisp/Scheme should work for Gel as well. This kind of validation will not be
possible until other researchers experiment with using Gel in their own systems.

6 Conclusions

In this paper we have discussed Gel, a generic extensible language: generic because it
has a fixed syntax based on common syntactic conventions, and extensible in that it sup-
ports arbitrary unary and infix operators, arbitrary keywords and arbitrary sequencing
of expressions. We defined a set of operator precedence rules chosen to closely mimic
those of common languages, and a larger set of expression precedence rules to handle
the introduction of the sequence and keyword operators. Lastly, we developed a form
of string interpolation for extracting meaningful structure from Latex-like formatting
languages.

Gel is designed to be used as a front-end for domain-specific languages. To define
a language within Gel, appropriate operators and syntactic forms are chosen, and a
structure grammar is defined. The output tree from Gel must then be parsed to verify
that it matches the DSL structure. This process is very much like validating against an
XML Schema [26,3] but is beyond the scope of this paper. Gel enables easy syntactic
composition or embedding of different languages within each other. It may also be
possible to define a generic pretty-printer for Gel.

One argument against Gel may be that its use of white spaces makes it too fragile for
casual use. However, most programming languages are sensitive to adding new arbi-
trary spaces, or completely removing spaces. Gel accepts nearly every input document
without error, as long as grouping symbols are balanced. When used for a specific DSL,
error messages will come from later phases, when the output of Gel is validated against
the DSL structure.

During the design of Gel numerous alternatives were tried. We have worked hard to
eliminate special cases. Currently the only special cases are for assignment operators
and curly braces. These special cases are relatively simple for users and provide useful
options to language designers when designing a new notation. We have resisted allow-
ing the grammar to be customized, for example by allowing external definition of a set
of keywords. We plan to gather feedback on Gel for a short period of time before fixing
the language specification.

References

1. Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Herrick, H.L., Hughes, R.A., Mitchell,
L.B., Nelson, R.A., Nutt, R., Sayre, D., Sheridan, B.P., Stern, H., Ziller, I.: Fortran Automated
Coding System For the IBM 704. International Business Machines Corporation, New York
(1956)

2. Berners-Lee, T., Masinter, L., McCahill, M.: Uniform Resource Locators (URL). RFC 1738,
Internet Engineering Task Force (December 1994),
http://ds.internic.net/rfc/rfc1738.txt (accessed August 23, 1997)

http://ds.internic.net/rfc/rfc1738.txt

76 J. Falcon and W.R. Cook

3. Biron, P.V., Malhotra, A.: XML Schema part 2: Datatypes. The World Wide Web Consortium
(May 2001), http://www.w3.org/TR/xmlschema-2/

4. Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM Trans. Interet
Technol. 2(2), 79–114 (2002)

5. Brabrand, C., Schwartzbach, M.I.: Growing languages with metamorphic syntax macros. In:
Proceedings of Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion, PEPM 2002, pp. 31–40. ACM Press, New York (2002)

6. Brabrand, C., Schwartzbach, M.I.: The metafront system: Safe and extensible parsing and
transformation. Sci. Comput. Program 68(1), 2–20 (2007)

7. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/xt 0.17. a language and
toolset for program transformation. Sci. Comput. Program 72(1-2), 52–70 (2008)

8. Bravenboer, M., Visser, E.: Designing syntax embeddings and assimilations for language
libraries. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 34–46. Springer, Heidelberg (2007)

9. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (eds.): Extensible
Markup Language (XML) 1.0. W3C Recommendation. W3C, 4th edn. (August 2003)

10. Cardelli, L., Matthes, F., Abadi, M.: Extensible syntax with lexical scoping. Technical report,
Research Report 121, Digital SRC (1994)

11. Crocker, D.H.: Standard for the Format of ARPA Internet Text Messages. University of
Delaware, Department of Electrical Engineering, Newark, DE 19711 (August 1982),
http://www.faqs.org/rtcs/rfc822.html

12. Crockford, D.: Rfc 4627. the application/json media type for javascript object notation (json)
(2006), http://www.json.org/

13. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: Sym-
posium on Principles of Programming Languages, pp. 111–122 (2004)

14. Gladky, A.V., Melčuk, I.A.: Tree grammars (= Δ-grammars). In: Proceedings of the 1969
Conference on Computational linguistics, Morristown, NJ, USA, pp. 1–7. Association for
Computational Linguistics (1969)

15. Goldberg, A., Robson, D.: Smalltalk-80: the Language and Its Implementation. Addison-
Wesley, Reading (1983)

16. Grimm, R.: Practical packrat parsing. New York University Technical Report, Dept. of Com-
puter Science, TR2004-854 (2004)

17. Grimm, R.: Better extensibility through modular syntax. In: PLDI 2006: Proceedings of the
2006 ACM SIGPLAN conference on Programming language design and implementation,
New York, NY, USA, pp. 38–51. ACM, New York (2006)

18. Hudak, P., Jones, S.P., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzmán, M.M., Ham-
mond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W., Peterson, J.: Report
on the programming language Haskell: a non-strict, purely functional language version 1.2.
SIGPLAN Not. 27(5), 1–164 (1992)

19. Johnson, S.C.: Yacc: Yet another compiler compiler. In: UNIX Programmer’s Manual, vol. 2,
pp. 353–387. Holt, Rinehart, and Winston, New York (1979)

20. Knuth, D.E.: The TEXbook. Addison-Wesley, Reading (1984)
21. Krishnamurthi, S.: Programming Languages: Application and Interpretation (2006),

http://www.cs.brown.edu/˜sk/Publications/Books/ProgLangs/
22. Lie, H.W., Bos, B.: Cascading Style Sheets, level 1. W3c recommendation, W3C (January

1999)
23. McCarthy, J.: Recursive functions of symbolic expressions and their computation by ma-

chine, part i. Commun. ACM 3(4), 184–195 (1960)
24. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A comprehensive step-by-step

guide. Artima Inc. (August 2008)

http://www.w3.org/TR/xmlschema-2/
http://www.faqs.org/rtcs/rfc822.html
http://www.json.org/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/

Gel: A Generic Extensible Language 77

25. Parr, T., Quong, R.: ANTLR: A Predicated-LL(k) parser generator. Journal of Software Prac-
tice and Experience 25(7), 789–810 (1995)

26. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema part 1: Structures.
The World Wide Web Consortium (May 2001),
http://www.w3.org/TR/xmlschema-2/

27. Visser, E.: Meta-programming with concrete object syntax. In: Batory, D., Consel, C., Taha,
W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 299–315. Springer, Heidelberg (2002)

28. Visser, E.: Program transformation with stratego/xt: Rules, strategies, tools, and systems in
stratego/xt 0.9. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

http://www.w3.org/TR/xmlschema-2/

	Gel: A Generic Extensible Language
	Introduction
	Introduction to Gel
	Unary Operators
	Sequences
	Spaces
	Spaced and Non-spaced Operators
	Keywords and Curly Braces
	Quoting
	Strings and Interpolation

	Gel Specification
	Evaluation
	Java
	Smalltalk
	CSS
	Python
	ANTLR and Other Parser Generators

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

