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Abstract. There is an increasing need for sharing data repositories
containing personal information across multiple distributed and private
databases. However, such data sharing is subject to constraints imposed
by privacy of individuals or data subjects as well as data confidentiality
of institutions or data providers. Concretely, given a query spanning mul-
tiple databases, query results should not contain individually identifiable
information. In addition, institutions should not reveal their databases
to each other apart from the query results. In this paper, we develop a
set of decentralized protocols that enable data sharing for horizontally
partitioned databases given these constraints. Our approach includes a
new notion, l-site-diversity, for data anonymization to ensure anonymity
of data providers in addition to that of data subjects, and a distributed
anonymization protocol that allows independent data providers to build a
virtual anonymized database while maintaining both privacy constraints.

1 Introduction

Current information technology enables many organizations to collect, store,
and use various types of information about individuals in large repositories.
Government and organizations increasingly recognize the critical value and op-
portunities in sharing such a wealth of information across multiple distributed
databases.

Problem scenario. An example scenario is the Shared Pathology Informat-
ics Network (SPIN)1 initiative by the National Cancer Institute. The objective
is to establish an Internet-based virtual database that will allow investigators
access to data that describe archived tissue specimens across multiple institu-
tions while still allowing those institutions to maintain local control of the data.
There are some important privacy considerations in such a scenario. First, per-
sonal health information is protected under the Health Insurance Portability and
Accountability Act (HIPAA)2 ,3 and cannot be revealed without de-identification
1 Shared Pathology Informatics Network. http://www.cancerdiagnosis.nci.nih.gov/

spin/
2 Health Insurance Portability and Accountability Act (HIPAA). http://www.hhs.

gov/ocr/hipaa/
3 State law or institutional policy may differ from the HIPAA standard and should be

considered as well.
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or anonymization. Second, institutions cannot reveal their private databases to
each other due to confidentiality of the data. In addition, the institutions may not
want to reveal the ownership of their records even if the records are anonymized.

These scenarios can be generalized into the problem of privacy-preserving data
publishing for multiple distributed databases where multiple data custodians or
providers wish to publish an integrated view of the data for querying purposes
while preserving privacy for both data subjects and data providers. We consider
two privacy constraints in the problem. The first is the privacy of individuals or
data subjects (such as the patients) which requires that the published view of
the data should not contain individually identifiable information. The second is
the privacy of data providers (such as the institutions) which requires that data
providers should not reveal their private data or the ownership of the data to
each other besides the published view.

Existing and potential solutions. Privacy preserving data publishing or data
anonymization for a single database has been extensively studied in recent years.
A large body of work contributes to algorithms that transform a dataset to meet
a privacy principle such as k-anonymity using techniques such as generalization,
suppression (removal), permutation and swapping of certain data values so that
it does not contain individually identifiable information [1].

There are a number of potential approaches one may apply to enable data
anonymization for distributed databases. A naive approach is for each data
provider to perform data anonymization independently as shown in Fig. 1a. Data
recipients or clients can then query the individual anonymizeddatabases or an inte-
gratedviewof them.Onemaindrawbackof this approach is thatdata is anonymized
before the integration and hence will cause the data utility to suffer. In addition,
individual databases reveal their ownership of the anonymized data.

An alternative approach assumes an existence of third party that can be
trusted by each of the data owners as shown in Fig. 1b. In this scenario, data
owners send their data to the trusted third party where data integration and
anonymization are performed. Clients then can query the centralized database.
However, finding such a trusted third party is not always feasible. Compromise of
the server by hackers could lead to a complete privacy loss for all the participating
parties and data subjects.

Fig. 1. Architectures for privacy preserving data publishing
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In this paper, we propose a distributed data anonymization approach as il-
lustrated in Fig. 1c. In this approach, data providers participate in distributed
protocols to produce a virtual integrated and anonymized database. Important
to note is that the anonymized data still resides at individual databases and the
integration and anonymization of the data is performed through the secure dis-
tributed protocols. The local anonymized datasets can be unioned using secure
union protocols [2,3] and then published or serve as a virtual database that can
be queried. In the latter case, each individual database can execute the query
on its local anonymized dataset, and then engage in distributed secure union
protocols to assemble the results that are guaranteed to be anonymous.

Contributions. We study the problem of data anonymization for horizontally
partitioned databases in this paper and present the distributed anonymization
approach for the problem. Our approach consists of two main contributions.

First, we propose a distributed anonymization protocol that allows multi-
ple data providers with horizontally partitioned databases to build a virtual
anonymized database based on the integration (or union) of the data. As the
output of the protocol, each database produces a local anonymized dataset and
their union forms a virtual database that is guaranteed to be anonymous based
on an anonymization principle. The protocol utilizes secure multi-party com-
putation protocols for sub-operations such that information disclosure between
individual databases is minimal during the virtual database construction.

Second, we propose a new notion, l-site-diversity, to ensure anonymity of data
providers in addition to that of data subjects for anonymized data. We present
heuristics and adapt existing anonymization algorithms for l − site − diversity
so that anonymized data achieve better utility.

Organization. The remainder of this paper is organized as follows. Section
2 briefly reviews work related to our research. Section 3 discusses the privacy
model we are using and presents our new notion on l− site− diversity. Section
4 presents our distributed anonymization protocol. Section 5 presents a set of
experimental evaluations and Section 6 concludes the paper.

2 Related Work

Our work is inspired and informed by a number of areas. We briefly review the
closely related areas below and discuss how our work leverages and advances the
current state-of-the-art techniques.

Privacy preserving data publishing. Privacy preserving data publishing for
centralized databases has been studied extensively [1]. One thread of work aims
at devising privacy principles, such as k-anonymity, l-diversity, t-closeness, and
m-invariance, that serve as criteria for judging whether a published dataset pro-
vides sufficient privacy protection. Another large body of work contributes to
algorithms that transform a dataset to meet one of the above privacy principles
(dominantly k-anonymity). In this study, our distributed anonymization protocol
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is built on top of the k-anonymity and l-diversity principles and the greedy top-
down Mondrian multidimensional k-anonymization algorithm [4].

There are some works focused on data anonymization of distributed databases.
[5] presented a two-party framework along with an application that generates
k-anonymous data from two vertically partitioned sources without disclosing
data from one site to the other. [6] proposed provably private solutions for k-
anonymization in the distributed scenario by maintaining end-to-end privacy
from the original customer data to the final k-anonymous results.

In contrast to the above work, our work is aimed at horizontal data dis-
tribution and arbitrary number of sites. More importantly, our anonymization
protocol aims to achieve anonymity for both data subjects and data providers.

Secure multi-party computation. Our approach also has its roots in the
secure multi-party computation (SMC) problem [7,8,9,10,11]. This problem deals
with a setting where a set of parties with private inputs wish to jointly compute
some function of their inputs. An SMC protocol is secure if no participant learns
anything more than the output.

Our problem can be viewed as designing SMC protocols for anonymization
that builds virtual anonymized database and query processing that assembles
query results. Our distributed anonymization approach utilizes existing secure
SMC protocols for subroutines such as computing sum [12], the kth element [13],
and set union [2,3]. The protocol is carefully designed so that the intermediate
information disclosure is minimal.

3 Privacy Model

In this section we present the privacy goals that we focus on in this paper,
followed by models and metrics for characterizing how these goals are achieved,
and propose a new notion for protecting anonymity for data providers. As we
identified in Section 1, we have two privacy goals. First, the privacy of individuals
or data subjects needs be protected, i.e. the published virtual database and
query results should not contain individually identifiable information. Second,
the privacy of data providers needs to be protected, i.e. individual databases
should not reveal their data or their ownership of the data apart from the virtual
anonymized database.

Privacy for data subjects based on anonymity. Among the many pri-
vacy principles that protect against individual identifiability, the seminal works
on k-anonymity [14,15] require that a set of k records (entities) to be indistin-
guishable from each other based on a quasi-identifier set. Given a relational table
T , attributes are characterized into: unique identifiers which identify individuals;
quasi-identifier (QID) which is a minimal set of attributes (X1, ..., Xd) that can
be joined with external information to re-identify individual records; and sensi-
tive attributes that should be protected. The set of all tuples containing identical
values for the QID set is referred to as an equivalence class. An improved principle,
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l-diversity [16], demands every group to contain at least l well-represented sen-
sitive values.

Given our research goals of extending the anonymization techniques and in-
tegrating them with secure computation techniques to preserve privacy for both
data subjects and data providers, we based our work on k-anonymity and l-
diversity to achieve anonymity for data subjects. While we realize they are rel-
atively weak compared to principles such as differential privacy, the reason we
chose them for this paper is that they are intuitive and have been justified to
be useful in many practical applications such as privacy-preserving location ser-
vices. Therefore, techniques enforcing them in the distributed environment will
still be practically important. In addition, their fundamental concepts serve as a
basis for many other principles and there is a rich set of algorithms for achieving
k-anonymity and l-diversity. We can study the subtle differences and effects of
different algorithms and their interactions with secure multi-party computation
protocols. Finally, our protocol structure, and the underlying concepts will be
orthogonal to these privacy principles, and our framework will be extensible so
as to easily incorporate more advanced privacy principles.

Privacy for data providers based on secure multi-party computation
Our second privacy goal is to protect privacy for data providers. It resembles
the goal of secure multi-party computation (SMC). In SMC, a protocol is secure
if no participant can learn anything more than the result of the function (or
what can be derived from the result). It is important to note that for practical
purposes, we may relax the security goal for a tradeoff for efficiency. Instead of
attempting to guarantee absolute security in which individual databases reveal
nothing about their data apart from the virtual anonymized database, we wish
to minimize data exposure and achieve a sufficient level of security.

We also adopt the semi-honest adversary model commonly used in SMC prob-
lems. A semi-honest party follows the rules of the protocol, but it can attempt to
learn additional information about other nodes by analyzing the data received
during the execution of the protocol. The semi-honest model is realistic for our
problem scenario where multiple organizations are collaborating with each other
to share data and will follow the agreed protocol to get the correct result for
their mutual benefit.

Privacy for data providers based on anonymity: a new notion. Now we
will show that a method of simply coupling the above anonymization principles
and the secure multi-party computation principles is insufficient in our scenario.
While the secure multi-party computation can be used for the anonymization to
preserve privacy for data providers during the anonymization, the anonymized
data itself (considered as results of the secure computation) may compromise the
privacy of data providers. The data partitioning at distributed data sources and
certain background knowledge can introduce possible attacks that may reveal
the ownership of some data by certain data providers. We illustrate such an
attack, a homogeneity attack, through a simple example.
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Table 1. Illustration of Homogeneity Attack for Data Providers

ID City Age Disease
1 New York 30-40 Heart attack
2 New York 30-40 AIDS

ID City Age Disease
3 Northeast 40-43 AIDS
4 Northeast 40-43 Flu

Node 0 Node 1

Table 1 shows anonymized data that satisfies 2-anonymity and 2-diversity
at two distributed data providers (QID: City, Age; sensitive attribute: Disease).
Even if SMC protocols are used to answer queries, given some background knowl-
edge on data partitioning, the ownership of records may be revealed. For in-
stance, if it is known that records from New York are provided only by node 0,
then records with ID 1 and 2 can be linked to that node directly. In consequence,
privacy of data providers is compromised. Essentially, the compromise is due to
the anonymized data and cannot be solved by secure multi-party computation.
One way to fix the problem is to generalize the location for records 1 and 2 so
that they cannot be directly linked to a particular data provider.

To address such a problem, we propose a new notion, l-site-diversity, to en-
hance privacy protection for data providers. We define a quasi-identifier set with
respect to data providers as a minimal set of attributes that can be used with
external information to identify the ownership of certain records. For example,
the location is a QID with respect to data providers in the above scenario as it
can be used to identify the ownership of the records based on the knowledge that
certain providers are responsible for patients from certain locations. The parame-
ter, l, specifies minimal number of distinct sites that records in each equivalence
class belong to. This notion protects the anonymity of data providers in that
each record can be linked to at least l providers. Formally, the table T ∗ satisfies
l-site-diversity if for every equivalence class g in T ∗ the following condition holds:

count(distinct nodes(g)) ≥ l (1)

where nodes(g) returns node IDs for every record in group g.
It can be noted that our definition of l-site-diversity is closely related to l-

diversity. The two notions, however, have some subtle differences. l-diversity
protects a data subject from being linked to a particular sensitive attribute. We
can map l−site−diversity to l-diversity if we treat the data provider that owns
a record as a sensitive attribute for a record. However, in addition to protecting
the ownership for a data record as in l-diversity, l-site-diveristy also protects
the anonymity of the ownership for data providers. In other words, it protects
a data provider from being linked to a particular data subject. The QID set
with respect to data providers for l-site-diversity could be completely different
from the QID set with respect to data subjects for k-anonymity and l-diversity.
l-site-diversity is only relevant when there are multiple data sources and it adds
another check when data is being anonymized so that the resulting data will
not reveal the ownership of the records. It is worth mentioning that we could
also exploit much stronger definitions of l-diversity such as entropy l-diversity or
recursive (c,l)-diversity as defined in [16].
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4 Distributed Anonymization Protocol

In this section we describe our distributed anonymization approach. We first de-
scribe the general protocol structure and then present the distributed anonymiza-
tion protocol.

We assume that the data are partitioned horizontally among n sites (n > 2)
and each site owns a private database di. The union of all the local databases,
denoted d, gives a complete view of all data (d =

⋃
di). In addition, the quasi-

identifier of each local database is uniform among all the sites. The sites en-
gage in a distributed anonymization protocol where each site produces a local
anonymized dataset ai and their union forms a virtual database that is guar-
anteed to be k-anonymous. Note that ai is not required to be k-anonymous by
itself. When users query the virtual database, each individual database executes
the query on ai and then engage in a distributed querying protocol to assemble
the results that are guaranteed to be k-anonymous.

4.1 Selection of Anonymization Algorithm

Given our privacy models, we need to carefully adapt or design new anonymiza-
tion algorithms with additional check for site-diversity and implement the al-
gorithm using multi-party distributed protocols. Given a centralized version of
anonymization algorithm, we can decompose it and utilize SMC protocols for
sub-routines which are provably secure in order to build a secure distributed
anonymization protocol. However, performing one secure computation, and us-
ing those results to perform another, may reveal intermediate information that
is not part of the final results even if each step is secure. Therefore, an impor-
tant consideration for designing such protocols is to minimize the disclosure of
intermediate information.

There are a large number of algorithms proposed to achieve k-anonymity.
These k-anonymity algorithms can be also easily extended to support l-diversity
check [16]. However, given our design goal above, not all anonymization algo-
rithms are equally suitable for a secure multi-party computation. Considering
the two main strategies, top-down partitioning and bottom-up generalization,
we discovered that top-down partitioning approaches have significant advan-
tages over bottom-up generalization ones in a secure multi-party computation
setting because anything revealed during the protocol as intermediate results
will in fact have a coarser view than the final result and can be derived from the
final result not violating the security requirement.

Based on the rationale above, our distributed anonymization protocol is based
on the multi-dimensional top-down Mondrian algorithm [4]. The Mondrian al-
gorithm uses a greedy top-down approach to recursively partition the (multidi-
mensional) quasi-identifer domain space. It recursively chooses the split attribute
with the largest normalized range of values, and (for continuous or ordinal at-
tributes) partitions the data around the median value of the split attribute.
This process is repeated until no allowable split remains, meaning that the data
points in a particular region cannot be divided without violating the anonymity
constraint, or constraints imposed by value generalization hierarchies.
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Algorithm 1. Distributed anonymization algorithm - leading site (i = 0)
1: function split(set d0, ranges of QID attributes)
2: Phase 1: Determine split attribute and split point
3: Select best split attribute a (see text)
4: If split is possible, send split attribute to node 1. Otherwise, send finish splitting to

node 1 and finish.
5: Compute median of chosen a for splitting (using secure k-th element algorithm).
6: Phase 2: Split current dataset
7: Send a and m to node 1
8: Split set d0, create two sets, s0 containing items smaller than m and g0 containing

items greater than m. Distribute median items among si and gi.
9: Send finished to node 1

10: Wait for finished from last node (synchronization)
11: Phase 3: Recursively split sub datasets
12: Find sizeleft = |⋃ si| and sizeright = |⋃ gi| (using secure sum protocol)
13: If further split of left (right) subgroup is possible, send split left=true

(split right=true) to node 1 and call the split function recursively (updating ranges
of QID attributes). Otherwise send split left=false (split right=false) to node 1.

14: end function split

4.2 Distributed Anonymization Protocol

The key idea for the distributed anonymization protocol is to use a set of se-
cure multi-party computation protocols to realize the Mondrian method for the
distributed setting so that each database produces a local anonymized dataset
which may not be k-anonymous itself, but their union forms a virtual database
that is guaranteed to be k-anonymous. We present the main protocol first, fol-
lowed by important heuristics that is used in the protocol.

We assume a leading site is selected for the protocol. The protocols for the
leading and other sites are presented in Algorithms 1 and 2. The steps performed
at the leading site are similar to the centralized Mondrian method. Before the
computation starts, range of values for each quasi-identifier in set d =

⋃
di and

the total number of data points need to be calculated. A secure kth element
protocol can be used to securely compute the minimum (k=1) and maximum
(k = n where n is the total number of tuples in the current partition) values of
each attribute across the databases [13].

In Phase 1, the leading site selects the best split attribute and determines the
split point for splitting the current partition. In order to select the best split
attribute, the leading site uses a heuristic rule that is described in details below.
If required, all the potential split attributes (e.g., the attributes that produce
subgroups satisfying l−site−diversity) are evaluated and the best one is chosen.
In order to determine the split medians, a secure kth element protocol is used
(k = �n

2 �) with respect to the data across the databases. To test whether given
attribute can be used for splitting, we calculate a number of distinct sites in
subgroups that would result from splitting on this attribute using the secure
sum algorithm. The split is considered possible if records in both subgroups are
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Algorithm 2. Distributed anonymization algorithm - non-leading node (i > 0)
1: function split(set c)
2: Read split attribute a and median m from node (i− 1); pass them to node (i + 1)
3: if finish splitting received then return
4: Split set c into si containing items smaller than m and gi containing items

greater than m. Distribute median items among si and gi.
5: Read finished from node i − 1 (sychronization); Send finished to node i + 1
6: Read split left from node i − 1 and pass it to node i + 1
7: if split left then call split(si)
8: Read split right from node i − 1, Send split right to node i + 1
9: if split right then call split(gi)

10: end function split

Fig. 2. Distributed anonymization illustration

provided by at least l sites. In Phase 2, the algorithm performs split and waits
for all the nodes to finish splitting. Finally in Phase 3, the node recursively
checks whether further split of the new subsets is possible. In order to determine
whether a partition can be further split, a secure sum protocol [12] is used to
compute the number of tuples of the partition across the databases.

We illustrate the overall protocol with an example scenario shown in Figure 2
where we have 4 nodes and we use k = 2 for k-anonymization and l = 1 for l-
site-diversity. Note that the anonymized databases at node 2 and node 3 are not
2-anonymous by themselves. However the union of all the anonymized databases
is guaranteed to be 2-anonymous.

Selection of split attribute. One key issue in the above protocol is the selec-
tion of split attribute. The goal is to split the data as much as possible while
satisfying the privacy constraints so as to maximize discernibility or utility of
anonymized data. The basic Mondrian method uses the range of an attribute
as a goodness indicator. Intuitively, the larger the spread, the easier the good
split point can be found and more likely the data can be further split. In our
setting, we also need to take into account the site diversity requirement and
adapt the selection heuristic. The importance of doing so is demonstrated in
Figure 3. Let’s assume that we want to achieve 2-anonymity and 2-site-diversity.
In the first scenario, the attribute for splitting is chosen only based on range of
the QID attributes. The protocol finishes with 2 groups of 5 and 4 records (fur-
ther split is impossible due to 2-site-diversity requirement). The second scenario
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Fig. 3. Impact of split attribute selection when l-site-diversity (n = 2) is considered.
Different shades represent different owners of records.

exploits information on records distribution when the decision on split attribute
is made (the more evenly the records are distributed across sites in resulting
subgroups, the better). This rule yields better results, namely three groups of 3
records each.

Based on the illustration, intuition suggests that we need to select a split
attribute that results in partitions with even distribution of records from dif-
ferent data providers. This makes further splits more likely while meeting the
l-site-diversity constraint. Similar to decision tree classifier construction [17], in-
formation gain can be used as a scoring metric for selecting attribute that results
in partitions with most diverse distribution of data providers. Note that this is
used in a complete opposite sense from decision tree where the goal is to parti-
tion the data into partitions with homogeneous classes. The information gain of
a potential splitting attribute ak is computed through the information entropy
of resulting partitions:

e(ak) = −
n−1∑

i=0

p(i,lk)log(p(i,lk)) −
n−1∑

i=0

p(i,rk)log(p(i,rk)) (2)

where lk and rk are partitions created after splitting the input set using attribute
ak (and its median value) and p(i, g) is the portion of records that belong to
node i in group g. It is important to note that the calculations need to take into
account data on distributed sites and thus secure sum protocol needs to be used.

Our final scoring metric combines the original range value based metric and
the new diversity-aware metrics using a linear combination as follows:

∀ai∈Qsi = α
range(ai)

max
aj∈Q

(range(aj))
+ (1 − α)

e(ai)
max
aj∈Q

(e(aj))
(3)

where range function returns range of attribute, e(ai) returns values of informa-
tion entropy as defined above when attribute ai is used for splitting and α is a
weighting parameter.

Important to note is that if l-site-diversity is not required (e.g., l=1), then
the evaluation of the heuristic rule above is limited to checking only the range
of attributes, and choosing the attribute with the widest range.
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4.3 Analysis

Having presented the distributed anonymization protocol, we analyze the pro-
tocol in terms of its security and overhead.

Security. We will now analyze the security of our distributed k-anonymity pro-
tocol. Our proofs will show that, given the result, the leaked information (if any),
and the site’s own input, any site can simulate the protocol and everything that
was seen during the execution. Since the simulation generates everything seen
during execution of the protocol, clearly no one learns anything new from the pro-
tocol when it is executed. The proofs will also use a general composition theorem
[7] that covers algorithms implemented by running many invocation of secure
computations of simpler functionalities. Let’s assume a hybrid model where the
protocol uses a trusted third-party to compute the result of such smaller func-
tionalities f1...fn. The composition theorem states that if a protocol in hybrid
model is secure in terms of comparing the real computation to the ideal model,
then if a protocol is changed in such a way that calls to trusted third-party are
replaced with secure protocols, the resulting protocol is still secure.

We have analyzed the distributed k-anonymity protocol in terms of security
and present the following two theorems with sketches of proofs. For complete
proofs, we refer readers to [18].

Theorem 1. The distributed k-anonymity protocol privately computes a k-
anonymous view of horizontally partitioned data in semi-honest model when
l = 1.

Proof sketch. The proof needs to show that any given node can simulate the
algorithm and all what was seen during its execution given only the final result
and its local data. The simulation first analyzes the complete anonymized data
and finds a range of each attribute from the quasi identifier. This can be done by
looking for the largest and the smallest possible values of all the QID attributes.
Next, as no l−site−diversity is required (l=1), the site knows that the attribute
used for splitting is actually the attribute with the largest range. As the site
knows which attribute was used for splitting, it can attempt to identify the
split point using the following approach. First, it identifies all possible splitting
attributes/points that could be used when the algorithm was executed. Formally,
the points of potential split are the distinct values that appear on the bounds
of the QID ranges in the anonymized view. To identify the median value (or the
value that was used for split) the node checks which of the potential splitting
points is actually a median. This can be done by choosing a value that divides
the set of records into two sets with the sizes closest to half of the number of
records in the database (note that the subsets resulting from spitting might not
have equal sizes - for instance if number of records is odd). Now the site is ready
to simulate the split. If size of any of the two groups that result from splitting
is greater than or equal to 2 ∗ k, this group can be further split. In such case the
node would continue the described simulation with input data being one of the
subgroups.
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Theorem 2. The distributed k-anonymity protocol privately computes a k-
anonymous view of horizontally partitioned data in semi-honest model, revealing
at most the following statistics of the data, when l > 1.

1. Median values of each attribute from QID for groups of records of size ≥ 2∗k,
2. Entropy of distribution of records for groups resulting from potential splits,
3. Number of distinct sites that provide data to groups resulting from potential

splits (the identity of those sites are confidential).

Proof sketch. The proof uses a similar approach as above. The main difference
is in the decision step when a node uses the entropy based heuristic designed for
l-site-diversity to decide on the split attribute. In this case, not only the range of
attribute, but also the distribution of records in groups resulting from potential
splitting, need to be considered. Using the final result, information from points
1, 2 and 3, and the range of QID attributes, however, any node can decide on
the split attribute in the protocol simulation.

Overhead. Our protocol introduces additional overhead due to the fact that
the nodes have to use additional protocols in each step of computation. The
time complexity of the original Mondrian algorithm is O(nlogn) where n is the
number of items in the anonymized dataset [4]. As we presented in Algorithm
1, each iteration of the distributed anonymization algorithm requires calculation
of the heuristic decision rule, median value of an attribute, and the count of
tuples of a partition. The secure sum protocol does not depend on the number
of tuples in the database. The secure k − th element algorithm is logarithmic
in number of input items (assuming the worst - case scenario that all the input
items are distinct). As a consequence, the time complexity of our protocol can
be estimated as O(nlog2n) in terms of number of records in a database.

The communication overhead of the protocol is determined by two factors.
The first is the cost for a single round. This depends on the number of nodes
involved in the system and the topology which is used and in our case it is
proportional to the number of nodes on the ring. As the future work, we are
considering alternative topologies (such as trees) in order to optimize the com-
munication cost for each round. The second factor is the number of rounds and is
determined by the number of iterations and the sub-protocols used by each itera-
tion of the anonymization protocol. The secure sum protocol involves one round
of communication. In the secure kth element protocol, the number of rounds is
logM (M being the range of attribute values) and each round requires secure
computations twice. It is important to note that the distributed anonymization
protocol is expected to be run offline on an infrequent basis. As a result, the
overhead of the protocol will not be a major issue.

5 Experimental Evaluation

We have implemented the distributed anonymization protocol in Java within
the DObjects framework [19] which provides a platform for querying data across
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distributed and heterogeneous data sources. To be able to test a large variety
of configurations, we also implemented the distributed anonymization protocol
using a simulation environment. In this section we present a set of experimental
evaluations of the proposed protocols.

The questions we attempt to answer are: 1) What is the advantage of using
distributed anonymization algorithm over centralized or independent anonymiza-
tion? 2) What is the impact of the l-site-diversity constraint on anonymization
protocol? 3) What are the optimal values for α parameter in our heuristic rules
presented in equation 3?

5.1 Distributed Anonymization vs. Centralized and Independent
Anonymization

We first present an evaluation of the distributed anonymization protocol com-
pared to the centralized and independent anonymization approaches in terms of
the quality of the anonymized data.

Dataset and setup. We used the Adult dataset from UC Irvine Machine Learn-
ing Repository. The dataset contained 30161 records and was configured as in [4].
We used 3 distributed nodes (30161 records were split among those nodes us-
ing round-robin protocol). We report results for the following scenarios: 1) the
data is located in one centralized database and classical Mondrian k-anonymity
algorithm was run (centralized approach), 2) data are distributed among the
three nodes and Mondrian k-anonymity algorithm was run at each site indepen-
dently (independent or naive approach) and 3) data are distributed among the
three nodes and we use the distributed anonymization approach presented in
section 4. We ran each experiment for different k values. All the experiments in
this subsection used 1-site-diversity.

Results. Figure 4 shows the average equivalence class size with respect to differ-
ent values of k. We observe that our distributed anonymization protocol performs
the same as the non-distributed version. Also as expected, the naive approach
(independent anonymization of each local database) suffers in data utility be-
cause the anonymization is performed before the integration of the data.

Fig. 4. Average equivalence
class size vs. k

Fig. 5. Histogram for parti-
tioning using City and Age

Fig. 6. Average error vs. α
(information gain-based)
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5.2 Achieving Anonymity for Data Providers

The experiments in this section again use the Adult dataset. The data is dis-
tributed across n = 100 sites unless otherwise specified. We experimented with
distribution pattern that we will describe in detail below.

Metric. The average equivalence group size as shown in previous subsection
provides a general data utility metric. The query imprecision metric provides an
application-specific metric that is of particular relevance to our problem setting.
Given a query, since the attribute values are generalized, it is possible only to
return the tuples from the anonymized dataset that are contained in any gener-
alized ranges overlapping with the selection predicate. This will often produce a
larger result set than evaluating the predicate over the original table. For this set
of experiments, we use summary queries (queries that return count of records)
and we use an algorithm similar to the approach introduced in [20] that returns
more accurate results. We report a relative error of the query results. Specifically,
given act as an exact answer to query and est as an answer computed according
to algorithm defined above, the relative error is defined as |act − est|/act. For
each of the tested configurations, we submit 10,000 randomly generated queries,
and for each query we calculate a relative error. We report average value of
the error. Each query uses predicates on two randomly chosen attributes from
quasi-identifier. For boolean attributes that can have only two values (e.g. sex),
the predicate has a form of ai = value. For other attributes we use predicate in
the form ai ∈ R. R is a random range and has a length of 0.3 ∗ |ai|, where |ai|
denotes the domain size of an attribute.

Data partitioning. In a realistic scenario, data is often split according to some
attributes. For instance, the patient data can be split according to cities, i.e.
the majority records from a hospital located in New York would have a New
York address while those from a hospital located in Boston would have a Boston
address. Therefore, we distributed records across sites using partitioning based
on attribute values. The rules of partitioning were specified using two attributes,
City and Age. The dataset contained data from 6 different cities, and every 1/6th
of available nodes were assigned to a different city. Next, records within each
group of nodes for a given city were distributed using Age attribute: records
with age less than 25 were assigned to the first 1/3rd of nodes, records with
age between 25 and 55 to the second 1/3rd of nodes, and the remaining records
to the remaining nodes. The histogram of the records per node in this setup is
presented in Figure 5 (please note the logarithmic scale of the plot).

Results. We now present the results evaluating the impact of α value under this
setup. Figure 6 presents the average query error for different α and l values for
the heuristic rule we used. We can observe a significant impact of α value on the
average error. The smallest error value is observed for α = 0.3 and this seems
to be an optimal choice for all tested l values. One can observe 30% decrease
in error when compared to using only range as in original Mondrian (α = 1.0)
or using only diversity-aware metrics (α = 0.0). It is worth mentioning that we
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Fig. 7. Average error vs. k
(l = 30)

Fig. 8. Average error vs. l
(k = 200)

Fig. 9. Error vs. n (k = 200
and l = 30)

have also experimented with different distributions of records, and the results
were consistent with what we presented above. We do not provide these results
due to space limitations.

The next experiment was focused on the impact of k parameter on average
error. We present results for l=30 in Figure 7 for three different split heuristic
rules: using range only, information gain only, and combining range with infor-
mation gain with α = 0.3. We observe that the heuristic rule that takes into
account both range and information gain gives consistently the best results and
a reduction of error around 30%. These results do not depend on the value of k.

Next, we tested the impact of the l parameter for l− site− diversity. Figure
8 shows an average error for varying l and k = 200 using the same heuristic
rules as in previous experiment. Similarly, the rule that takes into account range
and information gain gives the best results. With increasing l, we observe an
increasing error rate because the data needs to be more generalized in order to
satisfy the diversity constraints.

So far we have tested only scenarios with 100 nodes (n = 100). To complete
the picture, we plot the average error for varying n (k = 200 and l = 30) in
Figure 9. One can notice that the previous trends are maintained - the results
do not appear to be dependent on the number of nodes in the system. Similary,
the rule that takes into account range and information gain is superior to other
methods and the query error is on average 30% smaller than that for others.

6 Conclusion

We have presented a distributed and decentralized anonymization approach for
privacy-preserving data publishing for horizontally partitioned databases. Our
work addresses two important issues, namely, privacy of data subjects and pri-
vacy of data providers. We presented a new notion, l-site-diversity, to achieve
anonymity for data providers in anonymized dataset. Our work continues along
several directions. First, we are interested in developing a protocol toolkit incor-
porating more privacy principles and anonymization algorithms. In particular,
dynamic or serial releases of data with data updates are extremely relevant in
our distributed data integration setting. Such concepts as m-invariance [20] or
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l-scarsity [21] are promising ideas and we plan to extend our research in this
direction. Second, we are also interested in developing specialized multi-party
protocols such as set union that offer a tradeoff between efficiency and privacy as
compared to the existing set union protocols based on cryptographic approaches.

Acknowledgement

We thank Kristen LeFevre for providing us the implementation for the Mondrian
algorithm and the anonymous reviewers for their valuable feedback. The research
is partially supported by a URC and an ITSC grant from Emory and a Career
Enhancement Fellowship from the Woodrow Wilson Foundation.

References

1. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
A survey on recent developments. ACM Computing Surveys (in press)

2. Kantarcioglu, M., Clifton, C.: Privacy preserving data mining of association rules
on horizontally partitioned data. IEEE Transactions on Knowledge and Data En-
gineering (TKDE) 16(9) (2004)
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