Using Edit Automata for Rewriting-Based
Security Enforcement

Hakima Ould-Slimane!, Mohamed Mejri!, and Kamel Adi?

! Computer Science Department, Laval University, Quebec, (Qc), Canada
2 Computer Science Department, University of Quebec in Outaouais, (Qc), Canada

Abstract. Execution monitoring (EM) is a widely adopted class of secu-
rity mechanisms. EM-enforceable security properties are usually
characterized by security automata and their derivatives. However Edit
automata (EA) have been recently proposed to specify more powerful
EMs. Being able to feign the execution of sensitive program actions, these
EMs are supposed to enforce more security properties. However, feigning
program actions will usually make the program behaving in discordance
with its specification since the effects of feigned actions are not reflected
in the program states. In this paper we highlight this problem and show
how program rewritinﬂ can be a reliable enforcement alternative. The
paper contribution is mainly a semantics foundation for program rewrit-
ing enforcement of EA-enforceable security properties.

Keywords: Execution monitoring, edit automata, security properties,
program rewriting.

1 Introduction

Execution Monitoring (EM) is recognized as an efficient and a powerful class of
security mechanisms. An EM enforces a security property by intercepting the
property-relevant events and performing an intervention procedure when a pro-
gram is about to violate the property being enforced [2]. However, the efficiency
of EM comes with a significant time and memory overhead. The overhead of
monitoring programs is generally attributed to the software and/or hardware
artifacts needed for (1) intercepting security relevant actions, (2) analyzing the
program execution history (trace), and (3) performing the intervention proce-
dure. However a significant overhead can be avoided if the internal structure
of the controlled program is known to the EM. Indeed, statically analyzing the
controlled program can reveal that many security-relevant invocations, that the
EM is controlling by default during execution, are “innocent” and hence can
be safely ignored during execution. In addition, the analysis of the execution
history can be simplified by taking into consideration the current program step.
All these motivated the recent introduction of the program rewriting approach

! Program rewriting studied in this paper refers to the class of security enforcement
mechanisms introduced in [I] and has no direct relation with rewriting theory.

E. Gudes, J. Vaidya (Eds.): Data and Applications Security 2009, LNCS 5645, pp. 175 2009.
© IFIP International Federation for Information Processing 2009

176 H. Ould-Slimane, M. Mejri, and K. Adi

as alternative to EM [3/I]. In this approach, a security property is enforced on a
program by rewriting it to produce a more restrictive one that obeys to the en-
forced property. In [I], program rewriting is identified as an extremely powerful
technique which can be used to enforce properties beyond those enforceable by
execution monitors.

A commonly adopted rewriting approach consists in taking an EM, usually
specified by a security automaton [2], and embedding it into the program [3I/4].
Based on the contributions of [2I5], the security enforcement community shared
the belief that any EM-enforceable property is a safety, or equivalently a prefix-
closed, property. This belief is based on the fact that an EM can intervene to
a potential property violation by only halting the execution of the controlled
program. However this belief has been disproved later in [6] by recognizing more
powerful EMs having the ability of feigning intercepted actions or inserting (ex-
ecuting) actions on behalf of controlled programs. We call them rewriting-based
EMs and they are specified using Edit Automata [7J6]. Feigning actions means
preventing their execution in a way that cannot be detected by the controlled
program. To enforce a non-safety property, an edit automaton feigns the in-
tercepted actions as long as the entire sequence read before does not obey the
enforced property. When it recognizes a safe sequence, it reinserts (executes) all
the feigned actions in the same order of their interception.

1.1 Problem of Feigned Actions in Security Enforcement

The efficiency of edit automata in security enforcement is due to their ability to
feign potentially dangerous actions and actually execute them later when a safe
sequence is recognized. However, not all program actions can be feigned. Indeed,
this weakness has been clearly mentioned and admitted in [7J6]. In addition,
feigning actions should be performed transparently such that (1) it should not
be detected by the controlled program and (2) it should maintain the controlled
program in a coherent state. Let ¢ be the property stating that any action inc
incrementing the value of some variable z should be followed immediately by an
action sending the value of that variable. Let assume that the EM enforcing ¢,
is intercepting the actions of the program P (Version A) below:

1: x := 3; y := 4; 1: x :=3; y := 4;

2: If (x>1) then inc(y); 2: If (x>1) then

3: If (y>4) then send(y); 3: If (y+1>4) then
4. {inc(y); send(y);}
5: Else If (y>4) then send(y);

Version A Version B

When intercepting the inc(y) action (step 2), the EM cannot accept it since
it does not know the P structure, so it should feign it. However, since inc(y) has
not been executed, the send(y) action (step 3) cannot be performed since y = 4
which does not satisfy y > 4. In this case the EM prevented a valid program
sequence from being executed. This problem cannot be addressed without mod-
ifying the program structure. A possible solution is to rewrite the program as

Using Edit Automata for Rewriting-Based Security Enforcement 177

shown in Version B above. In this new version of P, even if the condition of in-
crementing y is true, i.e., z > 1, incrementing y is delayed until the condition of
sending y is satisfied, i.e., y > 4. However, since the condition y > 4 is assumed
to be performed on the value of y after incrementation, we modified this condi-
tion so it handles y + 1 instead of y. This example highlights the limitations of
EM enforcement and shows how program rewriting can enforce properties that
cannot be enforced by EM.

1.2 Contributions

In this paper we highlight the problem of feigning actions in EM and show
how program rewriting can be a reliable enforcement alternative. We propose a
rewriting-based formal technique for enforcing security properties on programs.
The enforced properties are those targeted by EA. This technique is based on an
injection operator over Extended Finite State Machines (EFSMs). Our technique
allows to feign actions in a transparent way; a challenging issue which has not
been addressed by previous works. Given an untrusted program and an edit
automaton enforcing a property, we produce a new version that satisfies the
property. In addition, we proved the soundness and the transparency of our
technique. Both programs and the edit automata enforcing security properties
are specified by EFSMs.

The rest of the paper is structured as follows. Section 2] discusses the related
work. Section [presents the formal definitions of EFSMs and Edit Automata.
Section M provides the formal definition of the injection operator. Section [gives
the main theorems of our approach. Section [d illustrates the use of our injection
operator through an example. Finally, section [presents the conclusion and the
future work.

2 Related Work

The characterization of EM security enforcement has been first addressed by
Schneider in [2]. One important contribution of [2] is the introduction of security
automata as formal specification of EM-enforceable security properties. Another
contribution of the same work is the identification of prefix-closed properties
as the superset of EM-enforceable security properties. The EMs considered by
Schneider control the execution of programs, recognize valid executions, and halt
the program execution when a security property violation attempt is identified.

In [78I9] Ligatti et al. investigated enforcing more security properties using
EM. To extend the EM enforcement limits identified in [2], they percept EMs as
sequence transformers instead of sequence recognizers as adopted by Schneider.
The main contribution of this work is the introduction of edit automata to spec-
ify more powerful EMs. Ligatti et al. made an assumption that there exists a
security-relevant set of actions for which EA can (1) feign the actions execution,
and (2) later execute them on behalf of the controlled programs. As consequence,
they extend the theoretical limits of EM enforcement from prefix-closed prop-
erties to all properties over finite sequences and renewal properties over infinite

178 H. Ould-Slimane, M. Mejri, and K. Adi

sequences [6]. However, practical limitation of EA-based EM is the ability to
feign the execution of actions without altering valid executions, an issue that we
are addressing by the proposed paper.

Hamlen et al. [I] provided a taxonomy of the main security enforcement mech-
anisms classes. This taxonomy covers static enforcement, execution monitoring,
and program rewriting. By connecting the taxonomy to the arithmetic hierar-
chy of computational complexity theory, the authors succeeded to provide an
evaluation of the complexity of each enforcement mechanisms class. The main
contribution that is directly related to our work is the identification of inlined
EM as alternative to conventional EM. In addition, it showed that program
rewriting is an extremely powerful technique which can be used to enforce prop-
erties beyond those enforceable by execution monitors [I]. Since the paper was
prepared in the same period as [76], the authors failed to identify the limitations
of EA enforcement compared to program rewriting. Indeed, they (1) recognize
EA-enforceable properties as subset of program rewriting properties enforcement
(2) but did not add formal constraints on the absence of feigned actions effects
on the program execution.

3 Formal Apparatus

In this section we present the main formal definitions needed in this paper. We
start by defining extended finite state machines then edit automata.

3.1 Extended Finite State Machine

In order to formally capture the behavior of programs and edit automata, we
represent them using Extended Finite State Machines. We adopted this model
since the definition of an EFSM is expressive enough to represent edit automata
as well as programs with guarded actions that may carry variables.

Definition 1 (Extended Finite State Machine). Let X be a set of possible
actions, V a set of variables, £ a set of arithmetic expressions over V, and G a
set of predicates over X* and £. An Extended Finite State Machine over X*, V),
and G is a S-tuple (S,i, A) where:

— S is a finite set of states,
— 1 is a the initial state,
— AC (8% (GxX*)xS) is a transition relation,

The transition relation A consists of 3-tuples of the form (s1, (g,0), s2) denoted

by s1 (g,_o'}) s2. This represents a transition from state s; to state so guarded by

the expression g and executing the sequence of actions o.
3.2 Edit Automata

Edit automata (EA) are introduced by Ligatti et al. [8J6]. In this kind of au-
tomata, when given a current state and an input action, the edit automaton

Using Edit Automata for Rewriting-Based Security Enforcement 179

transition function specifies a new state to enter and a sequence of actions to
execute. The transition function specifies the intervention action to take in or-
der to enforce the property. The intervention action can be accepting the input
action or feigning it, inserting a sequence of actions, or halting the execution.
An EA A enforcing a property ¢ can be specified by an EFSM, denoted by

Ey. For each transition s 9% 4 of E, (1) the guard g specifies the set of actions
that can be intercepted by the transition and a condition on their parameters
(2) the sequence o specifies the intervention action that the EA should under-
take as response to an intercepted action. Usually, the guard g has the form
a = Act | @ # Act where « is the variable referring to the action intercepted
by A and Act is any program action. If a should be accepted by A then o = «
meaning that o will be actually executed by Ey. If a should be feigned by A
then o = € meaning that E4 will do nothing as answer to an attempt to execute
a. If some sequence of actions ¢’ should be inserted by A then o0 = ¢’ meaning
that ¢’ will be executed by E4 instead of . The three transitions of the EFSM
of Figure [I] are examples of each of the aforementioned cases. The EFSM of
Figure [1l specifies an EA A; enforcing the property ¢, defined by the following
regular expression:

Ly, = {((minc(z))*.inc(x).send(x))* }

The property ¢; states that any action inc incrementing the value of some
variable x should be followed immediately by an action sending the value of x.

Fig. 1. An EFSM Specifying the EA Enforcing the Property ¢1

4 Injection Operator

In this section, we present our injection operator used to enforce a property ¢ on a
program P. Intuitively, this operator inject the EA enforcing ¢ in the program P.
The injection operator is a kind of synchronous product over automata. However,
since it is used for security enforcement, the order of composition is significant.

Definition 2 (Injection). Let X' be a set of possible actions, Vp and Vg two
disjoint sets of variables, and G a set of boolean propositions over X* and V.
Let Ep = (Sp,ip, Ap) be an EFSM over X*, Vp and G and Ey = (S4,14, Ap)
an EFSMs over X%, Vg and G. The EFSM Ep specifies the behavior of a program

180 H. Ould-Slimane, M. Mejri, and K. Adi

P while the EFSM Ey4 specifies the EA enforcing a property ¢. The tnjection
modulo functions 6, H, R denoted by O%’R of E4 into Ep produces the EFSM
Esop = (5,4, A) over X*, V, and G where:

— 8 CSp x 8y x X",

— 1 =< ip7i¢,€ >.

— A is the set of transitions such that for any state (s;, sk, h) € S, if there exists
a transition (s;, (gp,op),s;) € Ap and a transition (si,(ge,04),51) € Ay
then:

s (< Siuskah >7(g70),< Sjuslah/ >) €A ifo—P #5
o (< si,85,h>,(9,0),<sj,s6,h >)€eAifop=c¢

where :

h/ :H(h70'7370'¢),

Ho: X x X ox X — X

and (g,O’) = R((g'P7U'P)7 (g¢70¢)7h)7
R:(GxXE*)x (G xX*) x X" — (G x X,

The effects function # associates to each action « € X its effect («), which is a
substitution representing the execution of . More formally, let V() be the set
of variables affected by the execution of some action «. The effect of the execu-
tion of a on V(«) denoted by 0(a) = {Va; € V(«), z;\E;)} where E; denotes an
expression over V that will be assigned as new value to the variable z; after the
execution of a. The followings are examples of actions effects:

O(inc(z)) = {ax\z + 1}
0(a(z)) = {z\22+ 2+ 1}

The function H is used to associate with each state of Eyop the sequence of
actions h feigned so far as required by Eg. The new sequence b’ depends on
the sequence h feigned so far and the intervention action required by Ey at this
step. The function R is used to compute the guard and the sequence of actions
that should be executed by each transition of Fgap. The guard and the actions
sequence depend on the sequence o feigned so far by Egop. More details on the
definitions of H and R will be provided below:

h.O’p if Op =€
H(h,op,04) =4 € otherwise

The history associated with the initial state i is empty because no action has
been feigned so far . For the other states, if 04, = ¢, which means that the current
program action (op) should be feigned, then the sequence of actions feigned so
far (h) should be extended by op. If 04 # ¢ then the intervention action needed

Using Edit Automata for Rewriting-Based Security Enforcement 181

to enforce ¢ is either accepting the current action or inserting some sequence of
actions. In both situations, the history of feigned actions should be reset to ¢.
The function R specifies the actual property enforcement and is defined by:

((gp A (op Ik gg)) O(R), 2(0p,04,h)) if op # ¢
R((gp,oPp), (9¢7U¢)7 h) = ((gr) O(h),€) otherwise

where O, Ik, and {2 are defined as follows:

— O(h) is the generalization of function 6 on sequences of actions. Indeed, It
is the substitution obtained from the history h and applied to the guard
gp and the condition (op I g4) to generate a more restrictive guard. This
new guard carries the impact (the effect) of feigning the actions of h on the
program variables. Consequently, we call ©(h) “the feigning substitution of
h”. The use of the substitutions ©(h) represents the way we are following
to feign actions execution. Following this way, if the actions of h are feigned
at some execution point in Egop then, from the property enforcement (Ey)
viewpoint, (Ep) will behave according to the EA (E,) recommendations.
However from Ep viewpoint, Egop will be in an incoherent state since it will
be in a state were h is supposed to be already executed, which is not the
case. To avoid this incoherence, the substitution ©(h) is used to simulate
the effects of executing h on the program variables. As a result, the actions
in Egop are executed according to the recommendations of E, while the
program guards controlling the execution of actions reflect the program state
as if the actions are executed exactly as recommended by Ep.

Let ©(h) be the substitution to be applied to some guard g, we have:

e If h = ¢ (the history is empty), then we have: (¢) O(¢) = g.

o If h =aj.a0...ap then: (9) O(ar.cz...an) = (g)(@(a1)o...00(an)) =
(... (((9)0(an))b(an-1))...0(cv1)). For example:
(x > y) Olinc(x).dec(y)) = (x > y){z\e+1}to{y\y—1} = (z+1 > y—1)

where inc(x) is the action that increments the value of z, while dec(y)
is the action that decrements the value of y.

— “IF" is called “the Satisfaction Function”, it takes a program sequence (con-
sisting of only one action) and a property guard (which concerns some pro-
gram action) and returns a guard over program variables. The relation “-”
is defined in Table [1l where:

e Act(g) denotes the function extracting the action from a property pred-
icate g. For example: Act(a = read(z)) = read(z).

e mgu(a, Act(g)) denotes the most general unifier between a and Act(g).

e V(a) denotes the set of variables used and/or updated by the action a.

e V(g) denotes the set of variables involved in the predicate g.

182 H. Ould-Slimane, M. Mejri, and K. Adi

Table 1. The Satisfaction Function

tt if g=tt
—(al-g") if g=-g
al-g= if mgu(a, Act(g)) doesn’t exist
Tdyn:jgzg((s) A (Tpar(g))d if 36 = mgu(a, Act(g))
Table 2. The Dynamic Test
Tdynggg;((b) =1t
Tdyny\?) ({z =t} U) = (z =1t) A Tdyn))(6) if = € V(a) At & V(g)
Tdyny,t?) ({z +— y} U 8) = Tdyny,() (6) if z € V(a) Ay € V(g)
Tdyny,t?) ({z +— t} U8) = Tdyny,?)(6) if z € V(g)

. Tdynzgzg(é) is a boolean condition on V(a) and it is extracted from the
substitution 4. This substitution is obtained from the unification of a
program action and the corresponding action targeted by the property
guard. This condition represents the dynamic test that should be checked
during execution. Tdynzgzg(d) is defined in Table 2l For example:

{y.#}

Tdyny,) ([— 5,y 3,z z]) = (x =5).

e Tpar(g) denotes the function extracting the guard handling the property
parameters from the predicate g. For example:
Tpar(a = read(z) Az > 2) = (z > 2). Hence, the condition (T'par(g))d
will reflect the test required by the property on the program variables,
by substituting the property parameters with the corresponding program
variable, as stated by the substitution §.

The followings are some examples of computing the satisfaction function:

e a(z) IF (o = a(z)) = tt. This means that the program action a(z)
satisfies the property predicate (o = a(z)) with no condition.

o a(z) IF (& = a(3)) = (x = 3). This means that the program action a(x)
satisfies the property predicate (o = a(3)) under the condition (z = 3),
which is a dynamic test.

e a(z) IF (a =b(z)) = ff. This means that the program action a(z) does
not satisfy the property predicate (o = b(z)).

— {2 is the function that generates the new sequence of actions to be executed
at each transition of Egop. It is called “the editing function” and defined by:

Using Edit Automata for Rewriting-Based Security Enforcement 183

€ ifoy,=c¢
Qop,06.h) = op iop="a”
h.op otherwise

The editing function 2 will take one of the three following decisions:
o Feigning the current program action, by executing no action (g4 = ¢€)
¢ Executing the same action as required by the program (o4 = “a”)
e Executing a sequence of actions when a valid sequence prefix (h.op) is
reached.
The followings are some examples of the use of (2:

o (a(z),e,b(y).c(z)) = e (feigning case).
o a(x),a,e) = a(x) (a cceptation case).
. Q(b(3)7a()-b(y), a(z)) = a(z).b(3) (insertion case).

Optimization. After the construction of the EFSM Ey42p, some optimizations
will be performed on it in order to eliminate unreachable states. This is done
by eliminating all the useless transitions. A transition is considered as useless if
it is labeled with (g,0) where g is equivalent to false (ff). If after eliminating
useless transitions some nodes become not reachable from the initial state then
they will be removed. We remove also each path (g, om)..-(gn, 0n) in which all
the actions have been feigned during the enforcement (o, = ... = 7, = ¢€), since
the new program will execute no action following those paths.

5 Main Results

The following definitions are needed to prove the theorems presented in this
section. Any mention to a path refers to a path starting from the initial state.

Definition 3 (Property Satisfaction). Let Ep be the EFSM specifying a
program P and Eg an EFSM specifying an FA enforcing a property ¢. We
say that P satisfies @, denoted by P E ¢, if every path in Ep can be ex-
tended to a path in Ep that satisfies @, let 7p = (g1,01).(g92,02),...(gn,0on)
be this path. Since each o; is a sequence of actions, we can write their concate-
nation as: 01.02...0, = ai.a2...a4,, where each a; is an atomic action and
m=|01.02...00].

The path Tp satisfies D, if there exists a path 7y = (g}, 01).(95,05) - . (Grns Ohy)
belonging to Eg such that:

(A) mgu(ay ...am,07...00,) # 0.

(B) g1 C (a1 IF¢'y) and ¥1 < j <m.31 <i < n such that a;....a; is a prefiz of
01....0; and (g1 /\2§l§i<gl)@(01 co.00-1)) E (a5 IF g’j)@(al ce.aj1)

where C is an ordering relation over boolean expressions. For any two con-
ditions b and V', we say that b T V', meaning “b is more restrictive than b'”,
if there exists a condition b, such that b=0b" Ab".

184 H. Ould-Slimane, M. Mejri, and K. Adi

Intuitively, condition (A) states that the execution produced by the program
path matches a prefix of a property path regardless of the property conditions.
Condition (B) states that the conjunction of all the conditions (guards) con-
trolling the execution of any action of the program at some prefix of the path
is more restrictive than the conjunction of those conditions (guards) expected
by the property. Since the number of the conditions of the program path can
be different from the number of conditions of the property path, the effects of
the actions executed before some program/property condition are simulated on
them.

Definition 4 (Precise Program Restriction 3). Let Ep and Ep/ be two
EFSMs specifying two programs P and P’ respectively. We say that P is a pre-
cisely more restrictive version of P, denoted by P 3 P’, if each path belonging
to Ep can be extended to some path 7p = (g1,01) - - . (gn,0n) belonging to Ep
for which there exists a path Tpr = (g},01)...(gh,,0,) belonging to Ep: such
that:

(C) (91 A Nazicn(90)0(01 ... 0i21)) T (91 A Naicm (90O ..ol B

(D) o1...0n=0}...00,.

Intuitively, condition (C) states that the conjunction of all the conditions (guards)
controlling the execution produced by the path of program P is more restrictive
than the conjunction of those conditions controlling the same execution produced
by the path of program P’. Condition (D) states that any execution of P can be
performed by P’. The definition of “precise program restriction” is needed by
Theorem [I] to compare a program with the program resulting from injecting a
property into it. Here the resulting program should be more restrictive than the
original one in terms of the possible executions and the conditions controlling
them. Definition [is also needed by Theorem [2] to verify that a any subprogram
of P that satisfies a property is preserved by the property injection.

Definition 5 (Conservative Program Restriction <). Let Ep and Ep/ be
two EFSMs specifying two programs P and P’ respectively. We say that P is
a conservatively more restrictive version of P’, denoted by P < P’, if for each
path 7 = (g1,01) -..(gn,0n) belonging to Ep there exists some path T =
(91,01) .- (gl,,0) belonging to Ep: such that:

(E) 0 CgiAV2<i<n.(g;)O(01...0i-1) C(¢';)O(c]...0/_1).
(F) Vi,1<i<mn. o,=o0..

Intuitively, conditions (E) and (F) together state that for any path of P there
exists some path in P’ (1) executing the same sequence of actions, (2) having
the same number of guards that each of which controls the same sequence of

2 Recall that © is the substitution simulating the effect of a sequence of actions on
the transitions predicates. See Section [] for the formal definition of 6.

Using Edit Automata for Rewriting-Based Security Enforcement 185

action, and (3) each guard of P is more restrictive than the corresponding guard
of P’. The definition of “conservative program restriction” is needed by Theorem
to identify inside a program P all its subprograms that satisfy a property. The
theorem will select these subprograms as conservative restrictive versions of P.

The following theorem states that our approach of injecting a property ¢ into
a program P is sound. Soundness means that all the possible executions of the
EFSM resulting from injecting ¢ into P are possible executions of the original
EFSM specifying P. It states also that all the possible executions of the resulting
EFSM satisfies the property ¢.

Theorem 1 (Soundness). Let P be a program specified by the EFSM Ep, &
a property enforced by the EA specified by the EFSM Ey, and P O © be the
program specified by the EFSM Egop = Ep O%)R Ey. We have:

() PO®ZP
(I) PODED

Proof. B
Let 7 = (g1,01).(92,02) - . . (gn, o) be any path of Egop. It follows, from the defi-
nition of a path, that there exist states (so,ho),(s1,h1)-..(Sn—1,hn—1),

(Sn, hn) such that (so,ho) (g1.91) (s1,h1) - (Sn—1,hn-1) (gn,7p) (Sn,hn) is a
legitimate sequence of transitions, starting from (sg, o). From the definition

of Of, . it follows that there exist states sf,s7,...s? and 58,59, .. 5% and

propositions g7, g2, ... g7 and g‘f, gg, ... g% such that:

a) there exists a path 7p = (g ,07).(95,07)...(¢¥,0F) generated by the
following legitimate sequence of transitions, starting from the initial state

P _P P _P P P

sy of Ep: sl (61,98 sT (62,7) s (6 5.) sP.
b) there exists a path 75 = (97,07).(99,09) ... (9%, 0%) generated by the fol-
lowing legitimate sequence of transitions, starting from the initial state sg

$.0% ¢,a’¢ 4)) 4
of By sg 5 gp BBoD) 5 R

¢) from the definition of O%)R we have:
o Vi>1:g; = (¢f A(o] |- g{))O(hi-1)
o Vi Z 1: g; = Q(O’;P,O'?,hi_l)

Proof of (I): To prove (I): P & & =3 P we will prove that for each path 7 of
Egop, there exists an extension for which there exists a path 7p of Ep such
that the conditions (C) and (D) of Definition [should be satisfied. Let 7 be the
extension of 7 that will be considered by our proofl. From (a), we know that for
each path 7 there exists some path 7p of Ep. Accordingly the conditions (C)
and (D) to be proved are respectively the following:

3 For space limitations not all the intermediate steps of the proof have been presented.
4 Recall that any path can be considered as extension of itself.

186 H. Ould-Slimane, M. Mejri, and K. Adi

= (1 A /\Qgign(gi)@(al coim1)) E (gf A /\QSiSm(g;P)@(UIP . ~UZP—1))

By replacing the terms by there definitions in ¢) the two conditions (C) and (D)
will be the followings:

(©) (oF A (0T 1 g?) A Asyenlal A (0] I+ g0)) O(his)
o(2(af 701 +ho). - (2(05170?_1, hi-2)) C g7 A /\QSiSn(gip) Ol ...al,).

d) From the definition of H, we have:
91 = (9T AT I g7)) O(ho) = (o Ao I g7)) Ole) = gT Ao I g7) E g

Let E; denote the individual terms at the left side of condition (C):
(67 AoT Ik 90) O(hi1) O(R0T 07 o) ... QAoF 1, 0F 1, hi2)).

According to the value of the history h;_1, we distinguish two cases:

— Case 1: hj—1; = ¢ (i.e., no action has been feigned so far), we have:
QT ,0%,hg))... 2P 07 hi_2) = oF...0F . Then we deduce that:
E;=(gP)OT ..ol)N (T - g)O(oT ...) C (7)) O(oT ...aT,).
— Case 2: h;—1 # ¢, i.e., a sequence of actions has been feigned without being
reinserted. This sequence is h;—1 = JZ; - O’Zil where 1 < m < i—1. Conse-
quently, we have: 2(oT, 00, ho)... (P |, 07 | hi_2) =0T ...0F_,. Then,
we deduce that the expression F; becomes:

(gPYO(oF ..ol Ol ...0cP) A (6] IF gl)@(a ..ol)eT ...
oh) =(gF)0(T ..ol) A (ol - gf)O(oT ...0T)

C(gf) O] ...0l4) -

From Case 1 and Case 2, we obtain:
V2<i<n. /\2§i§n E; & /\2§i§n(gzp) Ol ...al).

By adding the term that we got from d) we obtain:
(97 A (0T I gD) A Nacicn (9 A (0T I+ 1)) O(hir) O(2(0T 07 ho) ..
iQ()c'fz;'_l, o | hi2)) CgT A /\QSiSn(gf) O(oT ...oF |) which satisfies condition
C).

Since h, # e, we have: 2(c7, 00, ho)... 207 ,0¢ hy_1) = 0T ...0F which
satisfies condition (D).
By proving (C) and (D) we have proved that (I): P O & 3 P.

Proof of (II): To prove (II): P © ® E & we will prove that for each path
T = (91,01)-(92,02) ... (gn,0n) of Egap, there exists an extension for which
there exists a path 74 of Ey such that the conditions (A) and (B) of Defini-
tion [B] should be satisfied. Let 7 be the extension of 7 that will be considered

Using Edit Automata for Rewriting-Based Security Enforcement 187

by our prooﬁ From a), we know that for each path 7 there exists some path
o = (97,07).(9F,0F)...(¢7,0F). such that oy..... sigma, = o ol.
In addition, from b) we know that for each path 7 there exists some path
7o = (97,00).(9%,0%) ... (9%, 0¢). Consequently, the conditions (A) and (B) to
be proved are respectively the following;:

(A) mgu(a? ..o, 0% ...0%) #0.
(B) ¢1 C (67 IF g?) and V1 < j <n.31 < i < n such that o’f .07 is a prefix

of 01....0; and g1 Azglgl(gl)@< .O]— 1)) (P g])@(P...O’fil)

To prove (A), according to ¢), we have to prove that For all 1 < i < n there
exists ¢+ < j < n, such that:
mgu(2(oT, 00 ko) ... 2T, 0% hy_1),00...0%) #0.
e) Since h,, = ¢, we have: 2(c7,0?,ho))... 20", 0%, hp_1) =0T ...07,
f) From the definitions of functions I and 2 there exists a substitution A, such
that: 07 ...07 = (6?...0%) A, where 0? # ¢ (accepting or inserting case).
¢) From e) and f), we get:

mgu(2(oT, 00, h)) ... 20, 0% hi_1), (60 ...07)) # 0 which satisfies (A).

The proof of (B) is based on term reductions that are similar to those used in the
proof of condition (C) in (I). For space limitation, this proof will not presented
in the paper.

Hereafter, we formulate the transparency theorem stating that any possible ex-
ecution of the original EFSM, that respects the security property, is a possible
execution of the EFSM resulting from injection.

Theorem 2 (Transparency). B Let P and P’ be two programs specified by the
EFSMs Ep and Ep: respectively. Let @ a property enforced by the EA specified
by the EFSM E4 and P O @ be the program specified by the EFSM Eyop =
Ep O%)R Ey. We have:

IfP' <P and P'E® then P I PO

6 Example

In this section, we show through an example how we can use our approach to
generate a program satisfying a property from one that did not satisfy it. In
this example, we take an EFSM FEy, specifying the EA enforcing a property
@2 (Figure) and an EFSM Ep, representing some program P; (Figure B]) not
satisfying ¢o. Indeed, the sequences a(z)c(z) that can be executed following the

path Ty (w>i>($)) TS ($>—:5>’E) T3 (y>££$)) T4 are examples of traces that are not

satisfying ¢o and can result from executing P;. The effects of the four actions
a(x),b(x),c(x), and d(x), involved in Ep, and Ey, are the followings:

5 Recall that any path can be considered as extension of itself.
5 For space limitation, the proof of this theorem has not been presented.

188 H. Ould-Slimane, M. Mejri, and K. Adi

Fig. 2. The EFSM Specifying the EA Enforcing the Property ¢2

z > 1/a(z) x <5 /b(y) y>0/c(x)
tt / d(y)

Fig. 3. The EFSM Ep,

(82, T, a(@))

2xx<5) A(y<4)/e (y+1>0)/a(z).b(y).c(x)

(S3, T3, a(x).b(y))

= 0(a(z)) = {z/2 % x},
= 0(b(x)) = {x/z + 1},
= 0(c(x)) = {z/2°},

- 0(d(z)) = {z/z -1}

The injection of Ey, into Ep, produces the EFSM depicted in Figure @l After
simplifying transitions by evaluating transitions guards, and by eliminating (1)
transitions guarded by conditions that can be reduced to false, and (2) every
path in which all the transitions actions are equal to e, we got the optimized
EFSM. Notice that in this new version of the resulting EFSM, the guards have
been modified as follows:

— In the guard 2 x & < 5, the action a(x) has been feigned,
— In the guard y + 1 > 0, the action b(y) has been feigned,

Using Edit Automata for Rewriting-Based Security Enforcement 189

— The guard y < 4 is a dynamic test that guaranties that the argument of the
action b(y) will satisfy the condition required by the property ¢s.

7 Conclusion

In this paper, we present a rewriting-based formal approach for enforcing secu-
rity properties. These properties are supposed to be enforceable by those EM
that are specifiable by edit automata [J]. Being able to feign the execution of
sensitive actions of controlled programs, edit automata are supposed to enforce a
wide range of properties that cannot be enforced by conventional EM. However,
feigning program actions will usually make the program behaving in discordance
with its specification. The reason of this discordance is the fact that the effects
of feigned actions are not reflected in the program states. In this paper, we
highlighted this problem and showed how program rewriting can be a reliable
enforcement alternative. The proposed formal framework used in our approach is
based on EFSMs. EFSMs are expressive enough to specify edit automata as well
as programs. We defined an injection operator that takes an EFSM specifying
an edit automaton and embeds it into an EFSM representing a given program.
The EFSM obtained from the injection is a secure version of the original pro-
gram. We provided the formal results related to our operator as well as their
corresponding proofs.

We are currently investigating the use of aspect oriented programming (AOP)
[10] to implement EA-based program rewriting enforcement. The theoretical
foundations of this ongoing task are based on the pointcut-advice model while
its implementation is based on AspectJ [I1]. One interesting thread of this work
is building a catalogue of real-world security properties and the corresponding
aspects enforcing them. Another future research thread related to the paper
contribution is leveraging the existing state of the art of conformance testing
for EA-based program rewriting enforcement. This thread is motivated by the
fact that existing techniques are not adequate to deal with feigning actions and
emulating their effects on rewritten programs. The expected techniques will gen-
erate the data required to test the conformance of an enforcement mechanism
implementation to its formal specification.

References

1. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1), 175-205 (2006)

2. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and Systems Security 3(1), 30-50 (2000)

3. Erlingsson, U., Schneider, F.B.: Sasi enforcement of security policies: a retrospec-
tive. In: Proceedings of the New Security Paradigms Workshop, Caledon Hills,
Ontario, Canada, pp. 87-95. ACM Press, New York (2000)

4. Evans, D., Twyman, A.: Flexible Policy-Directed Code Safety. In: IEEE Sympo-
sium on Security and Privacy, Oakland, California (May 1999)

190

5.

6.

10.

11.

12.

13.

14.

H. Ould-Slimane, M. Mejri, and K. Adi

Viswanathan, M.: Foundations for the Run-time Analysis of Software Systems.
PhD thesis, University of Pennsylvania (2000)

Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. In: di Vimercati, S.d.C., Syverson, P.F.; Gollmann, D. (eds.) ES-
ORICS 2005. LNCS, vol. 3679, pp. 355-373. Springer, Heidelberg (2005)

Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security 4(1-2),
2-16 (2005) (published online 26 October 2004)

Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Founda-
tions of Computer Security, Copenhagen, Denmark, July 25-26, pp. 95-104 (2002)
Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. Technical Report TR-720-05, Princeton University (January 2005)
Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p.
327. Springer, Heidelberg (2001)

Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
of Software Engineering 3(2), 125-143 (1977)

Hamlen, K., Morrisett, G., Schneider, F.: Computability classes for enforcement
mechanisms. Technical Report TR2003-1908, Cornell University (2003); To appear
in ACM Transactions on Programming Languages and Systems

Necula, G.C.: Proof-carrying code. In: Conference Record of POPL 1997: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
January 1997, pp. 106-119 (1997)

	Using Edit Automata for Rewriting-Based Security Enforcement
	Introduction
	Problem of Feigned Actions in Security Enforcement
	Contributions

	Related Work
	Formal Apparatus
	Extended Finite State Machine
	Edit Automata

	Injection Operator
	Main Results
	Example
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

