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Abstract. We present a new access control mechanism for P2P net-
works with distributed enforcement, called P2P Access Control System
(PACS). PACS enforces powerful access control models like RBAC with
administrative delegation inside a P2P network in a pure P2P manner,
which is not possible in any of the currently used P2P access control
mechanisms. PACS uses client-side enforcement to support the replica-
tion of confidential data. To avoid a single point of failure at the time of
privilege enforcement, we use threshold cryptography to distribute the
enforcement among the participants. Our analysis of the expected num-
ber of messages and the computational effort needed in PACS shows that
its increased flexibility comes with an acceptable additional overhead.

1 Introduction

Peer-to-Peer (P2P) networks are used in many application areas. Especially in
the data distribution (file sharing, IPTV) and data integration area including
Peer Data Management Systems (PDMS) [1], their use introduced new challenges
for access control. Because traditional access control mechanisms are based on
a central authority, which is missing in a P2P environment, new approaches are
needed.

In previous work [2/3] we proposed an access control system for PDMSs with-
out data replication. Here, we extend the application range of our P2P Access
Control System (PACS) by supporting replication. Replication is a core feature
in P2P applications. It enables fault tolerance in the face of disappearing peers
and ensures load balancing within the network.

Replication in a P2P environment has several implications for the access con-
trol mechanism. First, as there is only limited trust between the participants,
replicas cannot be distributed in plain text. The data is encrypted and stored
on the replica servers without giving the replica server the possibility to decrypt
it. This method is widely used in database-as-a-service approaches e.g. [4J5].
Second, the enforcement of privileges has to be distributed, as otherwise the
data owner remains the single point of failure and a potential bottleneck. Again,
because of limited trust between the participants, the enforcement cannot be
transferred to a single peer.
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The contribution of this paper is to develop a distributed privilege enforcement
mechanism for P2P networks, by extending PACS to support data replication.
This implies the distribution of privilege management and privilege enforcement.
The distribution of privilege management is already a key feature of PACS.
Therefore, the main contribution here is to distribute privilege enforcement. To
provide this, we use client-side enforcement, where each data object is encrypted
with its own private key. The distribution and generation of these keys is done
collaboratively by a group of peers (elected by the data owner) using threshold
cryptography [6]. In this way, powerful access control models like Role Based
Access Control (RBAC) [7] and administrative distribution are supported.

The paper is organized as follows. In Sectionlcurrent access control approaches
for P2P networks are presented. Section[3introduces the access control component
of PACS, together with the requirements for the data storage and the threat model.
Section [l describes the details of privilege enforcement in PACS. Thereafter, cost
and performance estimations of the proposed enforcement mechanism are shown.
The paper concludes with a discussion and future work.

2 Related Work

Research projects that address access control in P2P networks can be classified
according to their distributed privilege enforcement method, as presented in the
following.

The first option is to burden the data owner with privilege enforcement. This
matches the classical server-side enforcement as the data owner is always the
data provider. Enforcement is distributed in the network since the individual
data owners, rather than a central authority, enforce the privileges on their
data. When the data is replicated the enforcement of the privileges on that data
must be done by the replication server. In a P2P network this is rarely practical,
as trust between the participants is limited. Projects that use this enforcement
technique are P-Hera [§], Berket et al. [9] and our own approach PACS [23].

The second option is to enforce the privileges on the client. In this case,
the data owner encrypts the data before it is stored on the replica servers.
Only clients that possess the corresponding key can decrypt the data delivered
by replica servers. The decryption keys are distributed by the data owner ac-
cording to the privileges held by the clients (e.g. [B]). P2P approaches based
on client-side enforcement were developed for P2P file systems. Sirius provides
read and write access control [10]. Pacisso [11I12] additionally supports owner
changes and the possibility to define object groups. Both approaches operate
at file granularity and do not support advanced access control models such as
RBAC and administrative distribution. The access control mechanism proposed
by Miklau and Suciu [4], designed for simple P2P file sharing, is based on en-
cryption and key distribution. The privileges are defined using a logical model
so that the granularity is not restricted to files. Again, no administrative dis-
tribution or definition of groups and roles is supported. In client-side enforcement
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efficient key management is a problem, as a revoke triggers data re-encryption.
Additionally, privileges are bound to decryption keys, which limits the access
control models that can be supported. The advantage of this option is that
replication of confidential data is supported even in unreliable environments.

Sandhu et al. [I3] use trusted computing technology for access control in P2P
networks to avoid the shortcomings of cryptographic enforcement. Their solution
is also the problem, as a trusted reference monitor on the client is mandatory.

The third option is to transfer enforcement to a group of peers, called delegates
in the following. The data owner elects delegates which enforce the privileges for
a data object on its behalf. The delegates execute a t of n (where ¢t < n) voting
scheme to decide collaboratively whether a particular request should be permit-
ted or not. The client can only access the data if ¢ of n delegates approve the
request. This mechanism strengthens the robustness of the enforcement mech-
anism and reduces the trust required in single delegates. Threshold decryption
techniques [6] do not disclose the decryption key to the delegates or the clients.
The delegates do the data decryption collaboratively and can enforce arbitrary
privileges. The disadvantage is that the data has to be decrypted and delivered
to the client by at least t delegates, which causes high communication costs.
Pacisso [12] uses threshold signatures to enforce write permissions and Saxena
et al. [T4] show the use of this technique especially for mobile ad hoc networks. In
addition, several research systems use threshold cryptography for access control
enforcement in distributed databases (e.g. [15]), but none of them is applicable
to P2P networks.

None of the presented approaches fulfills our requirement to support dis-
tributed enforcement for a powerful access control model and administrative
delegation.

3 The Access Control Component

We first introduce PACS and then describe the distributed enforcement mech-
anism which is the main contribution of this paper. Our description abstracts
from concrete access control models and data storages. In the following a user
corresponds to a peer.

3.1 P2P Access Control System

PACS [23] enables peers in a P2P network to establish global, decentralized
access control. The access control mechanism is built bottom up, as single peers
grant each other privileges on their private data. Through administrative del-
egation, privileges for non local data can also be granted. The privileges are
stored in a distributed reliable directory, based on Castro et al. [16]. This guar-
antees that data stored in the privilege store is always available. PACS supports
RBAC with administrative delegation and does not rely on any central author-
ity or component. To make this possible, each participant needs a certificate
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signed by a certification authority. The established public key infrastructure
(PKI) enables secure authentication and ensures secure communication between
the participants.

3.2 PACS Distributed Enforcement

To enable distributed enforcement in PACS, we propose a combination of del-
egate enforcement and client-side enforcement, as introduced in Section 2l The
delegates do not decrypt the data object, but the data object decryption key.
In that way we maintain the flexibility to enforce a variety of privileges and en-
able administrative distribution. The drawback is that clients get the decryption
key and, therefore, the key generation and data re-encryption problem remains.
In our solution, key distribution and key generation is done by the delegates
collaboratively while data re-encryption is handled by the client that revokes a
concrete privilege. We lose some of the flexibility of the delegate option, as we
cannot use contextual information for authorization. Especially, it is impossible
to support the evaluation of attributes during XACML [I7] policy evaluation.
These attributes can change anytime and the privilege enforcement component
cannot keep track of these changes, as they are outside the scope of the access
control component. Recall that every attribute change may result in privilege
revocation, which must trigger new key generation and data re-encryption. In
addition, if an application area relies on attribute evaluation, one can think of
a wrapper that maps this attribute value to a permission inside PACS. In this
way, PACS keeps track of the attribute changes and so key generation and data
re-encryption can be triggered.

3.3 Data Storage

To make our approach more general, we separate privilege management and
storage from data storage. Even though it is possible that both are the same, it is
very likely that storing privileges requires higher security and is therefore more
expensive. We make only basic assumptions about data storage. The storage
has to provide a simple interface with two operations put and get. put(ID, Data
Object) stores the data object under the given ID and get(ID) retrieves the data
with the specified ID.

Internally, data storage can be based on a distributed hash table (DHT) [I§]
or any other storage structure. What is important is that each data object stored
in the data storage is identified by a unique ID. As we operate in a P2P network,
the network-wide data object ID consists of the unique peer ID of the data owner
concatenated with the unique local name of the data object. The ID of the data
object DO of peer P1 is defined as IDpo,, = IDp1 + IDpo. To ensure basic
security in the data store, data objects to be protected by PACS are inserted
with a self-verifying identifier, ID%Y. An IDSV for a data object is generated
by creating a hash value over the concatenation of the object content and the
object header headpo,, as ID}Y, = h(headpo,, + DO), where h is a secure
hash function, such as SHA-1. The peers in the data store ensure that only data
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objects with a correct 1DV are stored. Clients that receive a requested data
object can immediately verify whether the data object was changed without
authorization.

Data objects protected by PACS have the following structure:

[head{IDpopr,,IDpcio, Vokeypo,, }> DO

Beside data content (which is normally encrypted), they carry a header that con-
tains the IDpo,, , the ID of the Delegation Group Info Object (DGIO, explained
in Section [£3) and the version number of the object encryption key. This infor-
mation is needed to check valid object deletions. As the self-verifying identifiers
change with every data object modification, a special delete option is needed for
outdated data objects. A deletion of DO is invoked by a put(ID3Y,, , DGIO)
call. Note that the verification of this request fails, as IDPY, = # h(DGIO). But
if the object is a new DGIO with the same I Dpgro, including a new version
number that is larger than the one stored in the current object, the request is
accepted as a valid deletion. Before that, the correctness of the delivered DGIO
object has to be checked by requesting the DGIO object from the privilege store.

3.4 Malicious Peers

As PACS is based on a P2P network that potentially contains malicious peers,
we distinguish between good and malicious peers: a good peer always follows the
specified procedures, otherwise it is a malicious peer. A malicious peer can act
arbitrarily wrongly and can collaborate with other malicious peers. Data owners
are assumed to work correctly as far as their own data objects are concerned.
Authorized peers that revoke a privilege are assumed to execute the procedure
properly. Only then the revocation is effective, which is in their own interest.

As PACS is based on secure routing [16], it can handle up to 30% malicious
peers in the network. We assume that the fraction of malicious peers within
a delegation group equals the fraction of malicious peers in the network. It is
the responsibility of the data owner to choose the delegates and the size of the
delegate group n accordingly. In addition, PACS requires that the threshold
t> g as a security buffer.

The goal of an attacking malicious peer is to gain unauthorized access to
stored objects and/or to prevent other authorized peers from accessing stored
objects. Attackers are assumed to have only limited computational resources
and hence cannot break the underlying cryptographic schemes. This means that
an attacker cannot generate valid signatures and encrypt/decrypt data objects
without having the right keys. An attacker can eavesdrop the network traffic as
long as it is not encrypted, but cannot block communication between any two
peers. We ensure that the communication between two peers is secure, by signing
and encrypting messages. Challenge-response rounds are used to prevent replay
attacks. Furthermore, we do not control the information flow after the data is
delivered to the client. The data responsibility of PACS ends there.
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4 Distributed Privilege Enforcement in PACS

Distributed privilege enforcement is based on a combination of symmetric, asym-
metric and threshold cryptography [19], as presented below.

4.1 Object Encryption

Privilege granularity in PACS is on the object level. This is not a restriction,
as the object can be defined as a tuple in a database table or a music file.
Every data object o is symmetrically AES [20] encrypted by an individual object
key OKey,, (128 bit length), where p is the data owner. Each OKey,, has a
version number Vokey,,, - The data owner p provides the asynchronous private
master key M Key,, !'and the corresponding public key M Key,. The OK €Yo, is
generated by signing the concatenation of the data ID,, and Vokey,, -

. MKey;?! B
OKeyop = SZg(ID " ) = (h(IDop + VOKey,,p))MKeyp !

op +VOKeyap

PACS uses RSA [21] as its signature algorithm. Enforcement is done by a dele-
gation group. The data owner distributes the private master key M K ey;1 using
Shamir’s (t,n) secret sharing technique [22] [Y. Using this, we assign a share s;
to each delegate d;. The secret is described by a polynomial f(z) of degree of
at most ¢t — 1, where f(0) = MKeyISI. The polynomial can be reconstructed by
every combination of ¢ participants, using the Lagrange interpolation formula.
All coordinates z; are made public, whereas the generated shares are private.
Share s; = f(x;),z; € R is delivered to delegate d; encrypted with its public
key, so only d; can read it. Based on Desmedt [19], a message m is then partially
signed by delegate d; which computes

sigsy = (h(m))* (mod n')

where n’ is the RSA modulus of the public key M Key,. A full signature of m,

MKey "
Sigm “r , can be calculated out of ¢ partial signatures by first calculating the

coeflicients of the polynomial as

ki = 4 LViEel..., 1
=t
and then
t
-1
sig%Key” = H (sigsi)*i (mod n')
i=1

! For RSA, some modifications are needed. See [23] for details.
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Share Verification. Until now the generation of sig% Kew” from the partial
signatures fails if one of the ¢ partial signatures is malicious. As we cannot verify
the correctness of each partial signature on its own, it is very cumbersome to
identify the malicious one and replace it with another correct partial signature
from another delegate. To enable the verification of partial signatures, we use
the robust threshold RSA method (see Gennaro et al. [24]). During share gen-
eration the data owner generates a random public sample message w and its
corresponding partial signature sig;; for all shares s;. These partial signatures
—1

ey,

. . MK
as well as the complete signature of the sample message sigq, are made

public. The verification procedure is then as follows

1. The requester has received the partial signature of the message m, sig.:,
from delegate d;

2. The requester chooses two random numbers ¢, j and computes the challenge
Q = m' x w’ and sends this challenge to the delegate d;

3. The delegate signs the challenge with its partial key sigfj and returns it to
the requester

4. The requester now checks if sige; = sig}, x sigj,. If this is true, the requester
accepts sigy: as partial signature of the delegate d;

Share-Share Generation and Verification. A share s; is only known to the
delegate d; and the data owner. When a delegate leaves the network unexpectedly
and the data owner is not available, there is no possibility to restore the lost
share. To cope with this, the so called share-shares are generated during share
generation. For each share s; a Shamir’s (¢, n) secret sharing schema is created.
The procedure is as follows [12]

1. For each delegate d;, the data owner takes its share s; and applies the (¢,n)
secret sharing schema. The polynomial f;(z) is of degree (t—1) and f;(0) = s;

2. The owner evaluates f;(x),z; € R for n points [x1,...,z,] and gets as result
n share-shares [s; 1, ..., 8] with fi(z;) = s;;
3. The owner now sends to each delegate d; the share-shares [s1;,...,8p.]. So

d; gets as share-shares the points with the i*" = value from every polynomial.
For each share-share, hash values are generated and publicly stored. They
are used for share-share verification during share reconstruction

When a delegate d; is no longer available and the share should be reconstructed,
every remaining delegate d; takes its share-share s; ; and sends it securely to
the new delegate. After the new delegate has received ¢ valid share-shares (the
share-shares can be verified using the generated share-share hash values), it
can reconstruct s; using the Lagrange interpolation formula. Thereafter, the old
delegates send the new delegate their share-share s; ;. After receiving all share-
shares, the new delegate has also recovered the share-shares of d;.

4.2 Making a Data Request in PACS

The data request procedure is shown in Figure[ll We illustrate the case of the first
request for a particular object made by a client. Note that we make a distinction
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Fig. 1. A Data Request in PACS Fig. 2. Delegates Process an Access
Request

between the privilege store and the data store. This is only a logical difference,
as the two stores may run different storage protocols and different properties
on the stored data can be guaranteed. So the same peers may participate in
both logical networks. The client starts by sending a request for the Delegation
Group Info Object (DGIO) for a particular object (Figure [I, step 1). The ID
of the DGIO is derived from the object ID. The DGIO stores the information
about the delegation group responsible for the object (for details see Section [13).
Having received the DGIO, the client now knows which delegates to contact to
get the decryption key. The decryption key in PACS corresponds to a threshold
signature [6] over the object ID together with a version counter (cf. Section
[T)). The client has to ask a sufficient number of delegates to return a partial
signature (steps 3 and 4). This is shown in detail in Figure[2l The client p sends
the request to several delegates (step 1). Each delegate individually verifies the
privileges held by p by requesting those from the privilege store (step 2). A good
delegate returns the partial signature only if this verification succeeds (step 3).
Privilege verification is executed by the delegate in the same way as a server
does it in the sever side enforcement. After the client receives enough partial
signatures, it constructs the complete signature that corresponds to the OKey
(see Section ET)). Having the key, the client decrypts ID®Y from the DGIO
and requests the encrypted data object from the data store. After receiving the
object, the client decrypts the data and the request is satisfied. If the key is
already known to the requesting client (caching), steps 3 and 4 in Figure [T are
skipped.

4.3 Delegate Management

Delegate management is part of privilege management. All information about
the delegates is stored in a Delegation Group Info Object (DGIO). Because the
information is as critical as the privileges stored in PACS, it is also stored in the
privilege store. To achieve maximum flexibility, we allow a peer to have multiple
delegation groups (e.g. one can think of a DGIO for every object). The peer just
has to compute a unique master key pair [M K ey, 1. M Key,) for every delegation
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group. To keep the description simple, we assume for the rest of the paper that
every peer has exactly one delegation group and therefore one delegation object.
There exists an agreed naming schema for the DGIO so that every interested
peer can compute the I Dpgro of the right DGIO, using the data object ID.

Delegation Group Info Object. The DGIO object consists of a header part,
an object part and a delegate part. The header is defined as:

. MKey:?! . MKey-?!
[Ingjo,Vpgjo,S’LgDGI(gp ,MKeyp, ID,, PKey,w, sigw U ]

where sigpo " is the signature of the whole DGIO (excluding the signature
itself), which prevents unauthorized changes. PKey is the public key of peer p
and w is the sample message needed for partial signature verification. As every
delegation group has its own master key, the public master key M Key, is also
included. Vpgro is the DGIO version number required to detect stale DGIO
copies.

The object part contains the object entries the delegation group is responsible

. . . OKey, .
for. A single object entry is defined as [IDOP, encID;‘?f . VOKeyop]. IDfpV is the
op

actual self-verifying identifier needed to retrieve o, from the data store. It is
stored in the DGIO to ensure that only authorized peers can create a new version
of the object. I Dfpv is encrypted with OKey,, to ensure that only authorized
peers can see it. 1D, is stored for the OKey,, creation together with a version
number of the object key Vp Keyo, -

The delegate part contains delegate entries. There is one delegate entry for
each group member. A delegate entry is defined as:

[IDdi, DKey, i, Sigi}, {.7,‘@1, ey Z‘im}, {h(fz($171)), ey h(fz(l‘lm))}, active]

An entry includes the I Dy, of the delegate (so that one can contact it directly),
its public key DKey and which z; coordinate is assigned to it as share s;. The
share-share coordinates x;; and the hash values of the share-shares are also
stored here. Lastly, the status of the delegate (active/deleted) is noted.

Handling of Delegate Changes. Delegates are peers in a P2P network. They
may disappear without informing the other delegates in their group. If a remain-
ing delegate d; realizes the absence of a delegate d; in its group, it initializes a
delegate recovery procedure. To achieve this, d; initiates a quorum (again, ¢ of
n) decision by contacting all remaining delegates to get their agreement that

— delegate d; is no longer available and should be marked deleted in the DGIO
— dp+1 should be the new delegate that substitutes d;

d; is marked deleted to exclude this peer as a future delegate substitute. Having
received a positive quorum means that d; has received ¢ valid partial signatures

for the new modified DGIO. Therefore, d; can reconstruct the whole signature

. MKey;! . . . MKey;' . .
sngGIepr , as shown in Section E11 sngGIepr is stored in the DGIO and the
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signed new DGIO is transmitted to the delegate group members. Before it is
stored by d; in the privilege store, the signature recovery process (Section 1)) is
started, to recover share s; for the new delegate dy,+1. As the number of delegates
needed to recover a lost share is t, we need at least ¢+ 1 good delegates to recover
a share of a lost good delegate.

A last note on security: In our solution the shares and the share-shares do
not change. This means that the share s; owned by the disappearing d; is still
valid. If d; joins the network again, it needs only ¢ — 1 partial signatures sig;,

. . S . MKey,*
where i # j to get a valid signature sigm * . Consequently, frequent dele-

gation group changes weaken the security of the threshold decryption and the
secure sharing schema. Proactive secret sharing [25] avoids this by changing the
shares and share-shares frequently. For our purpose, it is sufficient when the data
owner reinitializes the secret sharing by generating new shares and share-shares,
depending on its personal security requirements. Generating new shares changes
only the DGIO and the delegates. There is no need to re-encrypt the object
data, as the MKey;1 and thus the OKeys remain the same.

4.4 Key Management

As explained in Section 2] the data owner generates a public master key pair
[MKey, MKey~!] for each delegation group. After initialization through the
data owner, the delegation group is responsible for O K ey management.

OKeys are not stored by the delegates or the DGIO, rather, they are gener-
ated for every key request by partially signing the concatenation of object ID
and OKey version number (IDo, + Vokeyo,,) stored in the DGIO. In that way
only the authorized requesting client can generate the OKey and cache it for
future requests. Caching the keys reduces network traffic and processing load for
the delegates. Because OKeys are newly generated for every key request, a new
OKey,, is implicitly generated when Vokey,,, changes.

4.5 Data Encryption

For data encryption in PACS three cases have to be distinguished: (1) initial
data encryption on startup, when a new object is inserted into the network with
access control enabled, (2) data re-encryption as a result of a privilege revocation
and (3) modification of a stored data object.

Startup. Let us assume peer p wants to insert a new, protected object o into the
network. At the very beginning, p has to create a delegate group, if no delegate
group exists or the existing delegate group is not appropriate. To do this, p
creates the master key pair [M Key,, MKeyzjl].

Next, p generates the private object key OKey,, for object o, by signing the

ID of o (ID,,) together with a version number. As this is the start of the en-

MKey;*
cryption, Vokey,, = 0. The initial object key is therefore OKey,, = sig( 7 D;yjo).

Then p encrypts o with OKey,,, generating the ciphertext object o, L as o, 1
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OKey, . . . . .
= enco, v p adds the header information head,,, as described in Section [3.3]

to the encrypted object. Then p calculates the self-verifying identifier of o, as
ID3Y = h(head,, + o, ). Afterwards, p distributes o, ' + head,, to the replica
servers by calling put(IDfpV, (0, + head,,)) on the data storage.

What remains to be done is to build the delegate group, so that authorized
peers can receive a decryption key in the absence of p. p selects n peers to do
the privilege enforcement collaboratively. Next, the shares and share-shares are
created and distributed to the delegates, following the procedure presented in
Section [£11 If p had to create a new delegate group, it must generate the DGIO
for this new delegate group (see Section F3]). Otherwise, the object information

for o has to be added to the existing DGIO. This includes the Vokey,, , and

OKeyo,
enc psv

After storing the updated or created DGIO in the privilege store, peers receive
the OKey,, on request, if enough delegates approve the request according to the
peers privileges. With the OKey,,, the client decrypts the I Dfpv, then requests

the data object o, I with this ID and decrypts it.

Privilege Revocation. Data re-encryption is needed whenever a privilege on
an object o is revoked by a client. A peer that possesses the privilege to grant
privileges for object o to other peers has intrinsic read and write privileges on
o. This is a constraint of our privilege management, because the re-encryption
of an object is in fact a write operation. Before the actual revocation, the re-
voker requests the DGIO of object o, decrypts the IDfpV with OKey,, and calls

get(ID;Y) on the data store. After receiving o, ', r decrypts it with OKeys,
to get the plaintext object 0. The OKey,, can be requested from the delegates
because the grant privilege includes read and write privileges.

Next, the revoker r revokes the privilege of peer b on object o. This operation
has two parts. The first part is done by the PACS privilege management and is
blanked out here. We assume that r has the appropriate privileges and there-
fore the removal succeeds. The second part is the generation of a new OKey,,
(called OKey;, ), followed by the encryption of o with the new OKey, . This
is mandatory, since peer b may have seen and cached the OKey,,. Without a
new OK eyl’)p and re-encryption of o, b can still decrypt o, I and get o in plain-
text. The new OK ey(’)p is generated by the delegates by incrementing the version
counter Vp Keyo, - To allow the delegates to prove the correctness of the revoca-
tion, the revoke command is first sent to the delegates for object o. Each dele-

gate d; that accepts the revoke returns a partial signature sigf}D +(Vorey, +1))
op €Yoy,

privately to r. After r has received ¢ valid partial signatures, it computes the
MKey;1

(IDoer(VOKeyop +1
Section Il Only then, r submits the revoke command to the privilege store.
Afterwards, the revoker r re-encrypts the data object o with the new OK eygp,

new OKey, as OKey, = sig ) following the description in
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’
1 OKe

0, " = €enco, y"”, and stores the newly encrypted object into the data storage.

To do this, » computes the new self-verifying identifier ID;fV and executes
put(ID;f:V7 (o) + head,,)).

Having stored the encrypted data object, the revoker informs the delegates
about the update by sending the new encrypted self-verifying identifier of o

(enc to the delegates. Now the DGIO can be updated to contain the

]D’SV )

new version number Vorcey, + 1 and the new encrypted 1D, 'SV

The DGIO update is done either by one of the delegates or by the revoker. To
make the DGIO valid again, it needs to be signed with the M K ey‘1 key. Again,
our threshold signature schema is used to generate the signature. All delegates
d; generate a partial signature of the new DGIO and send it to the coordinator
(revoker r, or one of the delegates). If ¢ of n delegates agree with the changes,
the signature is complete and the DGIO can be stored in the privilege store with
the valid signature.

After the re-encrypted object 0;*1 and the updated DGIO are stored, the
outdated object o can be deleted by the revoker. The revoker sends a special put
request put(IDSV DGIO) to the data store, where IDSV is the self-verifying
1D of the old obJect and DGIO is the new DGIO object. As explained in Section
B3| this instructs the storage nodes to delete the object with ID ID5V, as it is
outdated.

Modifying an Object. Storing a modified object is similar to revoking a
privilege. The difference is the interaction with the privilege store. When a peer
p wants to update object o, it modifies the object and encrypts it with the
OKey,, (provided that p has already received o). Now p generates the new
ID;?;V and encrypts it with the OKey,,. This encrypted ID:;:V is now sent
to the delegates to request an update of the DGIO entry for object o to the
new ID;fV. The delegates only accept the changes to the DGIO if p has the
required privileges to modify object o. If ¢ delegates accept the changes to the
DGIO and send back a partial signature of the new DGIO to p, a valid DGIO
signature is created. The modified data object can now be stored in the data
store using put(I D;*:V, (0, + head,,)). After the updated and signed DGIO is
put into the privilege store, the old version of o can be deleted by executing
put(IDfpV, DGIO).

5 Complexity Analysis

Here, we evaluate the performance of PACS with client-side enforcement. We
compare PACS with the pure client-side enforcement abbreviated as “client”
and pure delegate enforcement shortened as “delegate”, as introduced in Section
Bl For the sake of brevity, we only compare the simple approaches and do not
take into account any optimizations. We also abstract from the details of data
encryption (Section LH) and delegation group management (Section F.3]) to get
a balanced and comprehensible comparison.
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Table 1. Number of Messages for the Different Enforcement Approaches

Cold Request Hot Request  Insert Revoke Grant

Client 2 xlog(n) log(n) 2xlog(n) 4xlog(n) log(n)
Delegate (t + 1) * log(n) + 2t t x log(n) + 2t 2 * log(n) 0 0
PACS 2 xlog(n) + 2t log(n) 2xlog(n) 4xlog(n)+2t 0

Table 2. Amount of Data to be Transferred in the Different Enforcement Approaches

Cold Request  Hot Request  Insert Revoke Grant
Client KF+o 0 KF +o 2KF + 20 KF
Delegate DGIO + 2t o 2t x 0 DGIO +o 0 0
PACS DGIO +tx*sig+o o DGIO+ 02 (DGIO+tx*sig+0) 0

Table 3. Computational Effort for the Different Enforcement Approaches

Cold Request Hot Request Insert Revoke Grant
Client 2 * dec dec enc 2xdec+ enc enc
Delegate t * enc + 2t x dec txenc—+ 2t xdec enc 0 0
PACS txsig+tsenct(t+1)*dec dec enc 2txsig+(2t+1)* 0
enc+ (2t+1)xdec

We estimate the number of messages needed, the amount of data that has
to be transferred and the computational power needed by the participants to
perform the enforcement. The effort for privilege management is not cosidered
here. For simplicity, we assume that all data is stored in a DHT with the number
of messages used to retrieve data being log(n) where n is the network size. ¢ is
the number of delegates that need to be contacted, o is the data object and
sig a signature. We abstract here from the overhead of secure communication
between the participants as long as it is the same for all approaches. In addi-
tion, we assume that the DGIO has the same size as the key file (KF) in the
client case. Similarly, the effort to create or modify a DGIO or a KF are the
same. We distinguish between decryption (dec), encryption (enc) and signature
generation (sig).

We compare the three approaches for an access, an insert, an update, a revoke
and a grant request. We distinguish between the first (cold) request and the
following requests (hot), as client and PACS enforcement use key caching. The
results shown in Tables [l Pl and ] and Figures [B] and @] are explained in the
following.

Cold Request. In the client enforcement approach, a DHT request retrieves
the key and another DHT request retrieves the data object. DGIO and the ob-
ject need a decrypt operation. In PACS we need to retrieve the DGIO. Then
at least ¢ delegates are contacted to create and return the partial signatures.
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The retrieval of the data object results in an additional DHT request. In the
delegation approach we retrieve a kind of DGIO identifying the delegates for
the object. Afterwards, at least ¢ delegates are asked to return partial decrypted
data objects securely (i.e. encrypted).

Hot Request. Here we consider only the second request by a client for an object.
If the privileges have not changed (if no revoke occurred), the keys cached by
the client and PACS can be used again.

Insert. An insert of a new object into an established access control mechanism
triggers an update or creation of a KF/DGIO (DHT request). In addition the
data has to be encrypted and stored.

Update. In all approaches the altered object is encrypted and afterwards in-
serted into the network, which causes log(n) messages. As there is no difference
between the approaches, this is omitted.

Revoke. In the PACS and client approach, privilege revocation results in re-
questing and re-encrypting the object. In the client approach, this corresponds
to the request effort plus the insert effort. In PACS (if the revoker is not the data
owner) t delegates need to be asked for a new key. This results in additional 2¢
messages. In the delegate approach there is no effort, as no one (beside the data
owner) has the decryption key in plain text, so no re-encryption is needed.

Grant. Granting a privilege causes an update of the key file in the client ap-
proach, which results in log(n) messages. The PACS and delegate approach
require no effort.

Figure Bl illustrates the predicted number of messages for various approaches
in networks with up to 10,000 nodes. PACS is clearly superior to the delegate
approach and when the cache is warm, it should perform as well as the client
approach. Figure Ml shows the expected sizes of transferred data in kB. The
volume load in the network in PACS is much lower than in the delegate method,
and similar to the client enforcement method.



156 C. Sturm, E. Hunt, and M.H. Scholl
6 Discussion and Future Work

Client-side enforcement in PACS is a compromise between performance and
power of the access control system. As can be seen from the complexity esti-
mations (Figures B and M), the pure delegate approach is too expensive in the
amount of transferred data and communication cost. Especially the fact that
each object has to be tranmitted ¢ times is responsible for the limited scalabil-
ity, as the communication costs linearly increase with the number of requests.
The best performance is achieved by client-side enforcement. However, this has
limited access control power. In fact, the pure client-side enforcement shown
here can only restrict read access to data objects and offers no administrative
distribution, grouping of privileges, roles, etc. as provided in PACS. PACS pays
for its additional access control power with every cold request but it performs
better than the pure delegation approach in terms of communication costs and
the size of data that is transmitted. PACS needs as much computational power
as the pure delegate approach, but this is not that critical, as partial signature
generation is done in parallel and every peer generates only one signature per
request.

All the cryptographic primitives used in PACS have been proven secure else-
where. As the combination of methods used in PACS does not release or utilize
any additional information, also the combination of the cryptographic methods is
secure. In such a dynamic environment one has to find tradeoffs between security
and performance, and between the power of the access control and its generated
overhead. In that way PACS is a compromise in both respects. It guarantees the
security of data while producing acceptable additional effort. Furthermore, we
get a powerful access control enforcement mechanism with minor restrictions,
but with an acceptable overhead.

In the future, we plan to make several extentions to our work. First of all,
PACS can be employed on an unreliable P2P network. For non-crucial data,
especially data that can disappear for a certain amount of time, this may be
less expensive and less complicated. Alternatively, we could dispense with the
privilege store. The task and responsibility of storing the privileges reliably in
the network can be handed over to the delegates that have to enforce the priv-
ileges anyway. In this way, PACS would become more lightweight, which would
lead to an easier integration into existing applications based on P2P networks.
Furthermore, we want to implement this extention in our PACS prototype and
run comparative performance studies.

7 Conclusions

We presented an extention of PACS that enables the replication of confidential
data and distribution of privilege enforcement. Our privilege enforcement mech-
anism is based on threshold encryption / signature and private key encryption
with key distribution. The chosen combination enables PACS to enforce power-
ful access control models like RBAC with administrative distribution, which is
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impossible with the currently known approaches. Regarding the gained flexibil-
ity, the additional overhead of PACS is acceptable. With PACS, data in a P2P
network can be protected almost as flexibly as in a centralized scenario. This
may open up P2P networks for further application areas.
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