
M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 394–409, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RESTful Transactions Supported by the Isolation
Theorems*

Amir Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and Paul Krause

Department of Computing, FEPS, University of Surrey,
Guildford, Surrey, GU2 7XH, UK

{a.razavi,a.marinos,s.moschoyiannis,p.krause}@surrey.ac.uk

Abstract. With REST becoming the dominant architectural paradigm for web
services in distributed systems, more and more use cases are applied to it,
including use cases that require transactional guarantees. We propose a RESTful
transaction model that satisfies both the constraints of transactions and those of
the REST architectural style. We then apply the isolation theorems to prove the
robustness of its properties on a formal level.

Keywords: REST, Transactions, Isolation Theorems, Locking.

1 Introduction

Representational State Transfer (REST) is a distributed computing architectural style
first defined in 1999 by Roy Fielding [7] as an abstraction of the architectural style
that had emerged in the World Wide Web. REST focuses on resources identified by
names, a fixed number of methods with known semantics to manipulate those
resources, hypermedia as a means of traversing the resources and statelessness in the
interactions between client and server. REST has gained traction in addressing many
common use cases for distributed systems [4],[13]. As is common with disruptive
technologies, REST over HTTP is evolving to compete with WS-* in increasingly
advanced scenarios. While REST has made great progress, the WS-* stack is
currently the only standardized way to perform arbitrary transactions. A RESTful API
has to resort to custom solutions of variable quality in order to address this issue. This
paper aims to define a RESTful transaction model that is designed to operate over
HTTP. We then apply the Isolation Theorem to prove the correctness of the model.

In terms of RESTful transactions, various approaches have been proposed. The
traditional approach is to simply design a new resource that can be used to trigger the
desired transaction on the server side. For example, when transferring funds between
bank accounts, this approach proposes creating a ‘transfer’ resource to which new
‘transfers’ can be POSTed. While this approach can be very simple to implement at
design time, it ties users to the ability of the developers to predict usage at design time.
Furthermore, in scenarios where a large or even infinite variation of transactions and
transaction types may take place, it is not reasonable to expect all the corresponding

* This work was supported by the EU-FP6 funded project OPAALS Contract No 034824.

 RESTful Transactions Supported by the Isolation Theorems 395

resources to have been designed beforehand. Other approaches [14] suggest extending
REST to include mutex locks which would require extending HTTP as well. The
alternative to these approaches [18] is to introduce locks on resources by modelling
them as resources themselves. While this approach looks much more capable, the
details of its implementation and its extension into transactions have neither been
fleshed out nor proven. The general term ‘Transaction’ has been introduced by Gray
[1] and is defined by the four properties contained in the ACID acronym. These
properties guarantee that a system is maintained in a consistent state, even as
transactions are executed within it concurrently. This includes situations where one or
more transactions fail to commit. When dealing with a sequence of transactions (one
transaction executed at a time), each transaction starts with the consistent state that its
predecessor ended with. If all the transactions are short, the data are centralised in a
main memory, and all data are accessed through a single thread, there is no need for
concurrency. The transactions can simply be run in sequence. Real-world interactive
systems however, often require execution of several concurrent transactions. Use cases
such as distributed environments or dynamic allocation of resources to external
developers illustrate this.

While transactions are concerned with the constraints of maintaining the ACID
properties, REST adheres to its own set of constraints. These are primarily expressed
by the uniform interface constraint, but supported by the following four constraints:
Resource Identification; Resource manipulation through representations; Self-
descriptive messages; Hypermedia as the engine of application state. Our efforts are
directed at creating a truly RESTful transaction model that satisfies both the
constraints of REST while possessing the ACID properties. This paper is structured as
follows. Section 2 examines classic transactional challenges that appear in distributed
systems. Section 3 introduces Isolation theorems, which includes theorems that show
the correctness of a transactional system by applying the necessary constraints.
Section 4 applies the transaction model in a RESTful framework. In section 5 the
proof of correctness of constraints is applied, by using classical isolation theorems.

2 Concurrency Challenges in RESTful HTTP

The classic view of isolation considers the transaction in terms of inputs and outputs
[10],[6]. This means that transactions have read (input) and write (output) operations.
Write operations are described as operations that affect the state of resources. On the
other hand, REST prescribes a uniform interface for accessing resources. One
challenge is therefore to map the traditional input/output perspective with the
RESTful approach to the uniform interface. Since our model operates over the HTTP
protocol, we must examine its four fundamental operations. GET is the standard
retrieve operation. Its execution must be safe; it should have no side-effects. It should
also be idempotent; duplicate messages should have no adverse effects. POST is
understood as an operation to create a new resource on a server where the target URI
is not known. The representation of the resource is sent via POST to the collection
that will contain the resource. The server determines its appropriate location and the
resulting URI is returned to the client. In this model, we approach POST purely as a
creation operation and use it in the mechanics of the model to handle creation of

396 A. Razavi et al.

resources such as transactions, locks, and others. However, transactions that include
POST operations are outside the scope of our model. PUT can be used for updating
resources, by simply instructing the server to apply a new representation as a
replacement of the previous one. It can also be used to create a new resource, when a
representation is PUT at a URI that was previously unused. In the proposed model,
PUT operations on pre-existing resources are the main operations that a transaction
can execute, with only the Update aspect within scope. DELETE is used to remove
the resource representation at the target URI. While they are used as part of the
mechanics of the model, transactions which include DELETE operations are out of
scope of the proposed model. From the above discussion it can be extracted that our
model is concerned with transactions that are sequences of GET operations or PUT
operations, specifically when used for updating resources. While other uses of the
above verbs are of interest, this limited scope makes robust theoretical consistency
proofs feasible. The limitation to GET and PUT applies only to the target resources,
those that will remain after the transaction has committed. For interactions with the
transactional resources, those that are created to enable the execution of the
transaction, the full range of HTTP operations is utilised. As GET operations do not
change the state of resources, when the initial state of a resource is consistent,
concurrent GET requests to the same resource, cannot cause inconsistency. On the
contrary, PUT operations of different transactions on the same resource, change the
state of the resource and may violate consistency or isolation. The basic assumption is
that a transaction knows what it is doing in terms of its internal data manipulation,
meanwhile if it runs in isolation (without any concurrent transactions), it will
manipulate its own resource state correctly. Therefore, sequential PUTs within the
same transaction are not problematic [10], [2]. At the same time however, overlap
between PUTs of one transaction and GET action of another, can violate isolation and
cause inconsistency. Additionally, PUT-related interactions between different
concurrent transactions on the same resource can also cause a problem. If we consider
GETs operations as inputs of transactions and PUTs operations as output operations
of them, this can be expressed as:

for all (1)

By letting be the set of resources accessed via GET by transaction (its inputs),
and be the set of resources altered via PUT by transaction (its outputs). Based on
EQ.1, in the set of transactions , when their outputs are disjoint from one another’s
inputs and outputs, they can run in parallel with no concurrency anomalies. Clearly by
applying EQ.1 any transaction scheduler can work. Conventionally for applying EQ.1
each transaction should declare its Input-Output set, then a scheduler is able to compare
the new transaction’s need to all running transactions and in case of a conflict, initiation
of the new transaction would be delayed until the conflicting transactions complete.
This approach is called ‘Static allocation’. The computing complexity of analysing the
inputs and outputs before running transactions causes a bottleneck on scalability. The
approach has been abandoned in more modern transactional environments [2], [9]. The
‘Dynamic allocation’ scheme has been introduced as the substituting approach. Under
the prism of dynamic allocations, we can view transactions as sequence of operations on
resources. A particular resource is subject to one operation at a time. Each operation of a
transaction is either a GET or a PUT. Resources go through a sequence of versions as

 RESTful Transactions Supported by the Isolation Theorems 397

Fig. 1. Different Dependencies

they are updated by PUT operations. GETs do not change the resource version. If a
transaction GETs a resource, the transaction depends on that resource version. If the
transaction PUTs a resource, the resulting resource version depends on that transaction.
When a transaction aborts and goes through the undo logic, all its PUT operations must
be undone. These cause the resources to get new versions, as the undo looks like an
ordinary new update. In the RESTful model we apply the shadow-based updating,
which saves the complexity in terms of aborting the lock. This can be seen in the
existence and behaviour of the conditional resource representation in section 4.

Theoretically a dependency graph can be read as a time sequence. The main
conclusion of applying the ACID properties is that any dependency graph without
cycles implies an isolated execution of transactions. General danger of violating
isolation is related to the various dependency cycles. Similar to conventional
transactions, REST cycle dependencies are categorised to three generic forms: When
two (or more) transactions access the same resource, they may produce two (or more)
different versions of that resource (lost update), or simply they may work with the
out-of-date version of the resource (dirty GET and unrepeatable GET). More details
can be found at the classic references such as [10] or our previous work [21].

3 Isolation Theorems

Isolation theorems include several theorems, which shows the correctness of a
transactional system by applying few constraints [10]. The constraints will be
explained in sections and after applying them in a RESTful framework, we explain
the proof of correctness of constraints, by using classical isolation theorems in section
5. In order to present a theoretical aspect of our model, we define a formal vocabulary
that is larger than the standard HTTP operations. We call these formal terms
operations. The correspondence with HTTP operations is made explicit in section 4.3
and figure x. More importantly, for avoiding violating consistent access, in term of
GET and PUT resources, the SLOCK and XLOCK should be applied on the resources
(before GET or PUT) and these locks should be released when the dependency on the
resources expires. Therefore, the model should support the major actions of GET,
PUT, XLOCK, SLOCK, UNLOCK on the resources, as well as generic actions
BEGIN, COMMIT, ROLLBACK. GET and PUT have the usual meaning: GET
returns the named resource’s value to the program, while PUT alters the named
resource’s state. A transaction is any sequence of actions starting with a BEGIN
action, ending with a COMMIT or ROLLBACK action, and containing any other
BEGIN, COMMIT, or ROLLBACK actions. Figure 2 demonstrates an example in
term of a conceptual transactional access to resources R1 and R2.

398 A. Razavi et al.

Fig. 2. Transaction life cycle

Transactions are characterized symbolically by a sequence such as
. This means that the ith step of transaction t preformed action on

resource .To simplify the transaction model, BEGIN, COMMIT, and ROLLBACK
are defined in terms of other actions, so that only GET, PUT, LOCK, and UNLOCK
actions remain. A simple transaction is composed of GET, PUT, XLOCK, SLOCK,
and UNLOCK actions. Every transaction, T, can be translated into an equivalent
simple transaction as follows [10]:

(1) Discard the BEGIN action.
(2) If the transaction ends with a COMMIT action, replace that action with the

following sequence of UNLOCKS:

<UNLOCK A | if SLOCK A or XLOCK A appears in T for any
resource A>.

(3) If the transaction ends with a ROLLBACK statement, replace that action
with the following sequence of PUTs and then UNLOCKs:

<PUT A | if PUT A appears in T for any resource A> ||<UNLOCK A |
if SLOCK A or XLOCK A appears in T for any resource A>.

The idea here is that the COMMIT action simply releases Locks, while the
ROLLBACK action must first undo all changes to the resources the transaction wrote
(PUT) and then issue the resources the transaction wrote (PUT) and then issue the
unlock statements. If the transaction has no LOCK statements, then neither COMMIT
nor ROLLBACK will issue any UNLOCK statements, as that would risk violating
isolation. A transaction is said to be well-formed if all its GET, PUT, and UNLOCK
actions are covered by locks, and if each lock action is eventually followed by a
corresponding UNLOCK action [2], [9]. A transaction is defined as two-phase if all
its LOCK actions precede all its UNLOCK actions. A two-phase transaction T has a
growing phase, T[1], …,T[j], during which it acquires locks, and a shrinking phase,
T[j+1], …,T[n], during which it releases locks [10]. The simplified Figure 3 (focusing
on the formal locks), has been shown in Figure 3 and the concept of well-formed and
two phase is indicated.

Fig. 3. Two-phase and Well-formed locking

 RESTful Transactions Supported by the Isolation Theorems 399

Fig. 4. Different types of histories

First, a history is any sequence-preserving merge of the actions of a set of
transactions into a single sequence for the set of transactions and is denoted

. Each step of the history is an action a by transaction t
on resource r. A history for the set of transactions is a sequence, each containing
transaction as a subsequence and containing nothing else. A history lists the order
in which actions were successfully completed. Serial histories are One-transaction-at-
a-time histories. In serial histories as no concurrency-induced, there is not any
inconsistency and no problem with viewing dirty data by other transactions. As it is
expected, a history should not complete a lock action on a resource when that
resource is locked by another transaction. But if two or more transactions want to just
read (GET) the content of a resource, they do not change the resource version (state).
This may not cause any conflict or access to dirty data (data/resource which has been
PUT by another transaction) but the transaction has not committed and may change
the version of the resource again (2.2). The table 2 shows the lock compatibility. The
locking compatibility rules constrain the set of allowed histories.

Legal history: Histories that obey the locking constraints are called legal. In Figure 4,
three histories are shown, where History 1 and 2 are legal and History 3 is not. History 1
is a serial history. It is obviously legal, as each transaction will be run in sequence and
no locks will conflict. History 2 is a non-serial legal history. There are no incompatible
locks between T1 and T2 as T2 applies an XLOCK on resource B only when T1 has
performed an UNLOCK. Finally, history 3 is a non-serial and not legal history, as
resource B has an XLOCK by T1 but T2 applies an XLOCK on the same resource,
which is illegal according to Table 1. As a consequence, we can see that T1 then
performs a PUT based on its earlier GET and overwrites T2’s PUT, which is the case of
‘Lost Updates’ as discussed in 2.

4 Locks in RESTful HTTP

Having defined the formal language we will use to prove the robustness of our model
as well as discussed history well-formedness and legality, we now translate this
abstract language into HTTP operations. To handle HTTP concurrency challenges, we
introduce the concept of locks. This is done in a way that does not affect the always
available and backwards compatible nature of the web. For an API to be characterized
as RESTful according to the hypermedia constraint, it must allow a client to interact

400 A. Razavi et al.

<lockable>
 <link rel=”lock_collection” href=”http://example.org/resource/locks/” />
 <link rel=”transaction_collection” href=”http://example.org/transactions/” />
</lockable>

Fig. 5. (R) XML Fragment

with the service solely by being given a single URI and understanding of the relevant
media types. This enforces loose-coupling and elimination of assumptions.

Ideally, any resource that can be served by an HTTP server should be a Lockable
Resource (R) regardless of media type. This however would require the HTTP
protocol to carry the metadata for the locking mechanism. Since we wish to preserve
the HTTP protocol, we can use either prescribe that the resource links to lock
collection and the transaction collection, or create custom HTTP headers that contain
them. An example of the first approach can be seen in Figure 5. What is important is
that the client has access to these resources while not obstructing normal use of the
lockable resource.

Lock Resource (R-L): The lock resource is represented by a dedicated media type
and should contain the elements in Table 1.

Table 1. Elements of R-L

ResourceURI: a link back to the resource that this lock affects.
TransactionURI: a link to the transaction that controls the lock.
Type: “S” or “X” depending on the type of the lock.
PrevLockURI: a link to the previous lock in the lock sequence.
Timestamp: Server’s timestamp when the lock was granted.
Duration: Indicates the interval that the lock has been granted for.
ConditionalRepresentationURI: A link to the representation of the resource that
will come into effect once the lock is committed.
InitialRepresentationURI: A link to the initial state of the lock resource.

The type element can take one of two values, X or S, corresponding to the
available lock types. X stands for XLOCK: eXclussive Lock, and S stands for
SLOCK: Shared Lock. To place a new lock, the server must authenticate the user as
the owner of the transaction that the lock references. The time period of effectiveness
that is granted to a lock is dependent on the maximum length of time that the server is
prepared to grant a guarantee to the client. Once the duration of the lock expires, the
lock is aborted. To avoid violating 2PL, once a lock of a transaction expires, all other
locks of the same transaction expire. The result of the GET operation does not change
until a lock of type X is committed. In this sense, the locks and transactions are
transparent to the GET which on commit reacts as if a simple PUT or DELETE was
applied. This was a specific design objective. Direct PUT and DELETE operations
return a ‘405 Method Not Allowed’ HTTP response for the duration of a lock's effect.
GET requests should still return successfully. This behaviour maintains backwards
compatibility, with the understanding that if a client requires further guarantees on the
future state of the resource, the client should seek to place a lock. In all other cases,
the semantics of GET are unaffected, as a GET on a resource does not guarantee that
the state will remain unchanged for any period of time.

 RESTful Transactions Supported by the Isolation Theorems 401

Table 2. Legal lock sequences

Mode of Preceding Lock

M
od

e
O

f N
ew

Lo

ck

Share Exclusive

Share Yes No
Exclusive No No

Resource Lock Collection (R-Lc): The R-Lc contains locks in sequences that follow
the compatibility rules stated in Table 2, rendering the transaction well-formed. The
lock collection is represented as an Atom Feed [13]. Since ATOM does not support
sequencing entries, we use the ‘PrevLockURI’ element of the lock resource to create
a linked list of locks that can be represented as an ATOM Feed. The client can
retrieve the lock collection via GET to determine if the resource is locked. An empty
feed indicates an unlocked resource. New locks can be submitted to the resource
collection via the POST method.

4.1 Two Phase Locking and Recoverability

Clarifying the scope of each transaction and determining whether it is in a GROWTH or
SHRINK phase is necessary. In this part we introduce the required resources. The
Transaction (T) resource is represented by a dedicated media type and should contain a
TransactionCollectionURI, an OwnerURI and a TransactionLockCollectionURI. These
3 elements identify the collections of information vital to the execution of a transaction.
The owner of the transaction can GET the transaction resource as a means of locating
these collections. The Transaction Collection (Tc) is a resource where new
transactions are submitted via the POST operation which creates a new transaction and
returns the URI for its representation. The resource itself cannot be accessed via GET as
the clients that need to know the location of a specific resource are informed at the time
of POSTing. The Transaction Lock Collection (T-Lc) contains links to the locks that
belong to a specific transaction, formatted as an Atom feed. Clients cannot abort single
locks directly but must do so through the T-Lc which aborts all the locks of a
transaction, leaving the transaction void and is equivalent to aborting the transaction.

Table 3. Available Operations for T-Lc

GET Returns the collection of locks relevant to a transaction
DELETE Aborts all the locks of the relevant transaction. This can only

be performed by an owner of the transaction.

4.2 Recoverability

Based on the Rollback Theorem, a transaction that unlocks an exclusive lock and then
performs a ‘Rollback’ is not well-formed and can potentially cause a wormhole unless
the transaction is degenerated. As the theorem is well-known, we refer the interested
reader to [9] for the actual proof. The important point of the theorem is that we have to
degenerate the transaction to effect rollback. For this purpose, our model does not store
potential updates on the actual resources but works on the shadow of the locked data,

402 A. Razavi et al.

called a conditional resource representation. The Initial Resource Representation
(R-L-IR) is of identical media type as the locked resource and stores the initial state.
The initial representation is archived together with the lock to represent the change
caused by the commit of the lock and enable rollback. The Conditional Resource
Representation (R-L-CR) is of identical media type as the locked resource and is
essentially the state that will be applied to the resource once the XLOCK is committed.

Table 4. Available Operations for R-L-CR

GET Returns the representation that will be committed if the relevant
XLOCK is committed.

PUT Creates a new conditional state that will replace the current state of
the locked resource once the linking XLOCK is committed.

DELETE Deletes the conditional state. If the XLOCK is committed, there
will be no write action performed.

4.3 Model Overview

Having defined all the resource types, it is easy to see that an interconnected network
arises (Figure 6). It can be observed that having a URI for R is enough to locate all
other resources in the network. The connection from Tc to T is perforated as there is
no GET ability for the Tc resource, for security reasons. The URI of a given T is only
returned as a response to the initial POST operation on Tc performed by the
transaction’s owner. Table 5 summarizes the relevant resource types of our model.

Fig. 6. Resource Hypermedia connections

Table 5. Transaction model resource types

Lockable Resource (R) A resource that locks can be applied to.
Resource Lock Collection (R-Lc) The collection of locks that apply to a particular resource.
Lock Resource (R-L) The representation of a specific lock.
Conditional Resource Representation (R-L-CR) The potential representation of a locked resource.
Conditional Resource Representation (R-L-IR) The initial representation of a locked resource.
Transaction Collection (Tc) The collection of transactions on the server.
Transaction Resource (T) The representation of a specific transaction.
Transaction Lock Collection (T-Lc) The collection of locks connected to a specific transaction.

4.4 RESTful Transaction Examples

To illustrate the operation of the transaction model, table 6 shows a scenario where
two transactions from clients A and B interact with resources, R1 and R2. Table 7
shows what happens if a third client tries to XLOCK a resource that is already locked.

 RESTful Transactions Supported by the Isolation Theorems 403

Table 6. Concurrent transactions

Client Operation Resource Response Description
A GET R2 200 OK GETting R2 to extract location of TC and R2-LC
A POST <new transaction> TC 201 CREATED {Location: T1} Creating a new transaction
A POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC
B GET R1 200 OK GETting R1 to extract location of TC and R1-LC
B POST <new transaction> TC 201 CREATED {Location: T2} Creating a new transaction
B POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an XLOCK to R1-LC
A GET R1 200 OK GETting R1 to extract location of R1-LC
A POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an XLOCK to R1-LC
B GET R1 200 OK GETting the locked representation of R1
A GET R1 200 OK GETting the locked representation of R1
A GET R2 200 OK GETting the locked representation of R2
A GET R2-L1 200 OK GETting R1 to extract location of R2-C
A PUT <new representation> R2-C 201 CREATED ating a conditional Representation of R2
A DELETE T1 200 OK Commiting R2-C to R2 and Unlocking R1 and R2
B GET R2 200 OK GETting R2 to extract location of R2-LC
B POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC
B GET R2 200 OK GETting the locked representation of R2
B PUT <new representation> R2-C 201 CREATED Creating a conditional Representation of R2
B PUT <new representation> R2-C 200 OK Updating the conditional Representation of R2
B DELETE T2 200 OK Commiting R2-C to R2 and Unlocking R1 and R2

Table 7. Attempting to lock an already locked resource

Client Operation Resource Response Description

C POST <LOCK {type:X}> R2-LC 403 Forbidden POSTing an XLOCK to R2-LC while R2 is locked

5 Applying the Isolation Theorems to REST

As our approach follows two-phase and well-formed locking, in this section, we use
the classical isolation theorems [2], [9], [10] to show its correctness. Since the formal
model introduced in section 3 is fully compatible with Isolation theorems, we apply it
in classical proof of isolation theorems. For doing so, we can start from the main
property of our model; all transactions are well-formed and two-phase. Based on the
Locking Theorem, if all transactions are well-formed and two-phase, then any legal
history will be isolated and based on Wormhole Theorem, A history is isolated if, and
only if, it has no wormhole transactions. By adopting these two theorems, we show
our approach, does not have any wormhole. We start by formulating the wormhole in
the RESTful formal approach, then presenting the wormhole theorem and finally
evoking the Locking theorem in our RESTful formal presentation (see Figure 7).

Fig. 7. Mapping Actions to Operations

5.1 Dependency and Wormholes

First we try to have a definition of a clear legal history; transaction t has resource r locked
in SHARED mode at step k of history H, if for some action ,
and if there is no action in the subhistory ,

404 A. Razavi et al.

similarly transaction t has resource r locked in EXCLUSIVE mode at step k is defined
analogously. Then we say history h is legal if there is no step of H at which two
distinct transactions have the same resource locked in incompatible mode. In a simple
way, we can say any data which has been PUT by the transaction is dirty data until is
unlocked. Therefore when we analyse the system behaviour by using the history, easily
we can say at each step of history, which resource value have been committed and which
are dirty. We can analyse this by using dependency graph. One transaction instance T is
said to depend on another transaction T’ in a history H if T GET (reads) or PUT (writes)
data-resources previously PUT (written) by T’ in the history H, or if T PUT (writes) a
resource previously GET (read) by T’. We can formalise different dependencies (Fig 1)
by Dependency Graph; a directed graph where nodes are ‘transactions’, Arcs are
‘transactions dependencies’ and label is ‘resource versions’. The version of an resource r
at step k of a history is an integer and is denoted V(r,k). In the beginning each resource
has version zero (V(r,0)=0). At step k of history H, resource r has a version equal to the
number of writes of that resource before this step. Formally this means:

(The outer vertical bars represent the set cardinality function.)
Each history, H, for a set of transactions defines a ternary dependency relation

DEP(H), defined as; Let T1 and T2 be any two distinct transactions, let r be any
resource, and let i, j be any two steps of H with . Suppose step involves
action a1 of T1 on resource r, step involves a2 of T2 on r, and suppose there is
no PUT of r by any transaction between these steps (there is no in

). Then DEP(H) is defined as:

 if a1 is a PUT and a2 is a PUT
 a1 is a PUT and a2 is a GET
 a1 is a GET and a2 is a PUT.

PUT PUT, PUT GET and GET PUT dependencies.
The dependency relation for a history defines a directed dependency graph, where

Transactions are the nodes of the graph, and resource versions label the edges. If
, then the graph has an edge from node T to node T’ labelled

by . Two histories are equivalent, if they have the same dependency relation.
The dependency of history defines a time order of the transactions. Conventionally

this ordering is signified by , (or simply by), and it is the transitive
closure of . It is the smallest relation satisfying the equation:

for some resource version r, or

(for some transactions , and some
resource r). Off the record, if there is a path in the dependency graph from
transaction T to transaction . The ordering defines the set of all transactions
that run before or after T;

BEFORE

AFTER

 RESTful Transactions Supported by the Isolation Theorems 405

If T runs fully isolated (ex: it is the only transaction, or it GET and PUT resources
not accessed by any other transactions), then its BEFORE and AFTER sets are empty
(it can be scheduled in any way). When a transaction is both after and before the other
distinct transaction, it is called wormhole transaction (here):

BEFORE AFTER

Serial histories do not have wormholes as all the actions of one transaction precede
the actions of another; the first cannot depend on the outputs of the second.

Wormholes Theorem: Based on wormhole theorem, a history is isolated if, and only
if, it has no wormhole transactions. On the other hand, the isolated histories have the
unique property of having no wormholes. It proves a history that is not isolated has at
least one wormhole; . In graphical term, if the dependency graph
has a cycle in it, then the history is not equivalent to any serial history because some
transaction is both before and after another transaction. (History 3 Fig 4). A wormhole
in a particular history is a transaction pair in which T ran before ran before T. A
history is said to be isolated if it is equivalent to a serial history. As the first part of
the proof of the concept, the classical testimony of Wormhole theorem has been
recalled [9],[10]; Isolated history has not any wormholes. This proof is by
contradiction; Suppose H is an isolated history of the execution of the set of
transactions . By definition, then, H is equivalent to some serial
execution history, SH, for that same set of transactions. Without loss of generality,
assume that the transactions are numbered so that . Suppose, for
the sake of contradiction, H has a wormhole; that is there some sequence of
transactions such that each is BEFORE the other (i.e.,),
and the last is BEFORE the first (i.e.,). Let be the minimum
transaction index such that is in this wormhole, and let be its predecessor in the
wormhole (i.e.,). By the minimality of , comes completely AFTER
in the execution history SH, so that is impossible (recall that SH is a
serial history). But since H and SH are equivalent, ; therefore,

 is also impossible. This contradiction proves that if H is isolated, it has
no wormholes.

A history without wormhole is isolated: Our adopted proof (like the classic
Wormhole theorem [10]) is by induction on the number of transactions, , that
appears in the history, H. The induction hypothesis is that any transaction history H
having no wormholes is isolated (equivalent to some serial history, SH, for that set of
transactions). If , then any history is serial history, since only zero or one
transaction appears in the history. In addition, any serial history is an isolated history.
The basis of the induction, then, is trivially true. Suppose the induction hypothesis is
true for transactions, and consider some history H of transactions that has no
wormholes. Pick any transaction , then pick any other transaction , such that

, and continue this construction as long as possible, building the sequence
. Either is infinite, or it is not. If is infinite, then some transaction

 must appear in it twice. This, in turn, implies that ; thus, is a
wormhole of H. But since H has no wormholes, cannot be infinite. The last
transaction in -call it - has the property , since the sequence

406 A. Razavi et al.

cannot be continued past . Consider the history, .
is the history H with all the formal actions (RESTful operations) of transaction
removed. By the choice of ,

DEP DEP (2)

 has no wormholes (since H has no wormholes, and). The
induction hypothesis, then, applies to . Hence, is isolated and has an equivalent
serial history for some numbering of the other transactions.

The serial history is equivalent to H. To
prove this, it must be shown that . By construction,

DEP DEP DEP DEP (3)

By definition, . Using this to substitute equation EQ. 2 into
equation EQ. 3 gives:

DEP DEP DEP DEP

(4)

Thus, the identity is established, and the induction step is
proven. The wormhole theorem is the basic result from which all the others follow. It
essentially says “cycles are bad”. Wormhole is just another name for cycle. The
wormhole theorem can be stated in many different ways. One typical statement is
called the Serializability Theorem: A history H is isolated (also called a serializable
schedule or a consistent schedule) if, and only if, implies a partial order of the
transactions. (Alternatively: if and only if it defines an acyclic graph, or implies a
partially ordered set [6]).

Locking Theorem: If all transactions are well-formed and two-phase, then any legal
history will be isolated. As our RESTful framework, use the ‘DELETE’ operation
(section 4), for unlocking resources (Shrinking phase), we can adopt the conventional
proof [9] as bellow;

This proof is by contradiction. Suppose H is a legal history of the execution of the
set of transactions, each of which is well-formed & 2-phase. For each transaction, T,
define SHRINK(T) to be the index of the first unlock step of in history H ; formally:

).

Since each transaction T is non-null and well-formed, it must contain an UNLOCK
step. Thus SHRINK is well defined for each transaction. First we need to prove:

Lemma: if .
Suppose , then suppose there is a resource r and steps of history H,

such that , ; either action a or action a’ is a PUT (this
assertion comes directly from the definition of). Suppose that the action a of T
is a PUT. Since T is well-formed, then, step is covered by T doing an XLOCK on r.

 RESTful Transactions Supported by the Isolation Theorems 407

Similarly, step j must be covered by T’ doing an SLOCK or XLOCK on r. H is a legal
schedule, and these locks would conflict, so there must be a k1 and k2, such that:

 and and

Either or

Because T and T’ are two-phase, all their LOCK actions must precede their first
UNLOCK, action; thus, . This proves the
lemma for the case. The argument for the case is almost identical.
The SLOCK of T will be incompatible with the XLOCK of T’; hence, there must be an
intervening followed by a action in H. Therefore, if

, then . Proving both these cases establishes the
lemma. Having proved the lemma, the proof of the theorem goes as follows; Assume,
for the sake of contradiction, that H is not isolated. Then, from the wormhole Theorem,
there must be a sequence of transactions , such that each is before the
other (i.e.,), and the last is before the first (i.e.,). Using the
lemma, this in turn means that

. But since is a contradiction, H cannot have
any wormholes.

Locking Theorem (Converse): One may argue about the necessity of well-formed
and two-phase history, which our approach warily follows. For proving the necessity
of these properties, we use the converse locking theorem [9], [10]; if a transaction is
not well-formed or not two-phase, then it is possible to write another transaction such
that the resulting pair has a legal but not isolated history (unless the transaction is
degenerate). When the classical proof [10], relies on actions on objects (read and
write), we modelled the actions in term of RESTful classic operations (GET and
PUT) and adopt the proof; first not well-formed history; Suppose that transaction

 is not well-formed and not degenerated. Then for some ,
 is a GET or PUT action that is not covered by a lock. The GET case is proved

here; the PUT case is similar. Let . Define the transaction,

That is, is a double update to resource r. By inspection, is two-phase and well-
formed. Consider the history;

That is, H is the history that places the first update of just before the uncovered
GET and the second update just after the uncovered GET. H is a legal history, since
no conflicting locks are granted on resource r at any point of the history. In addition,
for some , and must be in the DEP(H); hence,

. Thus T is a wormhole in the history H. Invoking the wormhole
theorem, H is not an isolated history. Intuitively, T will see resource r while it is being
updated by . This is a concurrency anomaly. Now it is possible to show, if a history
is not two-phase it can be legal but not isolated; Suppose that transaction

 is not two-phase and not degenerate. Then for some ,
 and or .

408 A. Razavi et al.

Define the transaction

.

That is updates resource r1 and r2. By inspection, is two-phase and well-formed.
Consider the history:

This says that H is the history that places just after the UNLOCK of r1 by T. H
is a legal history, since no conflicting locks are granted on resource r1 at any point in
the history. In addition, since T is not degenerate, it must GET or PUT resource r1
before the unlock at step j and must GET or PUT resource r2 after the lock at step k.
From this and must be in the DEP(H). Hence

, and T is a wormhole in the history H. Invoking the Wormhole Theorem,
H is not isolated history. Intuitively, T sees resource r1 before it is updated by and
sees resource r2 after it is been updated by ; thus T is before and after . This is a
concurrency anomaly.

6 Conclusions and Further Work

By adopting conventional isolation theorem, we have provided a RESTful locking
framework for business transactions which avoids inconsistency when dealing with a
highly concurrent environment. While our detailed discussion shows the most
important consistency issues are addressed, recoverability has been out of the scope of
this paper. A recoverability extension on the RESTful transaction can be found in our
paper at [22]. Meanwhile, long-running transactions and deadlock detection are the
other issues which shall be considered as future work of this framework.

References

1. Astrahan, M.M., et al.: A history and evaluation of System R. Communications of the
ACM 24, 632–646 (1981)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in
database systems. Addison-Wesley Longman Publishing, Boston (1987)

3. Cabrera, L.F., et al.: Web Services Atomic Transaction (WS-AtomicTransaction). Version
1.0, IBM developerWorks (2005)

4. Castro, P., Nori, A.A.: A Programming Model for Data on the Web. Data Engineering,
2008. In: IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 1556–
1559 (2008)

5. Crockford, D.: JSON: The fat-free alternative to XML. In: Proc. of XML 2006 (2006)
6. Date, C.J.: An Introduction to Database Systems, 5th edn. Addison-Wesley, Reading

(1996)
7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.

University of California, Irvine (2000)

 RESTful Transactions Supported by the Isolation Theorems 409

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext Transfer
Protocol–HTTP/1.1. RFC 2616, The Internet Engineering Task Force (1999)

9. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Systems.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

10. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

11. Greenberg, S., Marwood, D.: Real time groupware as a distributed system: concurrency
control and its effect on the interface. In: Proceedings of the 1994 ACM conference on
Computer supported cooperative work, pp. 207–217 (1994)

12. Hadley, M., Sandoz, P.: JSR 311: Java api for RESTful web services. Technical report,
Java Community Process, Sun Microsystems (2007)

13. Hoffman, P., Bray, T.: Atom Publishing Format and Protocol (atompub). In: IETF (2006)
14. Khare, R., Taylor, R.N.: Extending the Representational State Transfer (REST)

Architectural Style for Decentralized Systems. In: Proc. of the 26th International Conf. on
Software Engineering, vol. 23, pp. 428–437 (2004)

15. McGuffin, L.J., Olson, G.M.: ShrEdit: A Shared Electronic Work Space. University of
Michigan, Cognitive Science and Machine Intelligence Laboratory (1992)

16. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
Science/Engineering/Math (2003)

17. Razavi, A., Moschoyiannis, S., Krause, P.: Concurrency Control and Recovery Management
in Open e-Business Transactions. In: Proc. WoTUG (CPA 2007), pp. 267–285 (2007)

18. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol (2007)
19. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,

algorithms, and achievements. In: Proc. of the 1998 ACM conference on Computer
supported cooperative work, pp. 59–68 (1998)

20. Vinoski, S.: WS-nonexistent standards. IEEE Internet Computing 8, 94–96 (2004)
21. Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.: RETRO: A Consistent and

Recoverable RESTful Transaction Model. In: IEEE 7th International Conference on Web
Services (ICWS 2009), Los Angeles, CA, USA (2009) (in the process to be published)

	RESTful Transactions Supported by the Isolation Theorems
	Introduction
	Concurrency Challenges in RESTful HTTP
	Isolation Theorems
	Locks in RESTful HTTP
	Two Phase Locking and Recoverability
	Recoverability
	Model Overview
	RESTful Transaction Examples

	Applying the Isolation Theorems to REST
	Dependency and Wormholes

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

