
Feature-Based Engineering of Compensations in

Web Service Environment

Michael Schäfer1 and Peter Dolog2

1 L3S Research Center, University of Hannover,
Appelstr. 9a, D-30167 Hannover, Germany

Michael.K.Schaefer@gmx.de
2 IWIS — Intelligent Web and Information Systems,
Aalborg University, Department of Computer Science,

Selma Lagerloefs Vej 300, DK-9220 Aalborg East, Denmark
dolog@cs.aau.dk

Abstract. In this paper, we introduce a product line approach for devel-
oping Web services with extended compensation capabilities. We adopt
a feature modelling approach in order to describe variable and common
compensation properties of Web service variants, as well as service con-
sumer application requirements and constraints regarding compensation.
The feature models are being used in order to configure the compensation
operations that are applied. In this way, we ensure that the compensation
actions are limited to the prescribed ones, and the infrastructure which
uses them can be adapted easily in case environment conditions change.

Keywords: Software Product Lines, Feature Model, Web Services, Com-
pensations, Business Activities, Transactions.

1 Introduction

Web service environments are being used to connect clients and service providers
and to establish and maintain conversations between them. Businesses adapt and
change their business processes and operations, and they perform transactions
with different clients at different times. Their services are accessed by third par-
ties in a concurrent way. Concurrent access to services and changes regarding
business processes imply that service providers should provide different variants
of their services to satisfy the varying needs of different clients and to enable
forward recovery for business transactions by replacement with another suitable
variant if certain conditions are met. Also, clients/service consumers should be
able to cover criteria in requirements and constraints assuming that the opera-
tions can change and can be replaced by other operations if a failure occurs or
certain conditions are met.

We propose a feature based method for engineering compensations in Web
service environments. We adopt a method and a modelling technique based on
feature models described previously in UML [4]. The infrastructure which uti-
lizes the models is based on our compensation environment described in [10].

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 197–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 M. Schäfer and P. Dolog

The infrastructure uses the XML schema used also within the eclipse plugin for
feature oriented domain analysis [1] to provide the technical means for runtime
decisions about compensations. The paper provides an evidence on how to a
software product line method can be adapted for a novel application area which
addresses real complex situations in business to business interactions. It also
provides an evidence that the variability descriptions can be utilized by a mid-
dleware for the decisions about compensations, where the descriptions specify
a client’s requirements and constraints regarding compensation handling on the
one hand, as well as the offered compensation capabilities of a service provider
on the other hand.

The remainder or the paper is structured as follows. A feature modeling based
method for web service compensation engineering is discussed in Section 2. Sec-
tion 3 discusses service provider capabilities conceptual and feature modelling.
Section 4 discusses client requirements conceptual and feature modelling, algo-
rithm which ranks providers according to a matching score between capability
and compensation model and requirements model, as well as resulting restriction
model which serves as a contract between the client and the provider. Section 5
discusses it in the context of related work. Section 6 concludes the paper with a
summary and proposal for further work.

2 Feature Based Development for Compensations

Software product line methodologies [8] employ a common process pattern. Do-
main Engineering is a process in which the commonality and variability of the
product line are defined and realized. Application Engineering is a process sub-
sequent to the domain engineering in which the applications of the product line
are built by reusing domain artifacts and exploiting the product line’s variability.

The domain engineering activities in Web service environments are realized
by different independent service providers. The application engineering activities
are realized by different parties as well, employing service selection mechanisms
and matchmaking to fit particular business activities when utilizing Web services
from different providers. Some of the variable features of the Web services can be
considered at runtime. Therefore, the software product line engineering process
can be tailored to the Web service environment with extended compensation
capabilities as follows. Service provider tasks are (capabilities and compensations
engineering):

– Service Domain Analysis — is a domain engineering process where variabil-
ities and commonalities between service variants are designed to support
compensations based on failures or based on different constraints and re-
quirements;

– Service Domain Design and Implementation — different service features are
mapped onto an implementation and an architecture for service provisioning
where some of the features need not to be exposed to the public and some
of the variabilities may be left to runtime adaptation.

Feature-Based Engineering of Compensations in Web Service Environment 199

Client/service consumer tasks are (Requirements and Restrictions):

– Business Application Analysis and Design — is an application engineering
task which may be performed by a party external to the service provider
and involves the definition of requirements for and constraints on the Web
service compensations;

– Retrieving the Abstract Web Services — is an application engineering task
in which a designer looks for and retrieves Web services which are required
to perform business to business conversations;

– Defining Client Side Compensations — is an application engineering task
in which a designer defines a variability for compensations which will be
exploited at runtime if more Web services with similar capabilities have
been found, or an alternative Web service has been defined by an application
developer;

– Implementing Client Side Compensations and Functionalities — is an ap-
plication engineering task in which the additional compensations are imple-
mented at the client side, as well as additional operations for which there
was no Web service found are realized by an application developer.

As a means for analysis and design we adopt a feature modelling approach and
a methodology from [3]. Feature models are configuration views on concepts from
conceptual models. The conceptual model describes the main concepts of a do-
main and linguistic relationships between them. Web service capabilities or client
requirements main concepts are therefore placed into the application domain con-
ceptual model and the compensation concepts are placed into the environment
conceptual model. The functionality feature model as well as the compensation
feature model describe the configuration views. Subsequently, the functionality
and compensation models are merged to describe the offered capabilities by a
service provider, or requested functionalities and restrictions regarding compen-
sations by a service consumer. Different algorithms can then be employed by
different middlewares and abstract service to match feature models of a client
and service provider, and to trigger forward recovery by utilizing compensation
actions agreed on by the consumer and the provider.

3 Capabilities and Compensations of Service Providers

Capability Conceptual and Feature Model. The capabilities conceptual model de-
scribes the concepts from a service application domain and relationships between
them. In our case for example, the capabilities conceptual model contain concepts
related to payroll processing such as salary, salary transfer, tax, tax rates, em-
ployee, and so on. The UML class diagram is used to model such conceptual model.

The capability feature model specifies the capabilities of an abstract service.
This model can be provided in the public description of the service and can
be used in the client’s search process for services that fulfill his requirements.
The functionality feature model describes the features of the abstract service
that constitute the offered operations that can directly be used in the business
process, e.g. the booking of a flight. It can be defined as a normal feature model.

200 M. Schäfer and P. Dolog

<< Concept> >
Compensation

<< OptionalFeature> >
ExternalCompensation

Handling

<< MandatoryFeature >>
InternalCompensation

Handling

<< OptionalFeature> >
AdditionalRequest

<< OptionalFeature> >
AdditionalService

<< MandatoryFeature >>
ServiceAbort

<< OptionalFeature> >
Repetition

<< OptionalFeature> >
Replacement

<< VariationPoint >>
{Kind= AND}

<< MandatoryFeature >>
RequestSequence

Change

<< VariationPoint >>
{Kind= OR}

<< OptionalFeature> >
AllRequest
Repetition

<< MandatoryFeature >>
LastRequest
Repetition

<< MandatoryFeature >>
ResultResending

<< OptionalFeature> >
SessionRestart

<< OptionalFeature> >
AdditionalActions

<< MandatoryFeature >>
NoCompensation

<< OptionalFeature> >
Forwarding

<< OptionalFeature> >
PartialRequest
Repetition

Fig. 1. The compensation feature model

Compensations Conceptual and Feature Model. In order to describe the available
compensation types, a conceptual model is created, which constitutes the basis
for the feature models in the extended transaction environment. The result is
the compensation concept model, usually modeled by a class diagram. The basic
concept used in such a model is the Compensation, which defines the required
compensatory operations for a specific situation in a CompensationPlan. Each
plan consists of one or more single CompensationActions.

The compensation feature model describes the configuration aspect of the
mandatory and optional features of the compensation concept, and is depicted in
Figure 1. It will be used in the next step to define service-specific feature models.

The two main features of this model are the InternalCompensationHandling
and the ExternalCompensationHandling features. They structure the available
compensation types as features according to their application: Repetition and
Replacement are only available for internal compensation purposes, while Ses-
sionRestart, Forwarding and AdditionalActions are only available for external
compensation operations. The exception to this separation is NoCompensation,
which is the only common compensation feature. Only two of these features are
mandatory, the NoCompensation and the InternalCompensationHandling fea-
ture. This is due to the fact that the default compensation action is inactivity:
If no rule or compensation capabilities exist, then the service has to fail without
any other operations. Accordingly, the ability to perform external compensations
is only optional.

The Repetition feature contains the subfeatures LastRequestRepetition
(mandatory) and PartialRequestRepetition (optional). LastRequestRepetition is
mandatory, because even if partial request resending is applied, it will be neces-
sary to resend the last request. Likewise, the Replacement feature requires that
after the replacement of a concrete service has been performed at least the last
request will be resent. Both, the resending of a part of the requests or all requests,

Feature-Based Engineering of Compensations in Web Service Environment 201

requires that it is possible to resend new results to the client. Therefore, the
ResultResending feature is mandatory.

The SessionRestart feature has as an optional subfeature the invocation of
an additional service (AdditionalService), and requires via an AND variation
point the ServiceAbort, RequestSequenceChange, and AllRequestRepetition sub-
features. The capability to abort the service, to change the request log, and
to resend all requests is needed in order to perform the session restart, and
therefore these three features have to be included. Within an externally trig-
gered compensation, it is possible to invoke additional services and to create
and send additional requests to the concrete service. That is why AdditionalAc-
tions includes the AdditionalService and AdditionalRequest subfeatures. They
are connected via an OR variation point, as the AdditionalActions feature needs
at least one of these two features.

Merging Capabilities and Compensations. The service provider provides at the
end only one model to one client. The model is merged from capabilities and
compensation feature model. The capability feature model can be extended with
a special attribute: A costs attribute can be added to each feature. The provider
can thus define how much the execution of a specific feature will cost.

4 Requirements and Restrictions of Client Application

Requirements Feature Model. The client creates a requirement description in
order to be able to initiate a search for a suitable abstract service. The specifi-
cation is being done in the same way as the definition of the capability feature
model described in the previous section: A common model is being created that
includes the required functionality and compensation features. This model is
called the requirement feature model. However, although the basic process of
creating the requirement feature model is the same, the interpretation of the
mandatory/optional properties differs. A mandatory feature has to be provided
by the service and is thus critical for the comparison process, while an optional
feature can be provided by the service, and is seen as a bonus in the evaluation
of the available services.

Model Comparison Algorithm. In the client’s search process, each abstract ser-
vice’s capability feature model will be compared to the client’s requirement
feature model. We define a comparison algorithm which makes it possible to
automatically assess the available services and to decide which ones meet the
requirements. Our algorithm is a variant of graph matching algorithm on at-
tributed graph [9]. The feature models are attributed graphs where each node is
a feature with an attribute stating whether a feature is mandatory or optional.
We make use of these attributes in comparing requested capability graph (fea-
ture model) with provided capability graph (feature model). The two models are
the input for the algorithm, which iteratively compares them and calculates a
numerical compatibility score. The basic algorithm of comparing the two models
functions as follows:

202 M. Schäfer and P. Dolog

– Using the requirement feature model as a basis, the features are compared
stepwise. In this process, it is necessary that the same features are found in
the same places, as the same feature structure is expected.

– Each mandatory feature from the requirement model has to be found in
the capability feature model as well. A mandatory feature that is found in
the capability feature model will not change the compatibility score. If the
capability model is missing a mandatory feature, the comparison fails and
a negative score is returned to indicate that the service does not fulfill the
minimum requirements.

– Each optional feature of the requirement model can be part of the capability
model, but does not have to. However, each optional feature that can be
found in the capability model counts as a bonus added to the compatibility
score. This accounts for the fact that an abstract service that provides more
than the absolutely required features is better, as it can more easily be used
in different applications and environments.

– Additional features in the abstract service’s capability model like the spec-
ification of additional services used in the compensation process have to be
defined in the correct place, i.e. as a subfeature of the AdditionalService fea-
ture. Any other additional features will lead to a failure of the comparison.

The compatibility score that is returned by the comparison algorithm de-
scribes the degree to which the abstract service fulfills the requirements specified
by the client. The requirement model’s mandatory features do not increase the
compatibility score if they are found in the capability model, because they con-
stitute the minimum requirements. Therefore, an abstract service that provides
only the mandatory features has a compatibility score of 0, although it meets
the client’s requirements. Each optional feature provided by the service increases
the score by a predefined value. The default value for this is 1, so an abstract
service that offers all mandatory features and 5 optional ones has a score of 5.
The higher the compatibility score of an abstract service is, the better it meets
the requirements of the client. Using this simple score, it is possible to compare
different abstract services and their offered capabilities.

Restriction Feature Model. After the client has found and decided upon the
necessary abstract services that offer the required functional and compensation
features, a contract will be exchanged or negotiated with each service. A vi-
tal part of this contract is the specification which compensation features the
abstract service is allowed to use for the purpose of processing internal and ex-
ternal compensations. While it is of course possible to apply this restriction by
simply searching for abstract services that are able to perform only the allowed
compensation actions, such an approach significantly reduces the available ser-
vices. Moreover, it is quite possible that a client wants to use the same abstract
service in multiple applications, each application having its own rules regarding
the compensatory actions that are permitted. Therefore, it is beneficial to use
a restriction feature model that can be part of the contract, and to which the
abstract service dynamically adapts its compensation operations.

Feature-Based Engineering of Compensations in Web Service Environment 203

When the abstract service wants to invoke a specific compensation action, it
will first consult the contract’s restriction feature model. If the compensation
action is part of the model, then the abstract service is allowed to use it. This
way, the service can dynamically adapt to the requirements of each single client.
It is possible to use an optional attribute in the restriction feature model in order
to further restrict the execution of compensatory actions by the abstract service.
The client can add a maxCosts attribute to the InternalCompensationHandling
and ExternalCompensationHandling features, which specifies the maximum costs
that may be spent by the abstract service for internal and external compensation
handling, respectively. Using this approach, it is possible to define a ”budget”
for internal or external compensation handling.

Feature Model Specification for Middleware. The FeaturePlugin [1] for Eclipse
has been applied to create the compensation feature model to be able to obtain an
XML version of the feature models to be used by our transactional environment.
This feature model is used as a basis for the specification of capability and
requirement feature models, by changing the mandatory/optional features, or
by deleting parts of the model. A restriction feature model can be created in a
convenient way as a configuration of the predefined compensation feature model.
While doing so, the plug-in monitors the constraints and thus guarantees that
the resulting restriction feature model is valid with respect to the properties of
the features as well as the feature group cardinalities.

5 Related Work

A product line approach for composite service-oriented systems has been envi-
sioned in [2]. Our approach contributed to the issues of service selection, excep-
tion handling and quality factors identified in that paper in the context of service
compensations. A pattern based variability has been employed for development
of composite service-oriented systems in [7]. Our approach is based on feature
models for variability description. The compensation mechanisms, engineering
methodology and infrastructure can be used as a supplement to the method
presented in [7]. [5] studies product lines in the context of adaptive composite
service oriented systems. Our approach can be used as a supplement to pro-
vide compensations in such environment to support forward error recovery. [11]
defines an atomicity-equivalent process algebra to define public views over busi-
ness processes involved in B2B conversations. Views are used to check whether
the processes are still in an atomicity sphere; i.e. the process is guaranteed to
terminate with semantics all or nothing. Our approach allows for other seman-
tics to satisfy clients at least partially though we need to study the properties
of termination further. [6] deals with graph matching for feature composition
from partial feature models as well. In our approach we do not compose feature
models, we try to find out which service fits the client requested capability.

204 M. Schäfer and P. Dolog

6 Conclusion and Future Work

We have described a software product line approach to be used for Web service
transactions in order to control the use of compensatory actions. The compensa-
tion feature model has been introduced that structures the compensation types
and activities. This model has subsequently been used in order to define the
feature models for service capabilities, requirements, and restrictions.

It is necessary to run additional experiments with different scenarios, and to
further analyze the usability of feature models. It is interesting to study the use
of ontologies in the models. The extensions of the model comparison algorithm
should also be studied.

References

1. Antkiewicz, M., Czarnecki, K.: Featureplugin: Feature modeling plug-in for eclipse.
In: OOPSLA 2004 Eclipse Technology eXchange (ETX) Workshop (2004)

2. Capilla, R., Topaloglu, N.Y.: Product lines for supporting the composition and
evolution of service oriented applications. In: Eighth Intl. Workshop on Principles
of Software Evolution in conjunction with ESEC/FSE 2005 (2005)

3. Dolog, P., Nejdl, W.: Using UML-based feature models and UML collabora-
tion diagrams to information modelling for web-based applications. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp.
425–439. Springer, Heidelberg (2004)

4. Dolog, P.: Engineering Adaptive Web Applications: A Domain Engineering Frame-
work. VDM Verlag Dr. Müller (2008), http://www.vdm-publishing.com/

5. Hallstein, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to build
adaptive systems. In: SPLC 2006. 10th Intl. Software Product Line Conf. (2006)

6. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

7. Jiang, J., Ruokonen, A., Systä, T.: Pattern-based variability management in web
service development. In: ECOWS 2005. Third European Conf. on Web Services
(2005)

8. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Heidelberg (2000)

9. Rozenberg, G.: A Handbook of Graph Grammars and Computing by Graph Trans-
formation: Application Languages and Tools. World Scientific Publishing Com-
pany, Singapore (1997)

10. Schäfer, M., Dolog, P., Nejdl, W.: Environment for flexible advanced compensations
of web service transactions. ACM Transactions on Web 2(2) (April 2008)

11. Ye, C., Cheung, S.C., Chan., W.K.: Publishing and composition of atomicity-
equivalent services for b2b collaboration. In: ICSE 2006: Proceedings of the 28th
Intl. Conf. on Software Engineering. ACM, New York (2006)

http://www.vdm-publishing.com/

	Feature-Based Engineering of Compensations in Web Service Environment
	Introduction
	Feature Based Development for Compensations
	Capabilities and Compensations of Service Providers
	Requirements and Restrictions of Client Application
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

