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Abstract. We have explored using neurophysiologic patterns as an approach for 
developing a deeper understanding of how teams collaborate when solving 
time-critical, complex real-world problems. Fifteen students solved substance 
abuse management simulations individually, and then in teams of three while 
measures of mental workload (WL) and engagement (E) were generated by 
electroencephalography (EEG). High and low workload and engagement levels 
were identified at each epoch for each team member and vectors of these meas-
ures were clustered by self organizing artificial neural networks. The resulting 
patterns, termed neurophysiologic synchronies, differed for the five teams re-
flecting the teams’ efficiency. When the neural synchronies were compared 
across the collaboration, segments were identified where different synchronies 
were preferentially expressed. This approach may provide an approach for 
monitoring the quality of team work during complex, real-world and possible 
one of a kind problem solving, and for adaptively modifying the teamwork flow 
when optimal synchronies are not frequent. 
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1   Introduction 

A current challenge in studying collaborative teamwork is the measurement of team 
cognition and the separation of it from aspects of individual cognition [16]. Research 
on teamwork and cooperative behaviors often adopts an input-process-output frame-
work (IPO). In this model the interdependent acts of individuals convert inputs such 
as the member and task characteristics to outcomes through behavioral activities di-
rected toward organizing teamwork to achieve collective goals. These activities are 
termed team processes and include goal specification, strategy formulation, systems 
and team monitoring, etc [15]. 

Much of this teamwork research has made use of externalized events focusing on 
who is a member of the team, how they work together and what they do to perform 
their work. The studies often rely on post-hoc elicitation of the subjective relation-
ships among pertinent concepts. There have been fewer studies looking at the when of 
teamwork interactions although the dynamics of team function are known to be com-
plex [4] with temporal models of teamwork suggesting that some processes transpire 
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more frequently in action phases and others in transition periods [1-5]. Closely related 
to team processes are dynamic states that characterize properties of the team that vary 
as a function of team context, inputs, processes and outcome. Emergent states de-
scribe cognitive, motivational and affective states of teams and can serve both as 
outputs and inputs in dynamic IPO models. When viewed this way, the focus shifts to 
when and how fast activities and change occur, and the variables move from amounts, 
dependencies and levels to pace, cycles and synchrony [6]. 

One framework for studying the when of team cognition is macrocognition [7] 
which is defined as the externalized and internalized high-level mental processes 
employed by teams to create new knowledge during complex collaborative problem 
solving. External processes (processes occurring outside the head) are those associ-
ated with actions that are observable and measurable in a consistent, reliable, repeat-
able manner. Internalized processes are those that cannot be expressed externally  
and are generally approached indirectly through qualitative metrics like think aloud 
protocols or surrogate quantitative metrics, (pupil size, EEG metrics, galvanic skin 
responses). To our knowledge, there have been no reports linking neurophysiologic 
correlates of internalized processes across members of a team as they engage in 
teamwork tasks. This however would seem to be an important contribution to the goal 
of better understanding the construct of team cognition. 

Our hypotheses is that as members of a team perform a collaborative task each will 
exhibit varying degrees of cognitive components such as attention, workload, en-
gagement, etc. and the levels of these components at any one time will depend (at 
least) on 1) what that person was doing at a particular time, 2) the progress the team 
has made toward the task goal, and 3) the composition and experience of the team. 
Given the temporal model of team processes, some of the balances of the components 
across team members may also repeat as different phases of the task, like data acquisi-
tion, or communication are repeatedly executed. In this study we have directly tested 
these hypotheses using EEG measures of mental workload and engagement. 

2   Tasks and Methods 

2.1   IMMEX Substance Abuse Simulations (SOS) 

The collaboration task is an IMMEX™ problem set called SOS which are a series of 
substance abuse simulations cast in a reality show format [8-10]. The case begins with 
a short introduction to a person who may / may not be abusing drugs. The challenge 
for the student is to gather sufficient information about this person to answer the ques-
tion “Should this person seek help, and if so, from whom?” The primary interface is a 
timeline that covers up to twelve specific events (such as health, job, social school, 
etc. related activities) and drilling down into this interface provides information in 
eleven areas with contents covering subject history, behavior, medical data and con-
jecture, and help. These 600+ content items are divided into social and scientific areas 
allowing the student to gather information from many perspectives. Prior modeling 
studies have shown that ~20% of the students use science-only approaches, ~40% will 
use social approaches, and ~40% will use a combination of the two. This task pro-
vides a convenient mechanism for the division of teamwork (i.e. social vs. scientific 
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evidence), as well as a potential source of conflict within the group as to what evi-
dence is important relative to the decision. 

Experimentally, students log on to IMMEX™ and individually perform a SOS 
simulation so that each can develop a mental model of the problem space, and so that 
individual levels of EEG-related workload and engagement can be determined. Two 
students then log on to a second SOS problem set where Member A selects data from 
the timeline and reports information from General Health, Anecdotes and Cell & e-
mails (i.e. the social perspective), Member C selects data from all the other science 
categories and reports them to the group (the science perspective) and the leader 
(Member B) integrates the information and decides when to make a decision, and 
what the decision will be. The time allowed is 30 minutes (a time constraint). 

2.2   EEG Metrics 

The EEG data acquired from the wireless headset developed by Advanced Brain 
Monitoring, Inc. uses an integrated hardware and software solution for acquisition and 
real-time analysis of the EEG. It has demonstrated feasibility for acquiring high qual-
ity EEG in real-world environments including workplace, classroom and military 
operational settings. The system contains an easily-applied wireless EEG system that 
includes intelligent software designed to identify and eliminate multiple sources of 
biological and environmental contamination and allow real-time classification of 
cognitive state changes even in challenging environments. The 9-channel wireless 
headset includes sensor site locations: F3, F4, C3, C4, P3, P4, Fz, Cz, POz in a mo-
nopolar configuration referenced to linked mastoids. ABM B-Alert® software ac-
quires the data and quantifies alertness, engagement and mental workload in real-time 
using linear and quadratic discriminant function analyses (DFA) with model-selected 
PSD variables in each of the 1-hz bins from 1-40hz, ratios of power bins, event-
related power (PERP) and/or wavelet transform calculations. 

To monitor “mental workload” (WL) and “engagement” (E) using the B-Alert 
model EEG metrics, values ranging from 0.1-1.0, are calculated for each 1-second 
epoch of EEG. Simple baseline tasks are used to fit the EEG classification algorithms 
to the individual so that the cognitive state models can then be applied to increasingly 
complex task environments, providing a highly sensitive and specific technique for 
identifying an individual’s neural signatures of cognition in both real-time and  
offline analysis. These methods have proven valid in EEG quantification of drowsi-
ness-alertness during driving simulation, simple and complex cognitive tasks and in 
military, industrial and educational simulation environments, quantifying mental 
workload in military simulation environments, distinguishing spatial and verbal proc-
essing in simple and complex tasks, characterizing alertness and memory deficits in 
patients with obstructive sleep apnea, and identifying individual differences in suscep-
tibility to the effects of sleep deprivation [11-13]. 

2.3   Experimental Protocol 

The data flow (Figure 1) is organized into Collection, Processing, Modeling and 
Analysis modules. The teams perform the SOS collaborative tasks while EEG is being 
collected at 256 Hz from 6-electrode portable headsets. The data Collection initiates  
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Fig. 1. Outline of Experimental Protocol 

with the start of the SOS simulations on the time synchronized computers of the two 
team members. The computers also run Morae (Techsmith, Inc.) which records a 
video and audio trace of each participant and generates logs with timestamps of 
mouse clicks screen refreshes, etc. The Processing module aligns the EEG logs con-
taining the second-by-second WL and E values from each of the three team members 
and interleaves them with mouse clicks logs and video/audio logs. 

The values of WL and E were determined for the individual performances of  
each student, as well as for each student during the collaboration event. As shown in 
Figure 2, IMMEX tasks are complex eliciting more WL from the students than on a  
3-choice vigilance task (3-CVT) baseline task. The subjects also expend more WL in 
a teamwork situation than they did when performing the task individually, which may 
relate to the process cost of collaboration discussed by others [16]. 

 

Fig. 2. EEG-WL Levels During Baseline, Individual and Group Conditions. The levels of WL 
were calculated for 15 individuals on a 3-CVT task, during an individual performance of an 
SOS problem, and during a 3-person team performance. 

The values of WL and E were then normalized for each team member by statisti-
cally partitioning them into the upper quartile, the lower quartile, and the half in the 
middle representing high, low and average levels of WL and E. These partitions 
were assigned the values 3, -1, and 2 and were combined for each of the members of 
the team to create training vectors (Figure 1, Modeling) for training self organizing 
artificial neural networks (ANN) as previously described [8,9]. This process results 
in patterns of WL and E measures across the members of the team on a second  
by second time scale. We define these epochs of alignment as neurophysiologic 
synchronies. 
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3   Experimental Results 

3.1   Team Differences in Neurophysiologic Patterns of Collaboration 

We first examined the performances of five collaboration groups to identify common 
and dissimilar neural synchronies (i.e. combinations of WL and E across team mem-
bers) across teams. An example of this analysis is shown in Figure 3 where an ANN 
was trained with the neural synchronies from 5 different groups. The output from 
such an analysis is a series of ANN nodes each representing a synchrony with a dif-
ferent profile of neurophysiologic indicators. After training, twenty three of the 
twenty five nodes contained between 37 and 562 epochs with different patterns of 
neurophysiologic synchrony of WL and E. The most common synchrony was repre-
sented by nodes 14 and 8 which consisted of epochs where all members were engaged 
and working at moderate to high levels.  This may represent the nature of the IMMEX 
task itself which requires more workload than simpler image identification tasks [18]. 
Other frequent synchronies were nodes 23, 4, and 2 where one of the members was 
either not working hard or not highly engaged. 

 

Fig. 3. Neural Synchrony Patterns across Teams. A self organizing ANN was trained with the 
collaboration performances of 5 teams and retested with the individual performances. The 
numbers in the hexagons reflect the number of times the pattern was repeated during the task. 

When the different teams were tested on this combined ANN they showed signifi-
cant differences in the proportions of neural synchronies being expressed. Group 3 for 
instance showed a pattern of synchronies restricted to only half of the neural network 
nodes. Many of the epochs reflected times where the whole team was engaged or 
working, or where only Team Member A was minimally engaged (i.e. node 23). 
Group 4 in contrast showed a greater diversity of neurophysiologic synchronies. 
There were few epochs clustered at node 23 and instead showed more epochs at nodes 
1 and 2 where the common feature was low engagement of the Team Leader,  
and nodes 10, 15 and 20 where Team Member B was not engaged. Group 2 was  
more diverse still showing similarities with both Group 3 (i.e. node 23) and Group 4 
(i.e. nodes 4, 10 and 13). 
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3.2   Do Common Neurophysiologic Patterns Have Collaborative Significance? 

During collaboration effective teams execute processes that often occur in a cyclical 
fashion depending on task demands. In a second set of studies we tried to determine if 
the different patterns of WL and E expression across the team had significance vis a 
vis the collaboration event. Most team tasks, including the IMMEX problem solving 
tasks, can be separated into segments consisting of mental model formation, mental 
model sharing and integration, and mental model consensus and revision. These can 
be further divided into behavioral episodes relating to team processes. Figure 4 shows 
the task breakdown for one collaborative team (Group 2) (1178 epochs or seconds 
duration). The tasks included the reading of the task and initial discussions, explora-
tions of the problem space, deriving a consensus regarding the decision, etc. We have 
highlighted these tasks by the different stages of mental model formation, sharing and 
integration, and convergence and revision.  The epochs reflecting different team syn-
chronies were temporally aligned with the collaborative events. The most common 
synchrony (113 epochs) showed limited mouse click activity, all three members were 
experiencing elevated WL and the Team Leader and Member C were highly engaged. 

 

 

 

Fig. 4. (Top) Team Behaviors during a Sample SOS Collaboration Session. The numbers in 
parentheses indicate the number of epochs for each task. (Bottom) Selective expression of 
neurophysiologic synchrony patterns during different segments of the collaboration task.   
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Fig. 5. Temporal Analysis of Nodal Transitions. A nearest neighbor correlation analysis was 
performed for the beginning, middle and end of the collaborations for three groups. The dia-
grams show the transitions from one nodal pattern (X-axis) to another (Y-axis). 

This profile was present throughout the collaborative task and may reflect a common 
feature of this team’s interaction. In this regard, examination of the video log indi-
cates that interactions between the leader and team member A were less frequent than 
interactions with team member C. Neurophysiologic synchronies identified by other 
neural network nodes were more selectively expressed during the task with some 
being preferentially expressed during the mental model forming stage whereas others 
were more prevalent during the mental model convergence and revision stage (chi 
square = 1291, p=< 0.001). 

A second approach examined the autocorrelations of the synchronies with a time 
lag of 1, i.e. a sequential nearest neighbor analysis asking ‘If a synchrony pattern is 
being expressed, what pattern is likely to follow next?’ The diagrams in Figure 5 are 
called From >To diagrams and indicate the transition from a node on the X axis to a 
node on the Y axis. Similarly, to determine how a node was arrived at, a Y value can 
be traced across the X axis.  Figure 5 shows such an analysis for Groups 2, 3 and 4. 
To relate the correlations to different stages of the collaborative task, the analyses 
were repeated for the early, middle and late epochs of the teamwork as indicated by 
the epoch numbers above each diagram. Group 2 showed the lowest From-> To corre-
lations (-.14, .19 and -.25 for the early, middle and late epochs), had the lowest pro-
portion (12%) of synchronies where all members were simultaneously engaged and 
working (i.e. nodes 8 and 14), and also took the longest to complete the task. The 
most frequent patterns were where the E of Team Member A was low while the other 
members were fully engaged and working. Group 3 showed the most restricted pat-
tern of synchrony, had the highest From->To correlations and the highest proportion 
of synchronies (19%) where all members were fully engaged and working. The transi-
tion from Node 14 to 14 dominated early during the collaboration, and transited to a 
Node 23->23 transition indicating a state where the engagement of Team Member A 
was reduced while the others were engaged and working. The autocorrelations were 
.77, .58 and .75 respectively for the early, middle and late epochs of the collaboration. 
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In this group Team Member A also had the lowest overall WL and E levels and or-
dered fewer items during the simulation than did the second team member (186 vs. 
234 tests ordered). Of the five teams tested, Group 3 was the most effective as judged 
subjectively from the video logs, as well as objectively with the most rapid solution 
time (11 minutes), and the final answer. 

Group 4 displayed an intermediate diversity of neurophysiologic synchronies com-
pared with the other groups and this was also reflected in the From->To correlations. 
The dominant nodal patterns were nodes 1, 2 and 8, where node 8 is similar to node 
14 with all members are engaged and working, and this constituted 15% of the total 
number of epochs. During the initial part of the teamwork the time-lagged correlation 
was .22 indicating a less stable pattern than for Group 3. The major nodal transitions 
were from nodes 1 to 1 and nodes 2 to 2, and the common feature of nodes 1 and 2 is 
the decreased WL levels in the Team Leader. During the middle portion of the team-
work the nodal correlations increased to .59 with the dominant repeating nodes being 
8 and 4. During task closure the timed lagged correlation dropped to .44 the repeating 
node 8 transition decreased and the transition from node 2 to node 1 returned. In 
Group 4, the Team Leader had the lowest overall WL of any of the team members and 
the second highest E levels. 

4   Discussion 

This study describes our preliminary efforts at determining if neurophysiologic  
synchronies can be observed during problem solving teamwork. We define neuro-
physiologic synchronies as the coordinated expression of different levels of  
neurophysiologic indicators by individuals of a team as they engage in collaborative 
activities. In this study we have used the neurophysiologic correlates of workload and 
engagement as defined by the B-Alert EEG system, although there is no a priori rea-
son that other measures could not be used, or included. The studies to date, while 
involving only five teams, suggest that patterns of neurophysiologic synchrony can be 
observed in different teams which may have collaborative significance. An important 
next step is to link them to other collaboration behaviors, and an important challenge 
will be determining the granularity to conduct these studies. The enrichment of some 
patterns at the early and late stages of the teamwork suggests a temporally related 
contribution which may relate to different aspects of the collaboration task. A more 
granular approach would be to link the synchronies to common behaviors in  
IMMEX™ such as the ordering of tests by mouse clicking on menu items or other 
behaviors such as questioning, responding, etc. Such epoch “tagging” may facilitate 
categorizing the macrocognitive constructs that are occurring simultaneously such as 
synthesis, questioning, team consensus, revision / analysis, etc. Neurophysiologic 
synchronies may also be useful for adaptively establishing or modifying the balance 
of team members and their degree of participation. Situations where a member is 
consistently lower in WL and/or E while the other members are fully engaged and 
working hard may indicate a less effective team member. This may be particularly 
important as the efficiency of a team is in completing a task (as measured by time  
to completion) was proportional to the percentage of neural synchronies where all  
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members are both engaged and working. (i.e. nodes 8 and 14). Another possible indi-
cator of effective / ineffective teams may be the persistence of neural synchronization 
indicated by the degree of correlations between synchronies with a time lag of 1 ep-
och. These nearest neighbor correlations may indicate that a team state is more stable 
over a longer period of time, while teams with low or negative From -> To correla-
tions may represent teams where the members are searching for an effective rhythm. 
The nodal neurophysiologic From -> To correlations may also make this approach 
amenable to the development of dynamic and predictive models either through Hid-
den Markov Modeling [9] or through a more dynamical systems approach such as 
phase space reconstruction [14]. 

Finally, the studies may also provide a tool for approaching the process cost  
associated with teamwork. Team workload is a core component of most theories of 
collaborative and cooperative learning, and is described as the resources available by 
a team for a task relative to the demands placed on it. As with individuals, team  
performance is presumed to deteriorate when the task demands exceed available re-
sources. Experimental evidence suggests that this may be so, with the higher the 
workload of the least-loaded team member, the lower the team performance [17]. 
Many factors can contribute to the workload of a member of a team and the overall 
team functioning. At one extreme, the individual may have difficulty with his own 
task which would lead to individual task overload. Depending on the degree of critical 
nature of that task for the overall team goal, this may or may not have an effect on 
team outcome. At the other pole, there may be disruptions in the degree of informa-
tion sharing leading to negative team performance. 

Workload in teams, however, is complex and at its simplest consists of the work-
load of a team member on his/her individual task within the team (Task Awareness) 
as well as more of a team process workload (Teamwork Awareness) which relates to 
the resources required to be an active member of a team. While the ideas of workload 
and work overload are practically appealing, it has been difficult to derive quantitative 
measures of them. The results in Figure 2, suggest that the EEG-WL metric may pro-
vide a useful measure for this added cost. 
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