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Abstract. In order to reduce human errors in the interaction with in safety criti-
cal assistance systems it is crucial to consequently include the characteristics of 
the human operator already in the early phases of the design process. In this pa-
per we present a cognitive architecture for simulating man-machine interaction 
in the aeronautics and automotive domain. Though both domains have their 
own characteristics we think that it is possible to apply the same core architec-
ture to support pilot as well driver centered design of assistance systems. This 
text shows how phenomena relevant in the automobile or aviation environment 
can be integrated in the same cognitive architecture. 
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1   Introduction 

Today assistance systems are a common and widely accepted means to support hu-
man operators in performing safety critical tasks like driving a car or flying an air-
craft. The aim is to reduce the number of human errors in order to reach the ambitious 
goal of zero-accidents. Considering the ever increasing complexity of the traffic envi-
ronment, be it air or surface traffic, human error will remain the most important chal-
lenge in order to reach this goal.  

During design and certification of assistance systems it has to be proven that hu-
man errors are effectively prevented and no new errors or unwanted long-term effects 
are induced The current practice is based on engineering judgment, operational feed-
back from similar aircraft, and experiments with test users when a prototype is avail-
able. Methodological innovations are needed to sustain existing quality levels and to 
guarantee an affordable analysis despite the increasing complexity of the overall 
aeronautical system. It is necessary to develop a methodology that allows to accu-
rately analyze systems from the operators’ point of view already in early design stages 
when design changes are still feasible and affordable. Our approach is based on mod-
eling and simulation of driver and pilot behavior using a cognitive architecture. It has 
to be said that the term “human error” is very controversial and often used to blame 
accidents “ex post facto” to humans. We share the view that human errors in the con-
text of highly automated complex systems are often more a “symptom, not a cause”, 
highlighting weaknesses of the systems that need to be improved. 
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Section 2 of this paper presents our approach and describes our core cognitive ar-
chitecture which can be instantiated in order to derive pilot as well as driver models. 
Section 3 describes model instantiations for the analysis of pilot behavior and section 
4 for driver behavior. Section 5 gives a summary and sketches next steps of our  
research. 

2   Modeling and Simulation Approach to Human Error Analysis 

Our approach to the analysis of human errors is based on the development and simu-
lation of integrated closed-loop man-machine-environment models. In this approach 
human models are used as virtual system testers in order to analyze a vast number of 
scenarios already in early development phases to identify potentially hazardous sce-
narios and to iteratively improve the design. 

Executable cognitive models are intended to describe mental processes of human 
beings like assessing situations and choosing actions resulting in time-stamped action 
traces. These cognitive models usually consist of two parts: a cognitive architecture, 
which integrates task independent cognitive processes and a formal model of task 
specific know-how (e.g. flight procedures or traffic regulations). In order to simulate 
behavior the task model has to be "uploaded" to the architecture. Thus, a cognitive 
architecture can be understood as a generic interpreter that executes task specific 
knowledge in a psychological plausible way. 

An overview of cognitive models is provided in [2]. The most prominent represen-
tatives are ACT-R and SOAR. We decided to build our own architecture because 
existing ones have complementary strength and weaknesses, but none covers a com-
prehensive executable model of those human capabilities that are relevant for human 
behavior in complex dynamic environments. To build such a comprehensive architec-
ture we adapt, extend and integrate heterogeneous modeling techniques (e.g. produc-
tion system, control theoretic models, semantic networks) from different existing 
architectures. 

A key concept underlying our architecture is the theory of behavior levels [1] 
which distinguishes tasks with regard to their demands on attentional control depend-
ent on the prior experience: autonomous behavior (acting without thinking in daily 
operations), associative behavior (selecting stored plans in familiar situations), cogni-
tive behavior (coming up with new plans in unfamiliar situations). 

Fig. 1 shows the structure of our cognitive architecture. It encompasses one layer 
for the autonomous behavior level and one for the associative level. A third layer is 
formed by the percept and motor component that implement the interface to a simu-
lated environment. On the layer for autonomous behavior we model manual control 
behavior for tasks like steering and braking using different modeling techniques like 
control theoretic formulas. These models have been described e.g. in [6]. This paper 
focuses on the associative layer which is the basis for the main phenomena that have 
been modeled. 

Knowledge is stored inside the memory component in form of Goal-State-Means 
(GSM) rules (Fig. 2). All rules consist of a left-hand side (IF) and a right-hand side 
(THEN). The left-hand side consists of a goal in the Goal-Part and a State-part speci-
fying Boolean conditions on the current state of the environment together with associ-
ated memory-read items to specify variables that have to be retrieved from memory. 
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Fig. 1. Layered Cognitive Architecture 

The right-hand side consists of a Means-Part containing motor as well as percept 
actions (e.g. hand movements or attention shifts), memory-store items and a set of 
partial ordered sub-goals. The rule in Fig. 2 defines a goal-subgoal relation between 
GEAR_UP and subgoals CHECK_GEAR_UP, CALLOUT_GEAR_UP. The term 
“After” imposes a temporal order on the subgoals. 

 

 

Fig. 2. Format of GSM rules (variables are underlined) 

Apart from the rules the memory component stores a ”mental model” of the current 
situation (e.g. position of other cars, states of instruments) and furthermore an ordered 
set of goals and subgoals that have to be pursued and which we call Goal Agenda.  

The rules are processed by the processor component of the associative layer in a 
four step cognitive cycle typical for production systems: A goal is selected from the 
Goal Agenda, all rules containing the selected goal in their Goal-Part are collected 
and a memory retrieval of all state variables in the Boolean conditions of the selected 
rules is performed. After the retrieval one of the collected rules is selected by evaluat-
ing the conditions. Finally the selected rule is fired, which means that the motor and 
percept actions are sent to the motor and percept component respectively and the 
subgoals are added to the Goal Agenda. This process is iterated until no more rules 
are applicable. The cycle time is 50 ms plus memory retrieval time like in ACT-R. 
Like in ACT-R one rule can be fired at the same time. But contrary to ACT-R our 
architecture allows parallelism between the autonomous and associative layer in order 
to model that humans can concurrently steer a car and operate a CD player. 

We use the same approach and in particular the same cognitive core architecture 
for modeling and simulating both, driver and pilot behavior. While sharing the ge-
neric architecture the instantiation of the architecture with task specific knowledge as 
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well as some specific extensions of the architecture are fundamentally different. It is out 
of question that the two domains, automotive and aeronautics have fundamental differ-
ences as well as some similarities. One major difference between driver and pilot behav-
ior is that driver behavior underlies a wider range of variance, then pilot behavior. Main 
reasons for this are the strict selection process for pilots, the high training standards in 
aviation, and the standardization of procedures in cockpits. In contrast to this, a large 
variety of people can drive, which are often only trained once in life. Drivers develop 
many individual driving routines, therefore strict goal-subgoal relations as in pilot mod-
els are less common.  The rule base task model allows to model both behaviours: (1) 
rules allow to formalize rigid script based tasks by using rules with a set of ordered and 
thus successive subgoals, (2) furthermore highly dynamic tasks can be modeled by 
using parallel (unordered) subgoals. Individual differences in driving are modeled by 
adding rules for all relevant driving strategies which can be selected randomly. 

Further differences between our driver and pilot models exist, because certain fea-
tures are more only relevant for one of the two domains. For example, simulating 
manual steering and braking behavior on the autonomous layers of the architecture is 
more relevant for driver modeling.  

In order to allow execution of the cognitive model within realistic flight or traffic 
scenarios we interfaced it to simulation platforms that are normally used for experi-
ments with human subjects. In this way we are able to use the same environment for 
experiments with both, human subjects and the cognitive model. This is a crucial 
prerequisite for comprehensive model validation. 

The following sections describe four extensions of the cognitive architecture for 
modeling aspects of pilot and driver behavior.  

3   Pilot Modeling 

Automation systems in aircraft systems are equipped with a huge number of system 
modes. A mode may be understood as a system state in which it delivers a distin-
guishable function. Modes allow to use the same system for different maneuvers but 
at the same this may induce mode errors where an action is performed that is correct 
in some modes but not in the present one. Often, the pilots’ mental model of the 
automation systems is inappropriate or incomplete. In order to mitigate mode errors 
display designers try to control the attention of pilots by using flashing graphical 
elements to highlight mode changes.  

3.1   Learned Carelessness 

The extension of our cognitive architecture to include the phenomenon Learned Care-
lessness (LC) can be used to analyze how pilots’ might mentally transform the task 
model of flight procedures while they gain experience with a system.  

Interaction phenomenon. The focus is on discrete pilot actions for operating a sys-
tem (like pressing buttons of an autopilot). We assume that the operation can be de-
fined normatively in form of procedures that prescribe admissible action sequences 
and preconditions. Of interest for the system designer are especially action  
preconditions that involve checking the current mode. Using our model we analyze 
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the probability that pilots neglect mode conditions and that this may lead to hazardous 
flight situations. The goal is to iteratively improve the system design to make it robust 
with regard to likely mode errors. 

Involved cognitive processes. The theory of LC states that humans have a tendency 
to neglect safety precautions if this has immediate advantages, e.g. it saves time, and 
allegedly allows to keep the same safety level. In the context of avionics systems 
safety precautions may be understood as checking the current state or mode of the 
systems before performing critical actions. LC is characteristic for human nature 
because we have to implicitly simplify in order to be capable to perform efficiently in 
a complex environment. Resulting behavior is highly adapted to routine scenarios but, 
unfortunately, may lead to errors and hazards in non-routine situations. Thus, it is 
crucial to identify those interaction sequences where LC may lead to hazardous situa-
tions. More details can be found in [5]. 

Modeling idea. To model LC inside our cognitive architecture we added a learning 
component which produces new simplified rules by merging existing normative rules. 
Figure 3 shows some rules from a climb procedure. Rule 25 specifies that the vertical 
speed (VS) button must be pressed as long as the mode annunciation (MA) does not 
show the flashing letters “ALT” (flashing “ALT” indicates that a mode called Alti-
tude Capture is active). Using rule 21 the current value of MA is perceived. Rule 23 
stores the perceived value into the memory. Most of the times when the pilot tries to 
press the VS button the Altitude Capture mode is not active and the percept action in 
rule 21 delivers “ALTS” which indicates that the current mode is Altitude Select and 
not Altitude Capture. We hold the hypotheses that due to this regularity a pilot would 
simplify his mental model of the procedure into a version, where the MA value is no 
longer perceived by looking at the cockpit instrument but is just retrieved from mem-
ory. This is modelled by merging two rules into one rule by means of rule composi-
tion. The crucial point is that in this process elements that are contained on the right-
hand side of the first and also on the left hand side of the second rule are eliminated. 
This process cuts off intermediate knowledge processing steps.  

 

 

Fig. 3. Composition of Rule 21 & 23 leading to Rule 112 

Fig. 3 shows the composite rule 112 that was formed by composition of rule 21 and 
23. The percept action has been eliminated and the new rule always stores the value 
“ALTS” in memory. Rule 112 is appropriate in scenarios that are similar to those in 
which the rule has been learned (MA does not indicate Altitude Capture mode). In 
deviating scenarios (MA does indicate Altitude Capture mode) applying Rule 112 
results in careless behavior: pressing the VS button independent from the current 
mode annunciation (Rule 112 followed by Rule 25). 
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Validation activities. We performed three case studies involving auto pilot systems to 
evaluate the cognitive pilot model. In one study we compared the model behavior with 
human pilot behavior and were able to successfully reconstruct nine mode errors [5]. In 
the remaining two studies subject matter experts performed a review of the model 
behavior and acknowledged that the behavior is in general plausible with respect to the 
investigated tasks and compatibly with the limitations of the investigated scenarios [4]. 
Extensive validations where the model predictions will be compared with the behavior 
of 24 pilots are planned for this year in the European project HUMAN. 

Transferability. We hold the hypotheses that the LC mechanism can be applied in 
the automotive domain for analyzing the discrete interaction with e.g. navigation 
systems where the driver has to input and select information to set up the system for a 
new destination. 

3.2   Selective Attention 

The extension of our cognitive architecture towards Selective Attention can be used to 
investigate if attention capturing graphical elements are adequate to mitigate errors 
like those induced by LC. 

Interaction phenomenon. One important part in human error analysis is the analysis 
of the ergonomics of the graphical user interface. In aircraft this includes the analysis 
of flashing boxes around flight mode annunciations (MA), which are supposed to 
automatically drag the attention of pilots to mode changes. Here, display designers 
make use of a phenomenon called “Selective Attention” (SA). 

Involved cognitive processes. SA is understood as the phenomenon describing auto-
matic shifts of attention triggered by the onset of a salient stimulus, e.g. a flashing 
light, or a moving item [11]. Recent studies have shown that certain characteristics of 
displays may undermine the effect of SA. The study of Mumaw, Sarter and Wickens 
[7] showed that only 30-60% of pilots recognize a MA change within the first 10 
seconds (while the box is flashing). One important reason is that visual context may 
undermine the SA effect [8].   

Modeling idea. In addition to a basic temporal model of human vision (with visual 
field, focus, and eye-movements) as a low-level percept component, we modeled 
context dependent SA. In this model the probability that a stimulus is recognized 
depends on the saliency of the display neighborhood, e.g. the probability is lower, if 
the neighborhood contains colorful and dynamic displays. Each stimulus received by 
the cognitive model is processed by the SA mechanism in three steps: The first step 
(SA1), determines if the area of interest (AOI) to which the stimulus belongs lies 
within the current focus or visual field. If the AOI is focused, the associated event is 
marked as recognized and SA3 is started. If the stimulus is outside the visual field, the 
associated event is marked as unrecognized, and SA1 is restarted with a new stimulus. 
If it is within the visual field but not in focus, SA2 is initiated in order to determine 
recognition. In the second step (SA2), it is determined if in a neighborhood of 15 de-
gree (derived from experimental setup in [8]) around the AOI other stimuli have oc-
curred. A probabilistic choice dependent on the dynamics of the neighborhood, based 
on data from [8], is computed to determine if the event is recognized or not.. If the 
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event is recognized, SA3 is started, else SA1 starts again with the next stimulus. In the 
last step (SA3) a shift of attention is initiated. Then SA1 processes the next stimulus.  

Validation activities. In order to illustrate the plausibility of our model we investi-
gated flashing mode annunciations of an autopilot [9]. We simulated a number of 
scenarios highlighting situations in which pilots might miss the mode indication. In a 
next step we will compare our data with human data. This validation will be achieved 
in combination of the validation activities for LC described above. 

Transferability. Although the SA model has been developed for pilot behavior it is 
also usable in driver modeling, e.g. for detecting flashing indicator lights on other cars 
or warning lights of driver assistance systems.  

4   Driver Modeling 

Recent analysis of accident data has identified inattention (including distraction) as 
the primary cause of car accidents, accounting for at least 25% of the crashes. Conse-
quently guidelines for the design of driver assistance systems require to investigate 
the impact of automation on drivers’ attention allocation. In the following we present 
two extensions of our cognitive architecture with regard to factors influencing  
attention allocation. 

4.1   Divided Attention Based on Prediction of Other Traffic Participants 

The extension of the cognitive architecture towards the influence of predictions of 
other traffic participants on attention allocation can support designers to create effec-
tive assistance systems which prevent inadequate assumptions about the dynamics of 
traffic situations. 

 

 

Fig. 4. Freeway merging scenario  

Interaction phenomenon. Drivers often find themselves in complex traffic situations 
which require attention allocation to different traffic participants and the integration 
of diverse information into a mental model of the situation. Estimations of the behav-
ior of other drivers have an impact on attention allocation. Inadequate estimations can 
lead to  incorrect situation assessment and accidents. We perform several simulator 
studies with human participants to investigate these aspects. 

In a first study we investigated the influence of 9 different combinations of speed 
differences (vdiffAB) and gap size (dAB) (see Fig. 4) on merging behavior to build up 
an initial model for gap acceptance and lane change.In a second study we consider a 
lead car (C in Fig. 4) which also enters the freeway. Here we investigate drivers  
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divided attention between the Tasks “hold distance to C” (T1) and “looking for a gap” 
(T2). In a reference scenario, B does not change its lane and we analyze the attention 
allocation of A. In following test trials B gives different lane change cues: B turns on 
his left indicator (Cue1), B suggests a lane change by moving to the left-most lane 
(Cue2). Finally, B either changes or not changes the lane (Cue3). 

Involved cognitive processes: Compared to the reference scenario we expect drivers 
to increase their attention allocation either to task T1 or T2 in the test trials. Referring 
to Wicken’s SEEV Model [10] we interpret this as a consequence of the attention 
parameter “value of information”. Both tasks have a certain value for the driver there-
fore both need to be considered. The smaller the distance to C, the higher the value of 
having exact information about C because C might brake suddenly. In consequence, 
the priority of T1 will be high. Concerning T2, more safety related drivers who per-
ceive Cue1 might search for additional cues which support their prediction of a lane 
change of B. They invest more attention in observing B to get more reliable informa-
tion. Risky drivers may consider Cue1 as predictive enough to assume lane change of 
B therefore spending less attention. 

Modeling idea. Task priorities are modeled by extending the Goal element in the 
Means-Part of our rules (Fig. 2) with a priority parameter. Priorities of goals are used 
to initiate successive execution of the same goal: the higher the priority, the larger the 
probability to execute the goal once more before switching to the next one. The more 
often a goal was executed successively, the less its probability to be executed again. 
In our model cues in the traffic environment have a direct influence on goal priorities. 
These quantitative dependencies are derived from experimental data. 

Validation results. The current state of the model is rather basic, results have not yet 
been validated systematically. Detailed validation studies are planned for this year. 
The main measure for model validation will be the gaze behavior of drivers. 

Transferability. A dual task structure of continuous, interleaved goals can be found 
in pilot tasks as well. Prioritization of tasks is a very important aspect in time critical 
multitasking situation. We assume that the aspired priority mechanism is flexible 
enough to model dual-task scenarios e.g. during aircraft takeoff as well. 

4.2   Divided Attention Based on Event frequencies 

The extension of the cognitive architecture with regard to the influence of event fre-
quencies on attention allocation can be used to identify a potential negative influence 
of assistance systems on the attention and situation awareness of the driver in cases 
where (s)he gets out of the loop of the driving task.  

Interaction phenomenon. Out-of-the-loop effects may be caused when a certain task 
is fully controlled by the system. For example an ACC (Automatic Cruise Control) 
system reduces or completely removes the necessity for the driver to correct the dis-
tance to the lead car. The driver might rely too much on the system and might allocate 
too little attention to the longitudinal control tasks. As a consequence the driver might 
fail to take over control in situations where the ACC reaches its limits. 

Involved cognitive processes. Wickens & McCarley [10] and Horrey et.al. [3] postu-
lated four main influences on the process of attention allocation - salience, effort, 
event expectancy and value. With these values they created the SEEV trade-off model 
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to describe how humans distribute visual attention. The probability that an informa-
tion sources will be paid attention to, is a function of the four influence factors. Hor-
rey et. al. [3] conducted driver studies focusing on collision avoidance where they 
gained good results though only considering the factors expectancy and value. We 
focused on the expectancy factor, that describes how likely it is that the driver expects 
new information at an information source. For the collision avoidance task it is based 
on the bandwidth of events the driver has to react on. The more events have occurred 
on that source, the more will the driver expect further events to occur. 

Modeling idea. Following the SEEV attention allocation model we currently imple-
ment the correlation of event bandwidth and attention allocation. The implemented 
process relies on a percept mechanism: an Area of Interest will be scanned by the 
model if the goal which requires this information, is selected in the cognitive cycle. 
For task T1 “hold distance to C” (see Fig. 4) the required information would be dAC. 
Perceived information is used in the State-Part of rules.  

Fig. 5 shows two rules for the goal hold_distance. Their conditions will trigger a 
rule that perceives current_distance. The new value may trigger rule 1 or 2. In that 
case an event for the model has occurred, because the model has to react on outside 
information. The time of occurrence of this event will be stored together with the 
goal. It is then used to influence the goal selection process in the cognitive cycle. 
Tasks with higher event bandwidth will be triggered more often. As a result of the 
simulation the model will adapt its scan rate to the event bandwidth of the information 
source. 

 

 
 

Fig. 5. Rules for keeping safe distance to front car 
 

Validation results. Like in the preceding section validation studies focusing on gaze 
behaviour will be done this year.  

Transferability. The described phenomenon is not only applicable in the driving 
domain. In fact the SEEV trade-off model is used in general for the design and analy-
sis of human machine interfaces. As has already been shown by Wickens [10], pilots 
scan control instruments with a high event bandwidth more often. In that approach the 
bandwidth is derived as a constant value from the features of the instruments. In our 
approach we derive the bandwidth from the dynamics of the environment and conse-
quently the bandwidth can change dynamically. 

5   Summary and Next Steps 

In this text we presented an approach to support the design of safety critical assistance 
systems in aircraft and cars. This approach is based on a cognitive core architecture 
which is used in both domains. We described four extensions of the core architecture. 
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Our future work will concentrate on a detailed validation and improvements of the 
four extensions which includes a validation of the transferability of the cognitive 
mechanisms. The validation requires a complex design of experiments in which our 
models as well as real pilots/ drivers perform the same scenarios. This will allow a 
comparison between the model and human behavior along parameters like error rate, 
eye-movements, action sequences or timing. 

The work described in this paper is funded by the European Commission in the 7th 
Framework Programme, Theme 7 Transport, FP7-211988 and FP7-218552. 
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