
M. Kurosu (Ed.): Human Centered Design, HCII 2009, LNCS 5619, pp. 110–119, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Defining Expected Behavior for Usability Testing

Stefan Propp and Peter Forbrig

University of Rostock, Institute of Computer Science,
Albert Einstein Str. 21, 18059 Rostock, Germany

{stefan.propp,peter.forbrig}@uni-rostock.de

Abstract. Within HCI task models are widely used for development and
evaluation of interactive systems. Current evaluation approaches provide sup-
port for capturing performed tasks and for analyzing them in comparison to a
usability experts’ captured behavior. Analyzing the amount of data works fine
for the evaluation of smaller systems, but becomes cumbersome and time-
consuming for larger systems. Our developed method aims at making the im-
plicitly existing expectations of a usability expert explicit to pave the way for
automatically identifying candidates for usability issues. We have enhanced a
CTT-like task modeling notation with a language to express expected behavior
of test users. We present tool support to graphically compose expectations and
to integrate them into the usability evaluation process.

Keywords: Usability Evaluation, Task Models.

1 Introduction

Task models are widely used within the domain of Human Computer Interaction. For
elicting requirements task models describe the progress of task execution to accom-
plish a certain goal. Subsequent development stages apply task models as initial arti-
facts for model-based development of user interfaces [9]. Several approaches further
exploit task models for usability evaluation. Examples are RemUSINE [6], ReModEl
[1] and the task-based timeline visualization [4]. Those evaluation techniques capture
the observed user interactions on a lower level of abstraction (e.g. mouse clicks or
sensor values of user movement), which can be easily captured but the vast amount of
data is difficult to interpret. Subsquently the sequence of captured events is lifted
from an interaction level (e.g. button click) to a task-based abstraction (e.g. printing a
document) [8], which allows interpreting the results in a more natural way. Hence a
usability expert can conveniently compare the observed behavior of test users with
his/her expectation of efficient task performance to reach the goal of the test case.
Deviations indicate candidates for usability issues. This comparison is carried out as a
manual process with tool support for visualizing a task trace, but lacking an integra-
tion of machine-readable expectations.

The approach in [6] goes a bit into this direction. It offers a comparison between
two task traces: the observed trace and an “ideal path”. A designer specifies this path
and the degree of deviation can be visualized. However, there is no opportunity dis-
cussed to generalize the expectation to cover different expected traces. For instance

 Defining Expected Behavior for Usability Testing 111

the task “sending an email” can be accomplished in different ways. It is appropriate
either to use a web interface or to start your email client. Both ways solve the task.
The IBOT system [12] also provides a mechanism to capture user interactions and
further automatically compares the behavior of user and designer. WebQuilt [2] visu-
alizes the navigation path through a website. It visualizes the observed path of users in
contrast to a designers’ expected path, which is a comparison between two naviga-
tional pathes.

As summarized there are some approaches available for automatically comparing
two captured logs with each other, which may be actually logged or even designed,
but do not allow to specify some degree of freedom in a sense that a user might devi-
ate from the expected behavior in certain aspects. Therefore existing methods work
fine for the evaluation of smaller systems, but become cumbersome and time-
consuming for larger systems.

We aim at overcoming this problem by defining expected user behavior in a ma-
chine-readable form with some degree of freedom for deviations. Therefore we have
enhanced our CTT-like task modeling notation with a language to specify expecta-
tions. In the general case when we evaluate an artifact without an existing relationship
to a task model, such a task model has to be modeled and extended to form the expec-
tation. In certain cases when we evaluate a piece of software which was developed
task-based we reuse these models and enhance them.

In section 2 we draw the bigger picture and discuss the integration of our concept
into the usability evaluation process. Section 3 explains the method and provided tool
support, exemplified with modeling expectations for people interacting with each
other in a meeting situation. We show how to specify expectations, capture according
user behavior and finally analyze the results. Section 4 gives a conclusion and future
research avenues.

2 Usability Evaluation Process

Before we go into the details of specifying expectations, we give an overview of the
whole usability evaluation process, where our approach fits in.

The process comprises four stages (see figure 1): modelling, test planning, test
execution and analysis of test results [7].

1. The modelling stage should be carried out during product development. During
requirements analysis tasks are elicted, which should be carried out by users. These
tasks are put into relationship to each other. A designed task model in CTT notation
can be built [5], which reflects a hierarchical decomposition of tasks into subtasks.
These tasks are interconnected with temporal relations. Each task model describes
how a user can achieve a certain goal. Furthermore a user may have different roles.
For instance a meeting participant can switch between the roles “presenter” and “par-
ticipant”. Each role’s available tasks are described by a respective task model. Addi-
tionally a task model for coordinating the other task models can be provided [5].

2. In the planning stage a test case is defined as it is common practice for usability
evaluations. We specify for instance purpose, test objectives, a description of the
environment and the evaluation measures [10]. We enhance this textual information
with task models describing the possible user behavior while using the evaluated

112 S. Propp and P. Forbrig

artifact. When specifying a test case, the usability expert already has an expectation in
mind, how to perform the tasks in an efficient way. This implicit knowledge should
be made explicit as machine-readable expectation model.

3. In the execution stage a test case is conducted several times with different test
users. Observations (like key strokes, mouse clicks, location coordinates of moving
users and video streams) are captured and annotated by an expert. Our test environ-
ment provides an evaluation engine, to collect this data from the physical environment
with sensors and video cameras. During evaluation the captured user behavior is
compared against the expectation to discover deviations. These evaluation results are
additionally captured.

4. In the analysis stage an analysis engine provides capabilities to analyze and
visualize captured data. Finding usability issues within the vast amount of data is a
tedious task, because often it is not intuitively clear how an issue may look like. To
cope with that, we particularly emphasize on expectations, because deviations from
the expected behavior can be derived automatically, through comparing expectation
and accomplished task trace. The result set contains some candidates for usability
issues, leading to a reduction of relevant data. Subsequently a usability expert can
focus on examining data interrelated with identified situations. Interactively walking
through video streams, annotations, sensor and task data, helps identifying causes of
an issue and improving the underlying task models to better describe user behavior.

Fig. 1. Task Model-based Usability Evaluation Process

3 Specifying Expectations

3.1 Example

First we introduce a running example, which is subsequently used to describe how to
specify expectations before a test starts, how to evaluate expectations during the test

 Defining Expected Behavior for Usability Testing 113

and how to analyze the results afterwards. Our approach aims at evaluating a wide
variety of artifacts, including software and physical artifacts, where a task model can
describe the interaction of a user.

According to our prototypical implementation, we consider a meeting situation
within a collaborative environment. Initially no persons are present. The room is only
equipped with furniture and some stationary devices, like projectors at the ceiling and
movable window blinds. Before the meeting begins, three people A, B and C are
populating the room, while carrying their personal devices with them. Their PDAs
and laptops contain slides for the presentations and help with taking notes during
listening to the other talks. All three people have to give a presentation in an arbitrary
order, closing with a discussion. Finally they exit the room, carrying their devices.
The room senses the loctation of the people and notices if someone takes up a device
or another item in the room, like a laser pointer. The environment tries to derive
which task is carried out next. For instance if a person moves to the front, connecting
the laptop with projector, while the others are sitting, the environment, derives the
beginning of a presentation and gives support. It shuts the window blinds at the front
and moves down the appropriate projection screen. The evaluation should discover
strength and weaknesses within the interactions between meeting participants and the
surrounding environment. Particular usability questions to investigate within this
domain are: Does the environment derive the correct user behavior from the sensor
data? Are the users’ performed tasks appropriately supported by the pro-active meet-
ing assistance?

3.2 Method

To evaluate the usability of an artifact we begin with a task model which describes
how users can interact with the given artifact. If we concider a software artifact, this
task model may already exist from requirements elictation or task model-based devel-
opment [9]. In other cases it has to be modeled first. A task model describes a set of
sequences of performed tasks to reach a goal. In most cases several alternative task
traces reach the goal.

A usability test typically focusses on certain functionalities of an artifact, espe-
cially when the artifact is still under development and some parts are not implemented
yet. Therefore users carrying out a test case are expected to perform only tasks con-
tained within this corresponding subset of the task model. Other tasks are possible but
out of scope of the current test case, since they do not support reaching the given goal.

We distinguish between a task model describing a bunch of functionality offered
by the artifact on the one hand and an expectation as subset focussing at the tested
functionality. The expected task performance is further constrained to devices which
have to be used, certain context conditions and maximal durations for task perform-
ance. An expectation is further described as follows:

A CTT model describes a set of possible task traces to interact with the artifact.
The expectation model is build on top of this task model and comprises additional
annotations to constrain these traces. To evaluate an artifact under different test condi-
tions, for each test case a separate expectation is defined. All expectations may

114 S. Propp and P. Forbrig

constrain the same model in another way depending on the designers’ expected user
behavior.

An expectation consists of a set of expectation statements and can be described in
an EBNF-like notation:

expectation = task ":" (event {"," event}) ":"
 {statement ";"};
event = START | END | ENABLE | DISABLE |
 SUSPENT | RESUME | ABORT | SKIP;
statement = classification ":" expression;
classification = PERFECT | GOOD | BAD;

An expectation is specified for a certain task. The example (table 1) contains sev-

eral task models, one for each user role. Therefore the task has to be qualified with the
respective task model as “participant.present”. To evaluate expectations a task model
engine was incorporated [9]. During carrying out a test case each task within the task
model has a state, for instance a task begins typically as “enabled”, turns into “run-
ning” and finally into “finished”. State changes are triggered by events. A user can
only perform leave tasks of a task model and therefore cause the task engine to fire
“start” or “end” at these tasks. Each expectation is evaluated when the specified event
is fired. Several statements can be associated, which are evaluated sequentially. The
contained expression is an OCL-like expression to navigate within the task model
and evaluate the tasks’ attributes. Accessable attributes during runtime are for in-
stance the states of tasks, applied devices, other involved users, the needed duration
for task performance and context information. Context information depends on the
available sensors. In our test environment we use mainly location sensors and RFID
sensors to capture involved devices. Further context information can be annotated
manually or provided via additional sensors. We use OCL [3] to specify these expres-
sions. OCL is very expressive, while some expressions are long and difficult to read.
Therefore we provide some helping functions for a more convenient navigation for
the domain of task modeling, like it is discussed in [11]. The evaluation of such an
expression results in a boolean value, which is interpreted in OCL as a constraint
which is satified or not. We prefer a more fine grained grading. Therefore we classify
a user interaction according to the degree of desirability within the current situation.
We distinguish the classification as “perfect”, “good” or “bad”. For instance to per-
form the task “give a presentation” (a) it is goal-oriented to “load slides” (hence clas-
sified as “perfect”), (b) it is destructive to “leave room” (hence classified as “bad”)
and (c) optional to “open a window” to get some fresh air (hence classified as
“good”). Currently we work with these three categories, but it is also possible to dis-
tinguish more or less categories. The list of statements is sequentially evaluated.
Each OCL expression is handed over to the parser. In case of a result “true” the asso-
ciated classification label is returned; in case of “false” the next statement is evalu-
ated. Hence the first match of a statement determines the result. The statement at the
end of table 1 “bad : true;” ensures the result “bad” if nothing previously matched.

 Defining Expected Behavior for Usability Testing 115

Table 1. Examples for Expectation Statements

Task Event Classification Expression
participant.present start perfect self.device.includes

(presenter_device)
 perfect self.context.includes

(presentation_zone)
 good true
participant.present end perfect self.duration() < 300
 good self.duration() < 600
 bad true

Table 1 exemplifies the method with two simple expectations, each comprising

three statements. When a person starts to “present” the used device and location
within the room is evaluated. When finishing to “present” the time of the presentation
is measured. Within a test case the persons are asked to present 5 minutes (300 sec-
onds). If the persons within the room face serious issues, preventing them from di-
rectly performing the tasks described in the test case description, often the duration
needed expands. In this example a duration of more than 10 minutes is defined as
threshold to mark the “present” task as potential usability issue, which has to be fur-
ther investigated .based on archived video and sensor material of that test session.

3.3 Graphical Tool Support

Composing statements on a textual level allows a very accurate specification of ex-
pectations. But beyond the very simple example in table 1 real world examples are
much more complex and from our experience it is a very tedious task, because com-
posing statemens manually is monotonous and error-prone due to a high degree on
redundancies. Hence we provide a GUI to graphically compose expectations (figure
2) and automatically generate the according expectation statements.

On the left-hand side a tree view visualizes the task model, while the right-hand
side depicts a gantt view of the timeline. The navigation within the task tree allows
expanding and collapsing the task lanes at the right. Time constraints are set via drag
and drop in the gantt view. The colors green and yellow mark the maximum length of
a task, while red marks a task which should not be performed within the current test
case. Arrows mark additional temporal dependencies. For instance if the task model
allows the presentations of persons A, B and C orderindependently, an arrow from “A
to B” in the expectations requires the presentation of A to be finished before B starts.
If a task is not depicted as gantt lane, there is no expectation set. Normally only a few
activities of interest are specified. When selecting a task details are displayed in a
properties view at the bottom of the screen to adjust further parameters. Necessary
devices, other involved users and certain context conditions are specified. Context
parameters can be customized as necessary for the individual evaluation. Examples
are the location of users within a room, touched items, light conditions, medical pa-
rameters of testers, manually annotated mental workload or categories of emotions.
Arbitrary annotations are possible. Parameters can be specified for each occurrence of
the task separately or globally for each repetition of a task.

116 S. Propp and P. Forbrig

Fig. 2. Specifying Expectations

Our first approach was starting from scratch with a white gantt view, allowing a us-
ability expert to draw task lanes and type in context parameters. To save some time we
offer the possibility to load a captured test session which is close to the expected interac-
tions. The data only needs to be adapted in certain aspects, for instance adjusting dura-
tions and deleting some unrelevant tasks while adding some missing information.

After having finished the graphical specification, expectation statements are auto-
matically generated. For different modeled examples the expressiveness was ade-
quate. If a usability expectation is to be defined which exceeds the opportunities of
the graphical notation, the generated statements can be manually refinded to include
arbitrary OCL expressions.

3.4 Test Case Execution

To test the evaluation approach we have developed an evaluation application
(figure 3). Following the running example we focus on evaluating meeting situations.
The lower left part depicts a bird’s view of a room with some grey tables, grey chairs
and the participating persons. The upper left part contains the animated task models
for the three persons showing the current progress of task performance. Via drag and
drop persons are moved through the room while task performance can be triggered
within the animated task models. Further annotations are possible. While interactively
walking through the specified environent’s models the expectation are evaluated.

To replay real world data, at the upper right side a recorded test session from the
physical environment can be loaded. Movements within the room and performed
tasks are visualized accordingly at the left-hand side.

 Defining Expected Behavior for Usability Testing 117

Fig. 3. Data Capturing

3.5 Analysis

After the testers have performed all tasks of the test case, the captured data has to be
analyzed. To cope with the vast amount of data, like sensor data, video streams or
annotations, we focus on results of the expectation evaluation. Figure 4 depicts the
current state of an ongoing implementation. The upper part depicts the actually ful-
filled tasks of the testers as gantt timeline according to a task model at the right. The
views in the center allow interactively exploring captured data. Filtering options for
instance comprises the filtering for certain users, for tasks with very short or very long
durations and specific expectation results. Filtering for tasks which were performed
“bad” lists situations with major deviations from the expectected behavior, which
indicates candidates for usability issues. A subsequent investigation of video streams
and sensor data examines whether it is a real issue and to identify the cause. We try to
avoid that all captured data has to be examined again. Instead an expert can focus on
the automatically discovered issue candidates.

The suggested analysis has also some limitations. A prerequisite is a well defined
expectation. Otherwise real issues might be erroneously overlooked. The automatical
identification should only be a first step in analyzing evaluation results. A careful
investigation of captured data and even uncaptured details visible at the videos should
complement the presented approach.

118 S. Propp and P. Forbrig

Fig. 4. Analysis

4 Conclusion

In this paper we have enhanced a task modeling notation with a language to express
expectations. To ensure a better usability of the specification environment itself we
have replaced the first prototypes’ textual interface with a GUI to graphically com-
pose expectations in a more convenient way. We have enhanced a task engine to
evaluate these expressions during testing. The automatic identification of candidates
for usability issues helps to efficiently evaluate more complex systems than supported
by existing approaches. While other evaluation approaches only capture and display
performed tasks, this paper presented a method to make the implicitly existing expec-
tations explicit and exploit them for usability evaluation.

Future research avenues comprise the evaluation within a field study to discover
strength and weaknesses of the approach and incorporate experiences gathered from
real world data.

Acknowledgement

The work of the first author was supported by a grant of the German National
Research Foundation (DFG), Graduate School 1424.

 Defining Expected Behavior for Usability Testing 119

References

1. Buchholz, G., Engel, J., Märtin, C., Propp, S.: Model-Based Usability Evaluation - Evalua-
tion of Tool Support. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4550, pp. 1043–1052.
Springer, Heidelberg (2007)

2. Hong, J., Landay, J.: WebQuilt: A Framework for Capturing and Visualizing the Web Ex-
perience. In: Proc. of the 10th international conference on World Wide Web, Hong Kong,
China, pp. 717–724 (2001) ISBN:1-58113-348-0

3. OCL 2.0 specification of the OMG,
 http://www.omg.org/docs/formal/06-05-01.pdf

4. Malý, I., Slavík, P.: Towards Visual Analysis of Usability Test Logs. In: Tamodia 2006,
Hasselt, Belgium, pp. 25–32 (2006)

5. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Trans. Softw. Eng. 28(8), 797–813 (2002)

6. Paternò, F., Russino, A., Santoro, C.: Remote evaluation of Mobile Applications. In:
Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp.
155–169. Springer, Heidelberg (2007)

7. Propp, S., Buchholz, G., Forbrig, P.: Task Model-based Usability Evaluation for Smart
Environments. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA 2008. LNCS,
vol. 5247, pp. 29–40. Springer, Heidelberg (2008)

8. Hilbert, D., Redmiles, D.: Extracting Usability Information from User Interface Events.
ACM Computing Surveys 32(4), 384–421 (2000)

9. Reichart, D., Forbrig, P., Dittmar, A.: Task Models as Basis for Requirements Engineering
and Software Execution. In: Proc. of. Tamodia, Prague, pp. 51–58 (2004) ISBN:1-59593-
000-0

10. Rubin, J.: Handbook of usability testing. In: Hudson, T. (ed.) Wiley technical communica-
tion library (1994)

11. Wurdel, M., Propp, S., Forbrig, P.: HCI-Task Models and Smart Environments. In: Proc.
of HCIS 2008, Mailand, Italy (2008)

12. Zettlemoyer, L., Amant, R., Dulberg, M.: IBOTS: Agent Control Through the User Inter-
face. In: International Conference on Intelligent User Interfaces (IUI), pp. 31–37 (1999)

	Defining Expected Behavior for Usability Testing
	Introduction
	Usability Evaluation Process
	Specifying Expectations
	Example
	Method
	Graphical Tool Support
	Test Case Execution
	Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

