
M. Kurosu (Ed.): Human Centered Design, HCII 2009, LNCS 5619, pp. 955–964, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Development of CSCW Interfaces from a User-Centered
Viewpoint: Extending the TOUCHE Process Model

through Defeasible Argumentation

María Paula González1,2,4, Victor M.R. Penichet3, Guillermo R. Simari2,
and Ricardo Tesoriero3

1 National Council of Scientific and Technical Research (CONICET), Argentina
2 Department of Computer Science and Engineering, Universidad Nacional del Sur

Av Alem 1253, 8000 Bahía Blanca, Argentina
3 Computer Systems Department, Universidad Castilla-La Mancha

02071 Albacete, Spain
4 GRIHO Research Group, Universitat de Lleida

25001 Lleida, Spain
{mpg,grs}@cs.uns.edu.ar, victor.penichet@uclm.es,

ricardo@dsi.uclm.es

Abstract. The Task-Oriented and User-Centered Process Model for Develop-
ing Interfaces for Human-Computer-Human Environments (TOUCHE) is aimed
to build up user interfaces for groupware applications under a Human-
Computer Interaction perspective. It includes a large set of well known formal
models like Class Diagrams, Organizational Structure Diagrams, Task Dia-
grams, Collaboration Diagrams and Abstract Interaction Objects among others.
Most of such models, however, suffer from a number of limitations when for-
malizing users’ commonsense. Over the last few years, Argumentation Systems
have been gaining importance in several areas of Artificial Intelligence, mainly
as a vehicle for facilitating rationally justifiable decision making when handling
incomplete and potentially inconsistent information. This paper sketches a
Proof of Concept to show how defeasible argumentation techniques can be
embedded within the TOUCHE. The final goal is to enhance the capability of
development process models for CSCW systems by including a rule-based ap-
proach for efficient reasoning with incomplete and inconsistent information.

1 Introduction and Motivations

Nowadays Computer Supported Collaborative Work (CSCW) is a challenging
research field focused on developing groupware applications. In particular, the Task-
Oriented and User-Centered Process Model for Developing Interfaces for Human-
Computer-Human Environments (TOUCHE) [1,2] was formally defined, aimed to
clearly describe design decisions when deploying CSCW interfaces under a Human-
Computer Interaction (HCI) perspective. However, most of TOUCHE models suffer
from a number of limitations when formalizing User-Centered commonsense and
qualitative reasoning. Indeed, TOUCHE models only accounts for describing design

956 M.P. González et al.

issues omitting the record of the associated decision making process. As a conse-
quence, only results of the discussion between members of the development team are
traceable. But being able to support and document this decision making process can
enhance TOUCHE capabilities, especially those related to maintenance and scalabil-
ity. In this settings, TOUCHE can rely on argumentation techniques to solve the
above problem by means of a rational justified procedure.

This paper describes how the TOUCHE model can be empowered through argu-
mentation, in which knowledge representation and inference are captured in terms of
Defeasible Logic Programming, a general-purpose defeasible argumentation formal-
ism. We show how argument-based reasoning can be integrated in a TOUCHE Sys-
tem Requirement Document in order to provide a qualitative perspective capable to
support and document part of the associated decision making process automatically.

First, some related works are described. Then, the TOUCHE process model is
briefly described. Section 4 introduces some key concepts of defeasible argumentation.
Next, Section 5 sketches a Proof of Concept to show how defeasible argumentation can
be used in TOUCHE to model incomplete and probably inconsistent information, fo-
cusing the Case Study in the two first steps of the model. Finally, Section 6 concludes.

2 Related Work

To our knowledge there is not similar proposal for integrating defeasible argumenta-
tion and TOUCHE as described in this paper. An alternative approach is proposed by
Design Rationale. Even though some models for Design Rationale are based on the
use of arguments [3] none of them include an embedded engine capable of carrying
out the automatic computation of defeasible arguments as in DeLP. The use of defea-
sible argumentation during requirement elicitation is shown in [4, 5]. These papers
present the argument-based Goal Argumentation Method for justifying modelling
decisions in goal-oriented requirements engineering, while our approach is based on a
task-oriented methodology. The integration of argumentation techniques using DeLP
within CSCW systems was proposed in [6]. Another example that shows the possibil-
ity of using argumentation to enhance CSCW capabilities is presented in [7], where a
tool for drawing arguments was introduced.

Finally, it must be remarked that recent research has led to some interesting results
to model dialectical discussions and negotiation in CSCW scenarios. For example, [8]
have proposed a mechanism to manage dialectical discussions when a group of people
want to collaboratively define requirements in natural language. However, their pro-
posal is based on constraint satisfaction techniques, and does not consider the use of
argumentation

3 The TOUCHE Process Model

TOUCHE is a process model and a methodology for the development of user interfaces
for groupware applications from the requirements gathering up to the implementation
stage [1,2]. It includes four development stages, namely: Requirements Gathering,
Analysis, Design, and Implementation. The first stage (based on [9]) gathers the re-
quirements of the system to be developed. Novel requirement gathering templates which

 Development of CSCW Interfaces from a User-Centered Viewpoint 957

include some metadata that are important for the specification of groupware applications
have been developed, as well as the System Requirement Document DRS [1]. In this
first stage those templates provides the information to describe the organizational struc-
ture of the users in the system, the different participant (groups, users, individuals, and
agents), the system objectives, the functional and non-functional requirements, and
information requirements. All this information is provided according to CSCW criteria
where the user as a member of a group of users is the main aspect to take into account.

The Analysis stage [2] studies the problem domain. Roles and tasks are identified
and described from a structural perspective using Class Diagrams and the Organiza-
tional Structure Diagram; and from a behavioural perspective by means of the Task
Diagram or TD (using CTT notation [10]). Besides, the Co-interaction Diagrams or
CDs are included to identify relationships among the actors of the system. The Design
stage provides a way to present the information (visualization, entries, controls, etc.)
to the final user. All the information gathered up to now is processed and translated to
a software representation. Users’ awareness should be considered in order to get a
good CSCW design. Abstract Interaction Objects (AIOs) are used to design Abstract
User Interfaces (AUIs). We use the UsiXML conceptual scheme [11]. The model is
enriched with a new AIO and several facets which provide more expressiveness to
represent CSCW systems. Finally, the Implementation stage deals with the generation
of the UI from the previous AIOs. It is a reification process from every component to
more concrete elements according to implementation and platform details. The Came-
leon process is follow. Several specific CIOs for groupware applications are pro-
posed. The traceability between the defined models and between the different stages
is also considered. [2].

As it can be seen, several formal models have been included within the TOUCHE
methodology. However, those models expressed only final decision of the develop-
ment team omitting the possibility of dealing with incomplete and possible inconsis-
tent information, especially those associated with the decision making process. These
limitations turn out to be critical especially in the first and second stage of the
TOUCHE model, as decisions made during these two stages strongly condition the
final product characteristics. As we will see next, defeasible argumentation -a sound
setting formalization to model incomplete and possible inconsistent information- can
cope with the problem described below.

4 Defeasible Argumentation

Argumentation Systems (AS) are increasingly being considered for applications in
developing software engineering tools, constituting an important component of multi-
agent systems for negotiation, problem solving, and for the fusion of data and knowl-
edge [12,13]. AS implement a dialectical reasoning process by determining when a
proposition follows from certain assumptions, analyzing whether some of those as-
sumptions can be disproved by other assumptions in our premises. AS typically refer
to two kinds of knowledge: strict and defeasible knowledge. Strict knowledge (KS)
corresponds to the knowledge which is certain; typical elements in KS are statements
or undisputable facts about the world, or mathematical truths (e.g. implications of
the form (∀x)P(x)→Q(x)). The strict knowledge is consistent, i.e. no contradictory

958 M.P. González et al.

conclusions can be derived from it. On the other hand, defeasible knowledge (KD)
corresponds to that knowledge which is tentative, modelled through “rules with ex-
ceptions” (defeasible rules) of the form “if P then usually Q” (e.g., “if something is a
bird, it usually flies”). Such rules model our incomplete knowledge about the world,
as they can have exceptions (e.g., a penguin, a dead bird, etc.). Syntactically, a special
symbol (⇒) is used to distinguish “defeasible” rules from logical implications.

Example: For the sake of example, let us consider a well-known problem of non-
monotonic reasoning in AI about the flying abilities of birds, recast in argumentative
terms. Consider the following sentences:

1. Birds usually fly.
2. Penguins usually do not fly.
3. Penguins are birds.

The first two sentences correspond to defeasible rules (rules which are subject to
possible exceptions). The third sentence is a strict rule, where no exceptions are pos-
sible. Now, given the fact that Tweety is a penguin two different arguments can be
constructed:

1. Argument A (based on rules 1 & 3): Tweety is a penguin. Penguins are birds.
Birds usually fly. So Tweety flies.
2. Argument B (based on rule 2): Tweety is a penguin. Penguins usually do not
fly. So Tweety does not fly.

AS allow the user to define a knowledge base K = KS ∪ KD involving strict and de-
feasible knowledge. An argument A for a claim c is basically some “tentative proof”
(formally, a ground instance of a subset of KD) for concluding c from A ∪ KS [13].
Arguments must additionally satisfy the requirement of consistency (an argument
cannot include contradictory propositions) and minimality (by not including repeated
or unnecessary information). Conflicting arguments may emerge from K. Intuitively,
an argument A attacks another argument B whenever both of them cannot be accepted
at the same time, as that would lead to contradictory conclusions.

There exist two main kinds of possible “attacks” between arguments in AS: sym-
metric attack (arguments with opposite conclusions) and undercutting attack (an ar-
gument attacks some “subargument” in another argument). The notion of defeat
comes then into play to decide which argument should be preferred. The criterion for
defeat can be defined in many ways, being a partial order ≤ among arguments. Thus,
for example, arguments can be preferred according to the source (e.g. when having
arguments about weather, the argument of a meteorologist should be stronger than the
argument of a layman). As a generic criterion, it is also common to prefer those ar-
guments which are more direct or more informed. This is known as the specificity
principle (see [13]). For example, in the particular situation of the previous Example
two arguments arise that cannot be accepted simultaneously (as they reach contradic-
tory conclusions). Note that argument B seems rationally preferable over argument A,
as it is based on more specific information. This situation can easily become much
more complex, as an argument may be defeated by a second argument, which in turn
can be defeated by a third argument, reinstating the first one. Indeed, AS determine

 Development of CSCW Interfaces from a User-Centered Viewpoint 959

when a given argument is considered as ultimately acceptable with respect to the
available knowledge by means of a dialectical analysis, which takes the form of a
tree-like structure called dialectical tree. The root of the tree is a given argument A
supporting some claim and children nodes for the root are those defeaters B1, B2, ... Bk
for A. The process is repeated recursively on every defeater Bi, until all possible ar-
guments have been considered. Leaves are arguments without defeaters. Some addi-
tional restrictions apply (e.g., the same argument cannot be used twice in a path, as
that would be fallacious and would lead to infinite paths).

Fig. 1. A schematic view of the DeLP development environment

A marking procedure can be then performed for “marking” the nodes in the tree.
Leaves will be “undefeated” nodes (or “U” nodes, for short), as they have no defeat-
ers. Then we can propagate the marking from the leaves upward to the root as fol-
lows: an inner argument Ai in the tree will be marked as a “defeated” node (“D” node)
if it has at least one “undefeated” child. Otherwise, if every child of Ai is a “D” node,
then Ai will be marked as “U” node. If the root of a dialectical tree (the argument
Arg) turns out to be marked as “U” node, then it is ultimately undefeated (given the
knowledge available), so that the argument Arg (and its conclusion) is said to be war-
ranted (i.e. ultimately accepted). Given a knowledge base K, AS automatically com-
pute the dialectical tree associated with any particular claim (provided by the user as
an input). In this context, Defeasible Logic Programming (DeLP)1 is a general-
purpose AS which has been particularly successful in real-world applications [14, 15,
16], providing an integrated environment for defining a knowledge base and solving
user queries (claims) interactively. For any claim the DeLP engine automatically
computes and visualizes the emerging dialectical tree, which acts as an explanation
facility for the user, helping him to understand why the given claim is warranted or
not (Figure 1). As we have seen in this Section, warranted arguments support beliefs
that are accepted beyond dispute on the basis of the available knowledge. This notion
can be applied in different contexts as, in particular, in multiple-party reasoning,

1 See http://lidia.cs.uns.edu.ar/delp_client

960 M.P. González et al.

where a group of several people participate on the basis of some common knowledge
(e.g. members of a software development team). In the next section we will analyze
how this idea can be integrated in the TOUCHE process model to characterize and
document decision making by using of a general-purpose argumentation system like
DeLP as a support tool.

5 Proof of Concept

5.1 Feasibility Analysis

First, our proposal requires an automated argumentation system to be integrated in
TOUCHE, which should include an appropriate front-end for posing queries, and
facilities for defining a knowledge base and visualizing results of the computation of
the underlying argumentation engine (e.g. dialectical trees). Several of such kinds of
platforms are freely available nowadays [16], covering the above expectations with
reasonable costs (including economical resources, time consumption, etc.). Thus, AS
(and particularly DeLP [16]) can be seen as a first step on the construction of argu-
ment-based modules to be completely embedded in the TOUCHE environment.

Costs associated with the inclusion of an extra theoretical framework in TOUCHE
must be also considered. In that respect, note that existing argument-based platforms
are not specially oriented towards experts on argumentation, but rather towards gen-
eral users with a conceptual understanding about the meaning of facts, rules and in-
ference by means of rule chaining. We claim that these concepts are suitable for
TOUCHE users. The existence of graphical front-ends in some AS platforms [17]
minimizes the complexity of text input for rules and facts as well as the interpretation
of obtained results. Finally, from the TOUCHE viewpoint, it must be remarked that
the integration of Artificial Intelligence and argument techniques within CSCW sys-
tems has proven to be fruitful, resulting in novel proposals [6,7,8] and systems such as
I-MINDS [15] or SCALE [16] for example.

5.2 Case Study

The next example sketches how defeasible argumentation can be used in the first and
second stages of the TOUCHE model to deal with inconsistent or incomplete infor-
mation. Let us suppose we are developing the interface of a groupware application
which allows several authors to create the same document through the Internet. When
the authors of the document have written a draft, one of them is responsible for send-
ing, through the same application, the document which is candidate to be published to
some reviewers. Then, the reviewers discuss about the document and give their own
opinion on whether it should be published or not. A published document can be read
by all the users of the system, even if they are not authors or reviewers.

In the above settings, Table 1 shows part of the specification of a functional re-
quirement called document edition (DC) by means of the metadata of the general
template and the extensions introduced to consider the specific features concerning
CSCW systems.

 Development of CSCW Interfaces from a User-Centered Viewpoint 961

Table 1. Description of part of the functional requirement called Document edition with the
proposed template (only relevant rows for the current case study are included)

RF-8 Document Edition

… … …

Awareness issues

The following actors should be aware of this requirement:
• #G-1 (AUTHORS):
- What: an actor is modifying part of the current document

- How: current modification is showed graphically
- When: in real-time
- Where: in the same workspace, in the same window
- Why: to know who is modifying what and not to interfere

- What: an actor modified a document
- How: a past modification is showed by e-mail
- When: after saving the current version, asynchronously
- Where: in the actor’s intranet and by e-mail
- Why: to know who modified the document and what part

… … …

CSCW
description

Because of the collaborative nature of the current requirement:
• Notifications are necessary for user awareness
• Insertion, modification, and modification in a document are issues to be

careful. Awareness in real time is important. Some actions such as delet-
ing an image could be too fast for the rest of authors to be aware. They
should be aware in some way.

• Real-time feeling in the document elaboration is important but not vital.

… … …

Note that some points of the Awareness Issue part of DC are in conflict with other

consideration of the CSCW description. For example, the statements s1= “Awareness
in real time is important”, s2= “Some actions such as deleting an image could be too
fast for the rest of authors to be aware” are actually in conflict, while statements like
s3= “Real-time feeling in the document elaboration is important but not vital” are
somehow vague or incomplete, and consequently their interpretation will be probably
biased by the development team later on. At this point defeasible argumentation nota-
tion can be embedded into the template on Table 1 to enhance the comprehension of
DC. For example, the following arguments can be associated with s1, s2 and s3:

% Defeasible rules (Commonsense knowledge)
%W stands for an arbitrary writer, ┐stands for “not” and T stands for “text”

– author (W) ⇒ show_real_time (awareness, W)
– author (W), Deleting (W, T) ⇒ show_real_time (awareness, W)
– author (W), Deleting (W,T), Image (T) ⇒ ┐show_real_time (awareness, W)
– coordinator (W) ⇒ ┐show_real_time (awareness, W)
– coordinator (W), author (W)⇒ show_real_time (awareness, W) %the coordinator is one of

the authors

Later on, during the 2nd stage in TOUCHE, roles and tasks will be instantiated and
modelled by means of some diagrams and descriptions (see Section 3). For example,
DC will be designed by means of the framework shown in Figure 1. This time, argu-
ments describing defeasible rules like those showed above can be used to decide how

962 M.P. González et al.

to link elements in the diagrams of the second stage, especially in those cases where
more than one solution must be taken into account. Here is when the potential of
having an automated engine like DeLP, capable to compute arguments automatically
comes into play. By means of the analysis of real Use Case Diagrams (see Figure 2
for the Use Case Diagram of the DC requirement) that can be easily collected and
instantiated, members of the development teams can rely on AS like DeLP to com-
pute alternative sets of facts automatically. This way, DeLP answers can be used to
analyze alternative design responses for requirement descriptions minimizing the
subjectiveness and the cultural bias present in the decision making process.

Fig. 2. Use Case Diagram for the requirement expressed in Table 1

6 Conclusions and Future Work

This paper proposed the integration of Argumentation Systems (AS) in the Task-
Oriented and User-Centered Process Model for Developing Interfaces for Human-
Computer-Human Environments (TOUCHE), aimed to build up CSCW interfaces
from the Human-Computer Interaction viewpoint. The final goal is to enhance the
capability of development process models for CSCW systems by including a rule-
based approach for efficient reasoning with incomplete and inconsistent information.
In our approach defeasible argumentation was captured in terms of Defeasible Logic
Programming (DeLP), a general-purpose AS which has been particularly successful in
real-world applications, providing an integrated environment for defining a knowl-
edge base and solving user queries (claims) interactively. For any claim the DeLP
engine automatically computes and visualizes the emerging dialectical tree, which
acts as an explanation facility for the user, helping him to understand why the given
claim is warranted or not.

As a first step in a novel research line, this work sketched a Proof of Concept to
show how DeLP can enhance the TOUCHE first and second stages (namely Require-
ments Gathering and Analysis) respecting their capability to deal with incomplete,
uncertain and possible contradictory information. Part of our future work includes the

 Development of CSCW Interfaces from a User-Centered Viewpoint 963

development of a graphical module based on DeLP to be incorporated into the
TOUCHE Case Tool.2 Based on this incorporation, future work will focus on perform-
ing a set of experiments beyond this Proof of Concept. Indeed, it will be necessary to
carry out a variety of complete CSCW interface developments under TOUCHE −com-
paring the results of including and omitting the use of DeLP− in order to validate the
real scope of the current proposal. Work in this direction is being pursued.

Acknowledgments. We would like to acknowledge to CONICET (Argentina) and the
projects PGI 24/N020, PGI 24/N023 (UNS, Argentina), PIP-CONICET 112-200801-
02798 (CONICET, Argentina), CICYT TIN2008-06596-C02-01 (Spain) and the Junta
de Comunidades de Castilla-La Mancha PAI06-0093-8836 for funding this work.

References

1. Penichet, V., Lozano, M., Gallud, J., Tesoriero, R.: Requirement Gathering Templates for
Groupware Applications. In: Macías, J.A., Granollers, T., Latorre, P.M. (eds.) New Trends
on HCI. Research, Development, New Tools and Methods. Springer, Heidelberg (2009)

2. Penichet, V., Lozano, M., Gallud, J., Tesoriero, R.: User Interface Analysis for Groupware
Applications in the TOUCHE Process Model. International Journal Advances in Engineering
Software (ADES) (in press, 2009) ISSN: 0965-9978, doi:10.1016/j.advengsoft.2009.01.026

3. Burge, J., Brown, D.C.: Reasoning with design rationale. In: AI in Design 2000, pp. 611–
629. Kluwer Academic Publishers, Dordrecht (2000)

4. Jureta, J., Faulkner, S., Schobbens, P.: Clear justification of modelling decisions for goal-
oriented requirements engineering. Requirements Eng. 13, 87–115 (2008)

5. Jureta, I.J., Faulkner, S.: Tracing the Rationale Behind UML Model Change Through Ar-
gumentation. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, pp. 454–469. Springer, Heidelberg (2007)

6. González, M.P., Chesñevar, C., Collazos, C., Simari, R.: Modelling Shared Knowledge
and Shared Knowledge Awareness in CSCL Scenarios through Automated Argumentation
Systems. In: Haake, J.M., Ochoa, S.F., Cechich, A. (eds.) CRIWG 2007. LNCS, vol. 4715,
pp. 207–222. Springer, Heidelberg (2007)

7. Kirschner, P., Buckingham, S., Carr, C. (eds.): Visualizing Argumentation: Software Tools
for Collaborative and Educational Sense-Making. Springer, London (2003)

8. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language require-
ments. ACM Trans. Softw. Eng. Methodol. 14(3), 277–330 (2005)

9. Durán, A.: Applying Requirements Engineering. Catedral Publicaciones, Spain (2003)
ISBN: 84-96086-06-2

10. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (1999)

11. Limbourg, Q., et al.: USIXML: A Language Supporting Multi-path Development of User
Interfaces. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004.
LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

12. Rahwan, I., Parsons, S., Reed, C. (eds.): Argumentation in Multi-Agent Systems. LNCS
(LNAI), vol. 4946. Springer, Heidelberg (2008)

13. Chesñevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM Computing
Surveys 32(4), 337–383 (2000)

2 To access to the TOUCHE Case Tool consult www.penichet.net

964 M.P. González et al.

14. Chesñevar, C., Maguitman, A., Simari, G.: Argument-Based Critics and Recommenders: A
Qualitative Perspective on User Support Systems. Data & Knowledge Engineering 59(2),
293–319 (2006)

15. Brena, R., Aguirre, J., Chesñevar, C., Ramirez, E., Garrido, L.: Knowledge and Informa-
tion Distribution Leveraged by Intelligent Agents. In: Knowledge and Information Sys-
tems (KAIS), vol. 12(2), pp. 203–227. Springer, Heidelberg (2007)

16. García, A., Simari, G.: Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming 4(1), 95–138 (2004)

17. Reed, C., Rowe, G.: Araucaria: Software for Argument Analysis, Diagramming and Rep-
resentation. Int. J. on Artificial Intelligence Tools 13(4), 961–979 (2004)

18. Liu, X., Zhang, X., Soh, L.-K., Al-Jaroodi, J., Jiang, H.: A Distributed, Multiagent Infra-
structure for Real-Time, Virtual Classrooms. In: Proc. ICCE 2003, pp. 640–647 (2003)

19. Soller, A., Guizzardi, R., Molani, A., Perini, A.: SCALE: supporting community aware-
ness, learning, and evolvement in an organizational learning environment. In: Proc. of the
6th international conference on Learning sciences, pp. 489–496 (2004)

	Development of CSCW Interfaces from a User-Centered Viewpoint: Extending the TOUCHE Process Model through Defeasible Argumentation
	Introduction and Motivations
	Related Work
	The TOUCHE Process Model
	Defeasible Argumentation
	Proof of Concept
	Feasibility Analysis
	Case Study

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

