
A.A. Ozok and P. Zaphiris (Eds.): Online Communities, LNCS 5621, pp. 479–487, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Benefits and Challenges of Using Collaborative
Development Environments with Social Software in

Higher Computer Science Education

Daniel Kadenbach and Carsten Kleiner

University of Applied Sciences and Arts Hannover, Germany
{daniel.kadenbach, carsten.kleiner}@fh-hannover.de

Abstract. This paper addresses the question how to optimally support projects
of students and employees of a higher education institution of computer science
by means of a special software environment. At first the motivation to introduce
such a supportive system is examined by describing the current situation in the
authors’ department of computer science, which is typical for many colleges
and universities. On the one hand problems are pointed out, which hamper stu-
dents and employees in their project work, on the other hand the additional pos-
sibilities of a supportive system, which far exceed the ones of a traditional
approach, are drafted. The paper shows how a mutual value for students and
employees can be generated from the projects by using social software. After
the requirements are described we suggest an architecture for such a supportive
system and finally the challenges for the implementation and application, which
determine the success or failure of the system, are discussed.

1 Introduction

In times with an ever increasing demand for flexibility of employees in the field of
computer science, in which agile (virtual) teams have to respond to fast changing
requirements and to overcome distances of time and space, a sophisticated and
comprehensive collaboration support for projects becomes crucial.

This paper therefore looks into the questions of how traditional and virtual teams in
software-development projects can be optimally supported by collaborative develop-
ment environments (CDEs1) and how an application of them could improve the qual-
ity of education of students and work of employees in colleges and universities in the
field of software development. Besides conventional CDEs, which mainly focus on
technical aspects of software development (like providing a project overview, team
management, version control systems such as Subversion, bug-, feature- and task-
trackers and a release management), the look is broadened to cover also social aspects
of supporting functions. The strengths and risks of a solution are analyzed, in which
findings from social computing and from online communities are used for the design

1 CDEs are also called forges, for examples see SourceForge.net (http://sourceforge.net),

GForge (http://gforge.org) or LibreSource (http://dev.libresource.org).

480 D. Kadenbach and C. Kleiner

of a CDE, because one aspect which has been often neglected so far is how the estab-
lishment of good teamwork can be supported with the help of social components. We
suggest to reach an additional value through a stronger integration of social tools to
give an answer to questions like:

• How to support the forming of teams?
• How to increase trust and identification within a team and to support the forming

of team spirit and a constantly high level of motivation?
• How to generate self-dynamics and more creativity, like it can be seen in many

social computing applications?
• And finally how to generate a lasting value for the general public from regular

projects and simultaneously minimize the risk of producing data waste?

In the main part the requirements for a CDE at the authors’ department of computer
science are analyzed and components are discussed, which are used to realize the
system and therefore fulfill these requirements. An overall system is drafted, which
provides a far greater benefit through the use of synergy effects, as the individually
components would do. Therefore an integration of these components among each
other as well as the addition of some overall functions (like a comprehensive search
facility over all components, tagging of all information, fast and simple ways to edit
all data, easy and efficient handling) are of great importance. It is exposed how criti-
cal for the success of such a system are intuitive usability and self-evident benefits
seen by its users and also which factors could lead to a refusal of the system by its
users. Finally the drafted model of a CDE with social functions is discussed summing
everything up. The paper closes with a conclusion and discussion of open points.

2 Related Work

The individual components of the drafted system like portals, wikis, groupware,
blogs, trackers, version control systems, discussion forums are well-known and have
mostly been investigated in many other contexts (for example see [1] for a general
introduction to practical development environments). This work particularly focuses
on the concurrence of the components in a holistic context with the aim to support not
only projects for themselves but to establish a self-supporting community. This sys-
tem therefore depends on mechanisms for team building, team spirit, motivation,
awareness and user acceptance which also have been investigated in different con-
texts. Also the aspects of supporting learning with collaborative environments have
been discussed [2] [3] [4].

Another important point is the management of knowledge, especially the benefits
of cross-project knowledge collaboration, which is described in [5]. For future ver-
sions of the drafted system inter-organizational collaboration will also be of great
interest [6].

The work from Karen L. Reid and Gregory V. Wilson concerning their DrProject
web-based software project management portal has much in common with our work,
because their system has similar requirements, also aims to meet educational needs
and offers similar functionality [7] [8]. But our work primarily tries to focus more on
the social aspects of the system to enable the growth and consolidation of a vital

 Benefits and Challenges of Using Collaborative Development Environments 481

community in which project participants help and profit from each other beyond pro-
ject boundaries and to ensure a sustainable value of projects carried out. Also our
work chooses a different way in the implementation by combining and integrating
multiple F/OSS components to built the system (see Section 6.1 for further details).

3 Method

To develop a system for the support of software development projects in our depart-
ment a user-centric method was chosen, so the future users were involved in the
whole process. Initially an analysis of the current situation was carried out, which
motivated the development and at which projects and old project environments were
investigated and project participants were questioned. Afterwards the requirements
for the system were compiled by additionally using results of a poll carried out with
the future users and general considerations and findings of the CSCW research field.
With the raised requirements existing software systems and components were evalu-
ated with the assistance of future users and finally a protopical system was developed.
It was used right from the start to support real projects to refine the system with the
gained insights and user experiences.

4 Initial Situation

Before describing the requirements it seems to be sensible to picture the initial situa-
tion and the problems which motivated the implementation of a supportive system for
projects in the department of computer science at our institution. Every semester and
beyond many projects are carried out by students, employees and faculty partly in co-
operation with externals companies and greatly differing in size and subject. Some of
the projects are solely used for educational purposes, some for productive use and
some for scientific research. Most of the projects are directly or indirectly located in
the field of software-development. So up to now the core requirements for a project
environment usually consisted of some of the following points:

• Mailing lists supporting communication of the project group,
• tools for shared version control of files like Subversion,
• shared folders for documents and files (but hitherto without a document management

system),
• a wiki for online-documentation of the project,
• tracker to document and handle defects and feature requests and
• a project server to deploy and test the developed applications.

The usual way for carrying out such projects has been to give projects a mailing list
and a project server on request. On this server the project participants then could in-
stall all required components and services by themselves. Smaller projects by students
however were more or less on their own. Whereas they typically have a smaller need
for infrastructure support, they also should not be neglected since their number is
large and thus there is a great potential for improved results.

482 D. Kadenbach and C. Kleiner

It is obvious that through the self-administration of every project infrastructure
there is not only an avoidable overload of administrative tasks and required hardware
(because nearly no project is able to reach the performance limit of its project server
on its own) but also the projects are mostly isolated from their environment in this
way. One of the most fundamental shortcomings of this approach, which has been
identified in the analysis of the initial situation, is mainly caused because of this isola-
tion: In almost none of the carried out projects the full potential of the project
achievements was used onwards.

The projects with all their achievements (gathered knowledge and experiences,
source-code, applications, etc.) were mostly stored in such a scattered way that shortly
after their end everything faded into void and no one could benefit from them any-
more. This situation is especially bad because on the one hand the projects often
achieve remarkable results which deserve to be appreciated and reused in later pro-
jects. On the other hand students, employees and the faculty of the department are a
highly motivated and well-versed community, which could mutually benefit from
projects carried out, if their results were accessible by everybody in the institution.

5 Requirements

Through the analysis of the initial situation, the survey and interviews with students
and employees as well as a prototypical implementation of a supportive system di-
rectly evaluated by persons from the target groups with real projects, the following
requirements were identified:

• Project Portal. First of all it is important to establish some sort of centralized portal
for all projects and all related data or alternatively multiple portals for different
kinds of projects like solely educational, practical or scientific ones. The portal
should be the central point where to browse through all carried out and currently
running projects and search through their contents. It therefore would guarantee
that the projects are not isolated from each other, that they will not silently fade
away into the void after being finished and that they are accessible by the commu-
nity. Also all supportive functions shall be usable or at least referenced in the
project portal and shall be activateable through the portal without the need of any
administrative action. A project portal and therefore the presentation of the projects
could also encourage project participants to create better projects, because their
work will be visible for the community and so there is more transparency, pressure
and recognition.

• Version Control System. Since crucial in software development the system should
support at least one version control system like Subversion, also without adminis-
trative action. To support the awareness inside the projects, the users should be
automatically notified of changes after a commit with sufficient context informa-
tion, so they stay up to date and are motivated through the visible project progress.
Additionally there should be a comfortable web-interface to the version control
system, on the one hand so that users can easily browse the contents and compare
different versions of files, on the other hand this also enables people outside the
project to learn from the code and other artifacts, especially if the content is also
searchable. As a side effect there would probably be a higher motivation to write

 Benefits and Challenges of Using Collaborative Development Environments 483

readable code, because it can be easily seen be everyone in the community. Ideally
the system should provide the possibility for users to write comments to the files
they browse, so they can give feedback. Also at this point source-code analysis
tools could be integrated into the system, which could automatically give feedback
about the quality and possible problems in the code.

• Shared File-Access. Project members should have a simple way of sharing unver-
sioned files also without the burdens of a shared versioning system, so external
documents or large binary files can be accessed easily.

• Project Representation and Documentation Support. The system should enable the
projects to create a homepage for their representation, either by hand or preferably
by using preinstalled CMS, and also should have the possibility to create wikis and
blogs to support their documentation.

• Communication Support. The system should be able to automatically create a mail-
ing-list for the participants of a project and to create discussion forums for a project
on demand.

• Feature and Bug Tracker. For the gathering of needed functionality and the docu-
mentation and remedy of bugs feature and bug tracker shall be available for the
projects. Ideally the feature and bug entries are referenceable from other compo-
nents of the system, like the version control system or wikis.

• Knowledge Management Support. In addition to wikis and blogs, knowledge man-
agement tools like document management systems and FAQ-databases should be
available, so that project members can document solutions for the problems they
encounter in their project work and share them with the community.

• Project Internal Organization Support. Functions of groupware applications like
shared task-, time-, resource-, calendar- and contacts-management should be
supported on demand.

• Browseable, Searchable, Commentable and Tagable Content. Ideally every content
of the system should be browseable, searchable, commentable and tagable. This
shall ensure that information can be categorized, found and is generally accessible,
that feedback can be given and discussed to improve the content.

• Security and Privacy Protection. As the social functions would expose a lot of data
about the project participants, it has to be ensured, that their privacy is protected.
Either the system could only be accessible for community members or the member
names could be made anonymous for viewers which are not part of the community.

• Single-Sign-On. A central management of user accounts and rights is needed, so
that a user only has to log in to the system once, even if it consists of multiple
components.

• Tailoring of the Functions. Functions of the system which are not needed for a par-
ticular project should be blinded out, so that they do not hinder or confuse the users
in their work.

• Simplicity. The system should be as simple as possible, so that it can be started up,
administered and used with minimal effort.

• Ease of Use. The system and all of its components should be easy to use. This in-
cludes a user-friendly intuitive user interface and a little learning curve for the us-
age of the system. Ideally the system should consist of components which are
already known to the users.

484 D. Kadenbach and C. Kleiner

• Extensibility. Because of the diversity of projects it is essential for the system that
it could be extended with new components easily and that existing components can
be updated likewise. Otherwise it would be a matter of months and the system
would be stale and possibly insecure.

• License. License costs for proprietary software were no option for this project. So
the software system and/or used components should be free and open source soft-
ware (F/OSS). This also improves the chances to extend and upgrade the software.

The carried out survey with students as the main target group of the system also
showed that 100% of the students which answered the poll wanted a supportive sys-
tem and that more than 80% were interested in the benefits of social functions even if
they had to invest time and work to support the community.

6 Suggested Architecture

Generally there are three possible approaches to implement such a supportive system:
(1) use a complete existing software-system and adapt it to your needs, (2) completely
implement the system yourself or (3) implement a framework which can include ex-
isting components. All three approaches were investigated carefully. Using a com-
plete existing software-system at first looked like the approach which requires a
minimal effort. But at the time of the investigation no F/OSS solution could be found
which was able to comply with the requirements or looked like it could be modified to
do so with moderate effort. Approach two will probably be preferred by most devel-
opers, because it would offer the most freedom in designing and implementing the
system from scratch with respect to the requirements. But this approach was also not
taken because firstly the drafted system is fairly complex as can be seen from its re-
quirements: even the design and implementation of some of its components would
require a great effort and the whole system would not be realizable in the given time-
frame with the given resources. Secondly and actually more importantly, even if it
would have been possible to develop the system from scratch, it would probably not
be possible to keep every component up to date over time and add adequate new
components. The effort for such customizations and extensions would be more than
the department could accomplish because of its small size and therefore limited
resources.

The last approach - implementing a framework which can include existing compo-
nents - which was finally chosen, does have a few significant advantages: There
already exist F/OSS for nearly every component the system needs, many users are
accustomed to use them, the components are developed and updated independently
and it would not impose a great effort to change, remove or add components to the
system, after the framework has been built. But also some challenges were identified
which should not be underestimated: First of all the integration of the components
into a coherent system may require changes or adjustments in all of the components
for overall functions if they do not already contain standardized interfaces. For exam-
ple for the authentication to realize a single-sign-on system, for doing a search over
the contents of all components or for awareness support (so that a team member can
automatically be informed if there is a change in a component) every component must
support the corresponding functionality of the integrated system or must be modified

 Benefits and Challenges of Using Collaborative Development Environments 485

respectively. Furthermore the value of the entire system depends also on the integra-
tion of the components among each other to realize synergetic effects. For example it
could make the system more efficient and transparent if the bug-tracking system is
able to gather information from commits into the source-code repository, which
contain IDs of bugs in their comments, or if it is possible make a direct link in a
discussion forum entry to a file in the repository.

Interestingly, a leading CDE-hosting site SourceForge.net is also moving towards
the last approach, as it is giving its users the option to automatically install different
F/OSS applications to support their projects which is called “hosted apps” [9].

6.1 Overall Architecture

Because nearly all of the required components for the system like wikis, CMSs, blogs,
bug-tracker, discussion forums and so on are available as F/OSS implemented with
the scripting language PHP an apache web-server was chosen to be the core of the
system. For the version control system Subversion was chosen for the prototype but it
is obvious how to support different version control systems in the future. Subversion
can be configured so that it can also be accessed through apache. This has the advan-
tage that the system needs fewer ports and that security as well as authentication
mechanisms of the apache can be used for all the components likewise. So all web-
pages of the components and the access to the subversion system can be secured with
HTTPS. Furthermore the system has to be able to send and receive mails, must pro-
vide databases for the components, ways for file access for the users, an administra-
tion interface and many other functions. As seen drafted in Fig. 1 it therefore is a
complex server system.

6.2 Virtualization

To respect the requirement of an easy installation with this complex system and to
reach a greater flexibility of the system it is convenient to use a virtualization ap-
proach. Therefore the prototypical implementation which was used for the test phases
was a virtualized debian linux system, on which all required software is installed and
configured together with the framework for the components. In this way the whole

Fig. 1. Overview of the Architecture of the Prototypical Implementation

486 D. Kadenbach and C. Kleiner

complex system can be installed with minimal effort and runs on every system which
supports software for the chosen virtualization method. This also makes it possible to
easily migrate the system from one server to another, enables easy system-backups
and, in the case of a compromised system, a clean system can be reinstalled fast and
without trouble.

Another possible advantage of the virtualization is that it would enable the system
to easily spawn other virtualized instances of the base installation, which could pro-
vide projects with the access to a virtualized project server instance, which provides
full administrative control and at the same time does not impose a security risk for the
whole system. On this system the projects could test their developed applications.
This could also significantly reduce hardware requirements of a department, because
many virtualized project server instances could be run on the same physical machine.

6.3 Challenges and Benefits

The greatest challenge of our system does not lie in the technical realization of its
several functions, even though there are challenging and interesting aspects in particu-
lar in the realization of the overall system functions and the integration of the compo-
nents among each other. The greatest challenge of such a system is its acceptance by
its users. The users can be divided into three groups: end-users of the system, admin-
istrators and developers. Because the use of a system which supports projects always
is completely voluntary, only functions will be accepted which offer the user an im-
mediate value, which far exceeds the effort to use the system and only then may it be
used efficiently. A value can be generated through providing required technical infra-
structure, sustainable management of knowledge, improving communication, building
a self-supporting community, but also by increasing motivation and fun using the
system. With a shared project portal the community shall be strengthened.

7 Conclusion and Future Work

This work does not develop or investigate new components for the support of soft-
ware development projects in universities, but it tries to draft a way to combine exist-
ing proven components into an overall system, which makes it possible to reach an
sustainable value for the community through sharing results from projects carried out.
Therefore the technical tools for the software-development shall be complemented
with social components to improve communication, motivation, personal commitment
and the mutual support of project participants.

It seems obvious to prepare students in the IT field for work in virtual teams and
the extended possibilities of project support systems like CDEs. But the aim of a CDE
with social functions used at the department of computer science is not only to teach
the handling of corresponding tools to the students and support them in their project
work. The aim is also to increase their motivation, their commitment and generally
the value of their projects by making their results, experiences and acquired knowl-
edge accessible to other students and therewith generate a value for the department by
using mechanisms of virtual communities. Therefore the system, which is currently at
a prototypical development stage (but even though is already used productively),
shall be implemented completely so that acceptance of the target groups can be
investigated in more detail and further research and reasoning can be undertaken.

 Benefits and Challenges of Using Collaborative Development Environments 487

Additionally future use cases can be drafted: So it would be a good exercise to let
students work in real virtual teams where team members are not able to meet physi-
cally, which could be realized if several universities collaborate and let their students
work together on projects and communicate virtually through CDEs. This would also
strengthen the connections between different institutions and the sharing of knowledge
between them. Furthermore in other areas than software-development supportive social
community functions for students are imaginable. So the major part of the students in
the carried out poll voted for a solution supporting the creation of seminar- and final
papers by allowing the community to proofread and comment the works.

Acknowledgements. Daniel Kadenbach wishes to express his gratitude to Dipl. Inf.
Casper Sørensen for his valuable suggestions. The authors thank the IT infrastructure
staff of the department of computer science of the university of sciences and arts
Hannover, especially MSc. Frank Müller, for their help and support, all students and
employees of the department which contributed to the system through their ideas,
critique, evaluation of the prototype and feedback.

References

1. Doar, M.: Practical Development Environments. O’ Reilly & Associates, Inc., Sebastopol
(2005)

2. Langton, J.T., Hickey, T.J., Alterman, R.: Integrating tools and resources: a case study in
building educational groupware for collaborative programming. J. Comput. Small
Coll. 19(5), 140–153 (2004)

3. Giannoukos, I., Lykourentzou, I., Mpardis, G., Nikolopoulos, V., Loumos, V., Kayafas,
E.: Collaborative e-learning environments enhanced by wiki technologies. In: PETRA
2008: Proceedings of the 1st international conference on Pervasive Technologies Related
to Assistive Environments, pp. 1–5. ACM, New York (2008)

4. Bouillon, P., Krinke, J.: Using eclipse in distant teaching of software engineering. In:
eclipse 2004: Proceedings of the 2004 OOPSLA workshop on eclipse technology eX-
change, pp. 22–26. ACM, New York (2004)

5. Ohira, M., Ohsugi, N., Ohoka, T., ichi Matsumoto, K.: Accelerating cross-project knowl-
edge collaboration using collaborative filtering and social networks. In: MSR 2005: Pro-
ceedings of the 2005 international workshop on Mining software repositories, pp. 1–5.
ACM, New York (2005)

6. Nuschke, P., Jiang, X.: A framework for inter-organizational collaboration using commu-
nication and knowledge management tools. HCI (15), 406–415 (2007)

7. Reid, K.L., Wilson, G.V.: DrProject: a software project management portal to meet educa-
tional needs. In: SIGCSE 2007: Proceedings of the 38th SIGCSE technical symposium on
Computer science education, pp. 317–321. ACM, New York (2007)

8. Allen, E., Cartwright, R., Reis, C.: Production programming in the classroom. In: SIGCSE
2003: Proceedings of the 34th SIGCSE technical symposium on Computer science educa-
tion, pp. 89–9U:\BPO\Lncs\5621\Reference\562104933. ACM, New York (2003)

9. SourceForge, Inc., http://sourceforge.net (visited, January 2009)
10. GForge Group: GForge Collaborative Development Environment CDE,

http://gforge.org (visited, January 2009)
11. LibreSource Consortium: LibreSource, http://dev.libresource.org (visited,

January 2009)

	Benefits and Challenges of Using Collaborative Development Environments with Social Software in Higher Computer Science Education
	Introduction
	Related Work
	Method
	Initial Situation
	Requirements
	Suggested Architecture
	Overall Architecture
	Virtualization
	Challenges and Benefits

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

