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Abstract. In this paper we present a new approach to the systematic user  
centric development of next generation user interfaces (NGUI). Central ele-
ments of the approach are a conceptual model that extends the well established 
model view controller paradigm with an environment component, an iterative 
development methodology that guides development along the mixed reality 
continuum and tools to support the implementation. The approach is demon-
strate with a concrete example of NGUI development. 
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1   Introduction 

Next generation user interfaces (NGUI) diverge from the well known WIMP  
paradigm (window, icon, menu, pointer) and employ novel techniques like virtual, 
augmented and mixed reality interaction or tangible, embodied and multi-modal inter-
faces [1]. Achievements in recent years allow researchers to shift their focus from 
technical questions like IO devices, tracking and rendering to the design of such  
interfaces. However, they are faced with the challenge that NGUIs are less representa-
tional (no icons representing objects) and focus on reality-based interaction styles 
which leverage the user’s built-in abilities by exploiting pre-existing skills and expec-
tations from real-world experiences rather than computer trained skills. The proposed 
intuitiveness for end users has fundamental consequences for the designer. While  
design in other disciplines can draw on existing expertise to enable a streamlined, 
effective design processes without much experimentation, the lack of such expertise 
and the interdisciplinary nature of NGUI design requires a process based on iterative 
refinement and evaluation. The lack of a formal specification rules out the use of 
formal verification techniques and the limited design expertise limits the applicability 
of techniques like expert reviews for NGUI applications, leaving experimental 
evaluation through tests with potential end-users as the most promising option.  
However, a simple implement and test approach is not viable because the implemen-
tation of working prototypes is expensive and time consuming, limiting the number of 
concepts and designs that can be possibly explored. In order to evaluate the concepts 
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under controlled conditions it is therefore necessary to remove technology problems 
from conceptual tests. To address these problems we developed a design process and 
corresponding support for NGUI design. The process is aimed at the fast development 
and evaluation of iteratively refined prototypes along a mixed reality continuum. This 
paper describes the principal idea of our design approach in section 3, and presents a 
project which was realized using our approach in section 4. We start with a short  
review of related work.  

2   Related Work  

A design approach for NGUI should be defined along three essential components. A 
conceptual model that allows to describe design entities for all stakeholders. A design 
process that provides a structured course of action and a technical framework that 
supports the efficient development of NGUI applications. The most prominent model 
for graphical user interfaces is the MVC paradigm originally defined for the Small-
Talk80 programming language [2]. A model separates the data from its representation 
(view) and control elements (controller) provide for user interaction. Ishii extended 
this model to describe tangible user interfaces [3]. He adds a tangible / real represen-
tation to the digital view that is basically used as direct control mechanism. Real  
objects act as physical representations of interface elements and allow to use real and 
virtual elements in tangible user interfaces. Milgram’s mixed reality continuum  
defines arbitrary combinations of real and virtual elements in more detail and ranges 
from virtual reality, augmented virtually, augmented reality to real reality [4]. Ourap-
proach uses this continuum as an additional dimension for the MVC model. 

One of the earliest approaches towards a NGUI authoring framework was DART, 
an extension of Adobe Director by a number of AR features [5]. DART has been used 
in large projects and allows content experts to build AR worlds using Director’s thea-
tre metaphor as its conceptual model. Broll presented a visual authoring framework 
for 3D interaction techniques at 3DUI 2008 [6]. Their concept of “interactive bits” is 
a component-based approach to visually specify interactions techniques, object  
behavior or whole prototypes. The framework combines synchronous control and data 
flow with asynchronous event and network distribution and provides a XML-based 
description of the objects, components and the data/control flow. NIMMIT is a 
graphical notation for multimodal VR interaction techniques that is based on a state-
chart model. Task chains between states define a linear control flow and high level 
variables (labels) allow data flow between tasks. Hierarchical task structures are  
supported and a tool allows to store the description in an XML file that can be loaded 
into a VE framework. A model-based design approach is nowadays mainly used for 
multi-device WIMP user interfaces but the declarative and visual description offers 
also benefits for NGUIs. Cuppens et al. presented a model-based framework for VR 
environments. They suggested to start with a task-related model that incrementally 
evolves towards the final user interface in an iterative design process [7]. Envir3D is a 
modeling tool, which enables users to visually specify 3D content, while preserving 
an underlying user interface model that can be used for evaluation and re-engineering. 
The model is used to generate VRML code that represents the 3D user interface. A 
number of relevant approaches, including model-based design, visual authoring and 
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HCI principles and guidelines for mixed reality user interface design was presented at 
the MRUI07 workshop at VR 2007 [8]. Due to space limitations we only give a refer-
ence to the proceedings that is one of the most relevant sources for our project. The 
main contribution of this paper is the combination of a extended 3D authoring frame-
work with an iterative design approach that is based on a suitable conceptual model.  

3   Design of Next Generation User Interfaces 

While next generation user interfaces are often characterized by the employed tech-
nologies the ultimate aim is to create better interfaces for the user. It is therefore  
essential that a user centered design process is employed. At the same time the  
experimental nature of some base technologies must be adequately handled while the 
integration into larger systems requires the use of a systematic, controllable and  
manageable software engineering process. To address the need for experimentation 
within a structured development approach we structure our systems into loosely cou-
pled components, using a model that extends the model-view-controller pattern with 
an additional component that captures the influence of the real world.  

3.1   The MVCE Model 

The model-view-controller pattern (MVC) structures user interfaces into three com-
ponents and is popular in the development of user interfaces. The key benefit of this 
decomposition is that the visual and interaction aspects of a user interfaces can beiso-
lated from the underlying application. The model (M) represents the application data 
and encapsulates the functionality of the application. The view (V) encapsulates the 
visual elements of the user interface, e.g. button widgets, text or visualizations. The 
controller (C) handles the interaction details, e.g. mouse events or text input and 
communicates necessary actions to the model. The MVC pattern enables modulard-
esigns in which changes in one component aren't coupled to other aspects. It alsoal-
lows to provide multiple views and controllers for the same application/model. This is 
a desirable property, especially for multimodal interfaces that rely on specialized 
hardware that may not be available in all situations.  

Figure 1a illustrates the communication between the three elements: When infor-
mation in the model (e.g. application data) changes, the model notifies the view with a 
change_notification event. If an update of the presentation in the interface is required 
(e.g. this data is displayed) the view queries the model to retrieve the required  

 

 

Fig. 1. a) The MVC model, b) The MVCE model 
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information and updates the information presentation accordingly. If the user interacts 
with the view (e.g. by clicking elements with the mouse) the controller is notified by 
user_action events. Depending on the semantics associated with the interaction event 
(the interaction technique encapsulated in the controller) the controller can change 
both data in the model (e.g. if the user inputs new values) or the presentation in the 
view (e.g. if the user changes the presentation). 

One central feature of mixed-reality user interfaces is the integration with a real 
environment. The application requires information about objects and spaces, whose 
geometry and behavior is not under the control of the designer but must be acquired 
from the real environment. Real objects can be subject to real-world manipulation 
(e.g. in a maintenance task) or external forces. Therefore, it must be possible to track 
state changes in the environment. In practice the “real world” model of a mixed real-
ity application often consists of a combination of static information (e.g. geometry of 
the environment that is assumed to be fixed) and dynamic information (e.g. position 
and orientation information for the user and central objects) that is acquired by sen-
sors at runtime. While sensor information could be handled as controller events in the 
MVC model this can lead to complex and obscure models. We have therefore intro-
duced an additional environment (E) component that captures the “real world” model 
of the application (see Figure 1b). A perfect real world model would contain all in-
formation about the real environment at the time of query. In practice both the amount 
of information required by the application and the amount actually accessible through 
sensors is limited.  

The environment (E) is used similar to the model (M), with the main difference 
that the software has only a limited influence on the environment through dedicated 
controls, while the model is in theory completely controllable by software. Both the 
model (M) and the view (V) can query the environment (E). This allows to capture 
spatial association (e.g. the common augmented reality scenario in which a view ob-
ject is fixed to a physical location or object) as well as control relations (e.g. objects in 
the real environment influenced by the application). Sensors in the environment can 
issue change_notification events to inform other components about detected changes, 
which can be used to implement tangible interaction techniques in which physical 
interaction with physical objects is interpreted as an action on software objects. 

 

Using the MVCE structure, components 
can be refined independently. The current 
development state of a prototype can be  
characterized by the amount of complexity/ 
realism for each component, as visualized in 
the component refinement diagram in figure 
2, where the center indicates the most abstract 
representation and movement along the 
MVCE axes represents in creasing refinement/ 
realism of the corresponding components. 
Each axis indicates the independent refinement 
state of the corresponding component. One key 
benefit is the possibility to develop a user interface “along the mixed-reality” continuum, 
starting with a virtual environment in which the environment (E) is represented by  
a model. Testing mixed reality interfaces in a virtual environment allows to focus on 

Model (M) View (V)

Environment (E)Controller (C)

increasing
realism/complexity

 

Fig. 2. Component refinement state 
diagram 
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interaction mechanisms and can provide controlled conditions for tests, while avoid-
ing limitations of mixed reality technologies (e.g. tracking systems) that are often 
present in early development stages. Refinement of the E component ranges from 
more refined models to real-time data acquisition in the real environment. Arbitrary 
combinations of components are possible, e.g. it is sometimes useful to combine 
refined MVC components with a simple E model, for tests or demonstrations in later 
development stages. 

The design approach needs adequate tool support that reflects the iterative nature 
of the process. Tools that support the efficient exchange of modules during iterative 
prototyping should fulfill a number of requirements: (1) a component-or building 
block-oriented system architecture, (2) a large component repository providing a vari-
ety of functions for NGUI design and (3) a visual authoring framework supporting 
quick prototyping. We provide such tool support with our HYUI system. More details 
about the underlying framework were presented in [9].  

4   Example 

We applied the iterative design approach as described in section 3 in an ongoing pro-
ject where next generation user interfaces were developed along the mixed reality 
continuum. We used an indoor airship and are currently developing a training system 
that uses the complete MR continuum for different design variants. The idea is to 
train users of a radio-controlled indoor airship and develop new interaction techniques 
and training scenarios. 

Technically the indoor airship is controlled by three propeller, as shown in figure 
3a. The left and right propeller (figure 3b) can be rotated around the pitch axis (z). 
Both are connected to each other, thus the rotation speed and the pitch angle are the 
same. With these two propeller the zeppelin can navigate back and forth as well as up 
and down and diagonal. The third propeller is mounted at the back of the zeppelin 
(figure 3c) and is used for rotation around the yaw axis (y). Therefore the zeppelin has 
3 degrees of freedom, translation on the x-and y-axis and rotation around the y-axis. 
The zeppelin can‘t directly move along the z-axis or roll and pitch.  

 

a)

b)

c)
y

z
x

 

Fig. 3. The real Zeppelin 
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For controlling the airship‘s propeller a radio-powered remote control is used. 
Steering the zeppelin with it is tricky and for simple movement users have to practice 
many hours. Difficult maneuvers like flying to a specific point with a certain orienta-
tion need even more practice. The development of such a training application was 
used to demonstrate our design process.  

4.1   Prototype 1: Simple Virtual Reality  

We started the first prototype with a small 3D scenario using a simple script that 
modifies the transformation matrix of the model. With the keyboard the user can 
move the airship around in a virtual environment. We specify the four different parts 
of our MCVE paradigm as followed: The model is the transformation matrix (position 
and orientation) which moves and rotates our virtual zeppelin. The environment con-
sists of a virtual floor only and constrains the flight level. The view is the simplified 
3D model of the airship, and the controller is the direct manipulation of the transfor-
mation matrix of our model. This is done using the computer keyboard. 

Users can easily practice maneuvers and learn how to handle the zeppelin. A dis-
advantage is the use of a keyboard as input device, because it is very different to the 
remote control used for the real zeppelin. Figure 4 shows our simple application and 
the assignment in our component refinement state diagram. The model, the environ-
ment, the view and the controller are very basic, therefore all the points in the compo-
nent refinement state diagram are near the center.  

 

M V

EC

M: Position, orientation as transformation 
matrix

V: 3D model of the zeppelin, rendering of 
ground plane

C: Direct manipulation of the transformation 
matrix [INPUT: keyboard]

E: Ground plane as constraint

 

Fig. 4. Simple virtual reality application 

4.2   Prototype 2: Game Physics  

In the second prototype we tweaked the application towards more realism and com-
plexity. As model we uses the Havoc game physic engine [10], which calculates the 
position and orientation of the airship (figure 5). We changes the environment to a 
static 3D CAD model of the real environment. The 3D model of the zeppelin is im-
proved and the 3D model of building (the environment) is rendered. Forces of the 
propeller are visualized as vectors. For the controller we manipulate the 3 DOF of the 
zeppelin directly (rotor orientation, rotor speed, tail-rotor speed) and uses a remote 
control connected to the PC via USB for steering. In our component refinement state  
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M: Position, orientation as transform. matrix, 
controlled by game physics dynamics 
model

V: Refined 3D zeppelin model; rendering 
3D model of env.; vector visualization

C: Direct control of 3 DOF (rotor orient. a. 
speed, tail rotor speed) [INPUT: remote 
control]

E: Static 3D CAD model of the environment

M V

EC

 

Fig. 5. Prototype using game physics 

diagram all points placed one cycle away from the middle towards more realism and 
complexity. Now the user application can steer the zeppelin by using a standard re-
mote control, which is more realistic than using the keyboard and thus better suited 
for training. Also the game physic engine create more realism in the motion-behavior.  

4.3   Prototype 3: MATLAB/Simulink Simulation 

Because the game physic engine is not as realistic as it should be, we build a 
MATLAB/Simulink [11] model for calculating the transformation and orientation in 
the third prototype. We also added an automatic hight control to our model, whichen-
sure that the zeppelin retains a preset height. For the environment we uses a live  
image of the real environment (figure 6). The 3D CAD model used in prototype 2 
now is needed as collision object and for height measurement. For the view we have 
the same airship-model as in prototype 2. The virtual representation of the environ-
ment is replaced by the live video. The parameter of the automatic height control is 
added to the controller. The input device is the same remote control as in prototype 2, 
additionally a slider and a button on the remote control is mapped to the height  
control for setting the hight or enable / disable the height control.  

 

M V

EC

M: Transform. matrix controlled by physics 
model (Simulink); autom. height control

V: Zeppelin 3D model; vector visualization; 
live image as background

C: Direct control of 3 DOF (rotor orient. a. 
speed, tail rotor speed) [INPUT: remote 
control]

E: Static 3D model for collisions; live image 
of environment; height measurement

 

Fig. 6. Application using the MATLAB/Simulink model and a video background 
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M V

EC

M: Position, orientation measured from real 
zeppelin; collision detection

V: Real zeppelin, rendering of virtual envi-
ronment

C: Direct control of 3 DOF (rotor orient. a. 
speed, tail rotor speed) [INPUT: remote 
control]

E: Real-time tracking (6DOF), height meas-
urement, static 3D model of environment

 

Fig. 7. AV scenario 

4.4   Prototype 4: AV Scenario 

In our next prototype we exchange the virtual model with the real zeppelin (figure 7). 
To minimize possible damage the airship fly in a large blue room with no obstacles. 
We added virtual obstacles to the scenario to build a parkour to fly through. 

The MATLAB/Simulink model is replaced by the real zeppelin. It is tracked to get 
the actual position and orientation as transformation matrix. This transformation ma-
trix is used by the collision detection, which controls the zeppelin when it collide with 
a virtual obstacle. This is done by calculating the collision vector and mapping it  
on the propeller of the zeppelin. At this point the user input is ignored and the colli-
sion detection takes over the control of the airship until the collision is resolved. For 
the environment we uses the real-time tracked zeppelin, the height measurement and 
the static 3D CAD model of the real environment. The real zeppelin itself is now 
handled as a part of the environment and only it‘s transformation matrix has to  
be acquired by appropriate tracking sensors. For the view we have the real zeppelin 
flying around in a virtual environment. The controller and input device is the same as 
in prototype 3.  

4.5   Prototype 4: AR Scenario  

In our last prototype (figure 8) the user control the real zeppelin in the real environ-
ment. We visualize the force vectors of all three propeller and the resulting force for 
the zeppelin as we did in prototype 3. 

Our model consists of the position and orientation, which is tracked from the  
real zeppelin. The model itself is very simple compared to the model in MATLAB/  
Simulink, but as we control the real zeppelin, it is the most realistic one. The envi-
ronment contains the real-time tracked zeppelin and the real environment. On  
the view-axis of our component refinement state diagram the environment and the 
zeppelin are real and in addition we have virtual visualization for the forces. 

The controller is the same as in the AV prototype, which outputs the 3 DOF for 
controlling the zeppelin directly. As input device we first used the standard remote 
control, but then exchanged it by more complex input devices, including a gesture 
recognition using the Wiimote and a tracked TUI zeppelin model which is used to 
specify complete maneuvers (green dotted line in the diagram of figure 8).  
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M V

EC

M: Position, orientation measured from real 
zeppelin; control of zeppelin

V: Real zeppelin, real environment, vector 
visualization

C: Various, all with 3DOF output for direct 
control, either directly or over extended 
times

E: Real-time tracking of zeppelin (6DOF), 
height measurement

 

Fig. 8. Image of the AR application 

5   Conclusion and Outlook 

A key challenge in the development of mixed-reality (MR) applications is the use of 
ad-hoc development approaches and the lack of standardization and reuse. Most exist-
ing MR projects are research projects that focus on a single technology specific aspect 
and do not consider issues of tool development, content reuse and integration with 
other development processes. One area where this shortcoming is of central relevance 
is the reuse of software components in a flexible fashion. To exploit the full potential 
of MR interfaces a systematic development approach is required. In this paper we 
have presented an iterative development approach that is based on structuring MR 
applications into model, view, controller and environment components that can 
refined individually. We have shown how this model was used successfully to itera-
tively develop a variety of refinements of a NGUI to control a zeppelin and illustrated 
the benefits of component-wise refinement. The MVCE model helps to provide con-
crete support for software development and reuse in MR applications. In the future we  
aim to refine our process and experiment with extended tool support for MVCE  
applications. An area of development support that is still left largely unaddressed is 
thereuse of MR augmentation content between applications. A way to describe such 
models in a standardized and interchangeable format is still lacking and clearly  
requires more research in the future.  
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