
R. Shumaker (Ed.): Virtual and Mixed Reality, LNCS 5622, pp. 244–253, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Design Method for Next Generation User Interfaces
Inspired by the Mixed Reality Continuum

Jörg Stöcklein1, Christian Geiger2, Volker Paelke3, and Patrick Pogscheba2

1 University of Paderborn, Germany
ozone@uni-paderborn.de

2 Duesseldorf University of Applied Sciences, Germany
{geiger,Patrick.Pogscheba}@fh-duesseldorf.de

3 Leibniz University of Hannover, Germany
Volker.Paelke@ikg.uni-hannover.de

Abstract. In this paper we present a new approach to the systematic user
centric development of next generation user interfaces (NGUI). Central ele-
ments of the approach are a conceptual model that extends the well established
model view controller paradigm with an environment component, an iterative
development methodology that guides development along the mixed reality
continuum and tools to support the implementation. The approach is demon-
strate with a concrete example of NGUI development.

Keywords: Mixed Reality, Next Generation User Interface Development.

1 Introduction

Next generation user interfaces (NGUI) diverge from the well known WIMP
paradigm (window, icon, menu, pointer) and employ novel techniques like virtual,
augmented and mixed reality interaction or tangible, embodied and multi-modal inter-
faces [1]. Achievements in recent years allow researchers to shift their focus from
technical questions like IO devices, tracking and rendering to the design of such
interfaces. However, they are faced with the challenge that NGUIs are less representa-
tional (no icons representing objects) and focus on reality-based interaction styles
which leverage the user’s built-in abilities by exploiting pre-existing skills and expec-
tations from real-world experiences rather than computer trained skills. The proposed
intuitiveness for end users has fundamental consequences for the designer. While
design in other disciplines can draw on existing expertise to enable a streamlined,
effective design processes without much experimentation, the lack of such expertise
and the interdisciplinary nature of NGUI design requires a process based on iterative
refinement and evaluation. The lack of a formal specification rules out the use of
formal verification techniques and the limited design expertise limits the applicability
of techniques like expert reviews for NGUI applications, leaving experimental
evaluation through tests with potential end-users as the most promising option.
However, a simple implement and test approach is not viable because the implemen-
tation of working prototypes is expensive and time consuming, limiting the number of
concepts and designs that can be possibly explored. In order to evaluate the concepts

 A Design Method for NGUI Inspired by the Mixed Reality Continuum 245

under controlled conditions it is therefore necessary to remove technology problems
from conceptual tests. To address these problems we developed a design process and
corresponding support for NGUI design. The process is aimed at the fast development
and evaluation of iteratively refined prototypes along a mixed reality continuum. This
paper describes the principal idea of our design approach in section 3, and presents a
project which was realized using our approach in section 4. We start with a short
review of related work.

2 Related Work

A design approach for NGUI should be defined along three essential components. A
conceptual model that allows to describe design entities for all stakeholders. A design
process that provides a structured course of action and a technical framework that
supports the efficient development of NGUI applications. The most prominent model
for graphical user interfaces is the MVC paradigm originally defined for the Small-
Talk80 programming language [2]. A model separates the data from its representation
(view) and control elements (controller) provide for user interaction. Ishii extended
this model to describe tangible user interfaces [3]. He adds a tangible / real represen-
tation to the digital view that is basically used as direct control mechanism. Real
objects act as physical representations of interface elements and allow to use real and
virtual elements in tangible user interfaces. Milgram’s mixed reality continuum
defines arbitrary combinations of real and virtual elements in more detail and ranges
from virtual reality, augmented virtually, augmented reality to real reality [4]. Ourap-
proach uses this continuum as an additional dimension for the MVC model.

One of the earliest approaches towards a NGUI authoring framework was DART,
an extension of Adobe Director by a number of AR features [5]. DART has been used
in large projects and allows content experts to build AR worlds using Director’s thea-
tre metaphor as its conceptual model. Broll presented a visual authoring framework
for 3D interaction techniques at 3DUI 2008 [6]. Their concept of “interactive bits” is
a component-based approach to visually specify interactions techniques, object
behavior or whole prototypes. The framework combines synchronous control and data
flow with asynchronous event and network distribution and provides a XML-based
description of the objects, components and the data/control flow. NIMMIT is a
graphical notation for multimodal VR interaction techniques that is based on a state-
chart model. Task chains between states define a linear control flow and high level
variables (labels) allow data flow between tasks. Hierarchical task structures are
supported and a tool allows to store the description in an XML file that can be loaded
into a VE framework. A model-based design approach is nowadays mainly used for
multi-device WIMP user interfaces but the declarative and visual description offers
also benefits for NGUIs. Cuppens et al. presented a model-based framework for VR
environments. They suggested to start with a task-related model that incrementally
evolves towards the final user interface in an iterative design process [7]. Envir3D is a
modeling tool, which enables users to visually specify 3D content, while preserving
an underlying user interface model that can be used for evaluation and re-engineering.
The model is used to generate VRML code that represents the 3D user interface. A
number of relevant approaches, including model-based design, visual authoring and

246 J. Stöcklein et al.

HCI principles and guidelines for mixed reality user interface design was presented at
the MRUI07 workshop at VR 2007 [8]. Due to space limitations we only give a refer-
ence to the proceedings that is one of the most relevant sources for our project. The
main contribution of this paper is the combination of a extended 3D authoring frame-
work with an iterative design approach that is based on a suitable conceptual model.

3 Design of Next Generation User Interfaces

While next generation user interfaces are often characterized by the employed tech-
nologies the ultimate aim is to create better interfaces for the user. It is therefore
essential that a user centered design process is employed. At the same time the
experimental nature of some base technologies must be adequately handled while the
integration into larger systems requires the use of a systematic, controllable and
manageable software engineering process. To address the need for experimentation
within a structured development approach we structure our systems into loosely cou-
pled components, using a model that extends the model-view-controller pattern with
an additional component that captures the influence of the real world.

3.1 The MVCE Model

The model-view-controller pattern (MVC) structures user interfaces into three com-
ponents and is popular in the development of user interfaces. The key benefit of this
decomposition is that the visual and interaction aspects of a user interfaces can beiso-
lated from the underlying application. The model (M) represents the application data
and encapsulates the functionality of the application. The view (V) encapsulates the
visual elements of the user interface, e.g. button widgets, text or visualizations. The
controller (C) handles the interaction details, e.g. mouse events or text input and
communicates necessary actions to the model. The MVC pattern enables modulard-
esigns in which changes in one component aren't coupled to other aspects. It alsoal-
lows to provide multiple views and controllers for the same application/model. This is
a desirable property, especially for multimodal interfaces that rely on specialized
hardware that may not be available in all situations.

Figure 1a illustrates the communication between the three elements: When infor-
mation in the model (e.g. application data) changes, the model notifies the view with a
change_notification event. If an update of the presentation in the interface is required
(e.g. this data is displayed) the view queries the model to retrieve the required

Fig. 1. a) The MVC model, b) The MVCE model

 A Design Method for NGUI Inspired by the Mixed Reality Continuum 247

information and updates the information presentation accordingly. If the user interacts
with the view (e.g. by clicking elements with the mouse) the controller is notified by
user_action events. Depending on the semantics associated with the interaction event
(the interaction technique encapsulated in the controller) the controller can change
both data in the model (e.g. if the user inputs new values) or the presentation in the
view (e.g. if the user changes the presentation).

One central feature of mixed-reality user interfaces is the integration with a real
environment. The application requires information about objects and spaces, whose
geometry and behavior is not under the control of the designer but must be acquired
from the real environment. Real objects can be subject to real-world manipulation
(e.g. in a maintenance task) or external forces. Therefore, it must be possible to track
state changes in the environment. In practice the “real world” model of a mixed real-
ity application often consists of a combination of static information (e.g. geometry of
the environment that is assumed to be fixed) and dynamic information (e.g. position
and orientation information for the user and central objects) that is acquired by sen-
sors at runtime. While sensor information could be handled as controller events in the
MVC model this can lead to complex and obscure models. We have therefore intro-
duced an additional environment (E) component that captures the “real world” model
of the application (see Figure 1b). A perfect real world model would contain all in-
formation about the real environment at the time of query. In practice both the amount
of information required by the application and the amount actually accessible through
sensors is limited.

The environment (E) is used similar to the model (M), with the main difference
that the software has only a limited influence on the environment through dedicated
controls, while the model is in theory completely controllable by software. Both the
model (M) and the view (V) can query the environment (E). This allows to capture
spatial association (e.g. the common augmented reality scenario in which a view ob-
ject is fixed to a physical location or object) as well as control relations (e.g. objects in
the real environment influenced by the application). Sensors in the environment can
issue change_notification events to inform other components about detected changes,
which can be used to implement tangible interaction techniques in which physical
interaction with physical objects is interpreted as an action on software objects.

Using the MVCE structure, components
can be refined independently. The current
development state of a prototype can be
characterized by the amount of complexity/
realism for each component, as visualized in
the component refinement diagram in figure
2, where the center indicates the most abstract
representation and movement along the
MVCE axes represents in creasing refinement/
realism of the corresponding components.
Each axis indicates the independent refinement
state of the corresponding component. One key
benefit is the possibility to develop a user interface “along the mixed-reality” continuum,
starting with a virtual environment in which the environment (E) is represented by
a model. Testing mixed reality interfaces in a virtual environment allows to focus on

Model (M) View (V)

Environment (E)Controller (C)

increasing
realism/complexity

Fig. 2. Component refinement state
diagram

248 J. Stöcklein et al.

interaction mechanisms and can provide controlled conditions for tests, while avoid-
ing limitations of mixed reality technologies (e.g. tracking systems) that are often
present in early development stages. Refinement of the E component ranges from
more refined models to real-time data acquisition in the real environment. Arbitrary
combinations of components are possible, e.g. it is sometimes useful to combine
refined MVC components with a simple E model, for tests or demonstrations in later
development stages.

The design approach needs adequate tool support that reflects the iterative nature
of the process. Tools that support the efficient exchange of modules during iterative
prototyping should fulfill a number of requirements: (1) a component-or building
block-oriented system architecture, (2) a large component repository providing a vari-
ety of functions for NGUI design and (3) a visual authoring framework supporting
quick prototyping. We provide such tool support with our HYUI system. More details
about the underlying framework were presented in [9].

4 Example

We applied the iterative design approach as described in section 3 in an ongoing pro-
ject where next generation user interfaces were developed along the mixed reality
continuum. We used an indoor airship and are currently developing a training system
that uses the complete MR continuum for different design variants. The idea is to
train users of a radio-controlled indoor airship and develop new interaction techniques
and training scenarios.

Technically the indoor airship is controlled by three propeller, as shown in figure
3a. The left and right propeller (figure 3b) can be rotated around the pitch axis (z).
Both are connected to each other, thus the rotation speed and the pitch angle are the
same. With these two propeller the zeppelin can navigate back and forth as well as up
and down and diagonal. The third propeller is mounted at the back of the zeppelin
(figure 3c) and is used for rotation around the yaw axis (y). Therefore the zeppelin has
3 degrees of freedom, translation on the x-and y-axis and rotation around the y-axis.
The zeppelin can‘t directly move along the z-axis or roll and pitch.

a)

b)

c)
y

z
x

Fig. 3. The real Zeppelin

 A Design Method for NGUI Inspired by the Mixed Reality Continuum 249

For controlling the airship‘s propeller a radio-powered remote control is used.
Steering the zeppelin with it is tricky and for simple movement users have to practice
many hours. Difficult maneuvers like flying to a specific point with a certain orienta-
tion need even more practice. The development of such a training application was
used to demonstrate our design process.

4.1 Prototype 1: Simple Virtual Reality

We started the first prototype with a small 3D scenario using a simple script that
modifies the transformation matrix of the model. With the keyboard the user can
move the airship around in a virtual environment. We specify the four different parts
of our MCVE paradigm as followed: The model is the transformation matrix (position
and orientation) which moves and rotates our virtual zeppelin. The environment con-
sists of a virtual floor only and constrains the flight level. The view is the simplified
3D model of the airship, and the controller is the direct manipulation of the transfor-
mation matrix of our model. This is done using the computer keyboard.

Users can easily practice maneuvers and learn how to handle the zeppelin. A dis-
advantage is the use of a keyboard as input device, because it is very different to the
remote control used for the real zeppelin. Figure 4 shows our simple application and
the assignment in our component refinement state diagram. The model, the environ-
ment, the view and the controller are very basic, therefore all the points in the compo-
nent refinement state diagram are near the center.

M V

EC

M: Position, orientation as transformation
matrix

V: 3D model of the zeppelin, rendering of
ground plane

C: Direct manipulation of the transformation
matrix [INPUT: keyboard]

E: Ground plane as constraint

Fig. 4. Simple virtual reality application

4.2 Prototype 2: Game Physics

In the second prototype we tweaked the application towards more realism and com-
plexity. As model we uses the Havoc game physic engine [10], which calculates the
position and orientation of the airship (figure 5). We changes the environment to a
static 3D CAD model of the real environment. The 3D model of the zeppelin is im-
proved and the 3D model of building (the environment) is rendered. Forces of the
propeller are visualized as vectors. For the controller we manipulate the 3 DOF of the
zeppelin directly (rotor orientation, rotor speed, tail-rotor speed) and uses a remote
control connected to the PC via USB for steering. In our component refinement state

250 J. Stöcklein et al.

M: Position, orientation as transform. matrix,
controlled by game physics dynamics
model

V: Refined 3D zeppelin model; rendering
3D model of env.; vector visualization

C: Direct control of 3 DOF (rotor orient. a.
speed, tail rotor speed) [INPUT: remote
control]

E: Static 3D CAD model of the environment

M V

EC

Fig. 5. Prototype using game physics

diagram all points placed one cycle away from the middle towards more realism and
complexity. Now the user application can steer the zeppelin by using a standard re-
mote control, which is more realistic than using the keyboard and thus better suited
for training. Also the game physic engine create more realism in the motion-behavior.

4.3 Prototype 3: MATLAB/Simulink Simulation

Because the game physic engine is not as realistic as it should be, we build a
MATLAB/Simulink [11] model for calculating the transformation and orientation in
the third prototype. We also added an automatic hight control to our model, whichen-
sure that the zeppelin retains a preset height. For the environment we uses a live
image of the real environment (figure 6). The 3D CAD model used in prototype 2
now is needed as collision object and for height measurement. For the view we have
the same airship-model as in prototype 2. The virtual representation of the environ-
ment is replaced by the live video. The parameter of the automatic height control is
added to the controller. The input device is the same remote control as in prototype 2,
additionally a slider and a button on the remote control is mapped to the height
control for setting the hight or enable / disable the height control.

M V

EC

M: Transform. matrix controlled by physics
model (Simulink); autom. height control

V: Zeppelin 3D model; vector visualization;
live image as background

C: Direct control of 3 DOF (rotor orient. a.
speed, tail rotor speed) [INPUT: remote
control]

E: Static 3D model for collisions; live image
of environment; height measurement

Fig. 6. Application using the MATLAB/Simulink model and a video background

 A Design Method for NGUI Inspired by the Mixed Reality Continuum 251

M V

EC

M: Position, orientation measured from real
zeppelin; collision detection

V: Real zeppelin, rendering of virtual envi-
ronment

C: Direct control of 3 DOF (rotor orient. a.
speed, tail rotor speed) [INPUT: remote
control]

E: Real-time tracking (6DOF), height meas-
urement, static 3D model of environment

Fig. 7. AV scenario

4.4 Prototype 4: AV Scenario

In our next prototype we exchange the virtual model with the real zeppelin (figure 7).
To minimize possible damage the airship fly in a large blue room with no obstacles.
We added virtual obstacles to the scenario to build a parkour to fly through.

The MATLAB/Simulink model is replaced by the real zeppelin. It is tracked to get
the actual position and orientation as transformation matrix. This transformation ma-
trix is used by the collision detection, which controls the zeppelin when it collide with
a virtual obstacle. This is done by calculating the collision vector and mapping it
on the propeller of the zeppelin. At this point the user input is ignored and the colli-
sion detection takes over the control of the airship until the collision is resolved. For
the environment we uses the real-time tracked zeppelin, the height measurement and
the static 3D CAD model of the real environment. The real zeppelin itself is now
handled as a part of the environment and only it‘s transformation matrix has to
be acquired by appropriate tracking sensors. For the view we have the real zeppelin
flying around in a virtual environment. The controller and input device is the same as
in prototype 3.

4.5 Prototype 4: AR Scenario

In our last prototype (figure 8) the user control the real zeppelin in the real environ-
ment. We visualize the force vectors of all three propeller and the resulting force for
the zeppelin as we did in prototype 3.

Our model consists of the position and orientation, which is tracked from the
real zeppelin. The model itself is very simple compared to the model in MATLAB/
Simulink, but as we control the real zeppelin, it is the most realistic one. The envi-
ronment contains the real-time tracked zeppelin and the real environment. On
the view-axis of our component refinement state diagram the environment and the
zeppelin are real and in addition we have virtual visualization for the forces.

The controller is the same as in the AV prototype, which outputs the 3 DOF for
controlling the zeppelin directly. As input device we first used the standard remote
control, but then exchanged it by more complex input devices, including a gesture
recognition using the Wiimote and a tracked TUI zeppelin model which is used to
specify complete maneuvers (green dotted line in the diagram of figure 8).

252 J. Stöcklein et al.

M V

EC

M: Position, orientation measured from real
zeppelin; control of zeppelin

V: Real zeppelin, real environment, vector
visualization

C: Various, all with 3DOF output for direct
control, either directly or over extended
times

E: Real-time tracking of zeppelin (6DOF),
height measurement

Fig. 8. Image of the AR application

5 Conclusion and Outlook

A key challenge in the development of mixed-reality (MR) applications is the use of
ad-hoc development approaches and the lack of standardization and reuse. Most exist-
ing MR projects are research projects that focus on a single technology specific aspect
and do not consider issues of tool development, content reuse and integration with
other development processes. One area where this shortcoming is of central relevance
is the reuse of software components in a flexible fashion. To exploit the full potential
of MR interfaces a systematic development approach is required. In this paper we
have presented an iterative development approach that is based on structuring MR
applications into model, view, controller and environment components that can
refined individually. We have shown how this model was used successfully to itera-
tively develop a variety of refinements of a NGUI to control a zeppelin and illustrated
the benefits of component-wise refinement. The MVCE model helps to provide con-
crete support for software development and reuse in MR applications. In the future we
aim to refine our process and experiment with extended tool support for MVCE
applications. An area of development support that is still left largely unaddressed is
thereuse of MR augmentation content between applications. A way to describe such
models in a standardized and interchangeable format is still lacking and clearly
requires more research in the future.

References

1. Shaer, O., et al.: User Interface Description Languages for Next Generation User
Interfaces. In: CHI 2008 extended abstracts on Human factors in computing systems,
ACM Press, Florence, Italy (2008)

2. Burbeck, S.: Applications Programming in Smalltalk-80: How to use Model-View-
Controller, MVC (1992)

3. Ishii, H.: Tangible User Interfaces. In: Sears, A., Jacko, J. (eds.) Handbook of HCI, 2nd
edn., Lawrence Erlbaum Association, Mahwah (2008)

4. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. In: IEICE
Transactions on Information and Systems (1994)

 A Design Method for NGUI Inspired by the Mixed Reality Continuum 253

5. MacIntyre, B., et al.: DART: A Toolkit for Rapid Design Exploration of Augmented
Reality Experiences. In: User Interface Software and Technology, UIST 2004 (2004)

6. Broll, W., Herling, J., Blum, L.: Interactive Bits: Prototyping of Mixed Reality
Applications and Interaction Techniques through Visual Programming. In: International
Symposium On 3D User Interfaces, Reno, USA (2008)

7. Cuppens, E., Raymaekers, C., Coninx, K.: A model-based design process for interactive
virtual environments. In: 12th International Workshop on DSVIS (2005)

8. Mixed Reality User Interfaces: Specification, Authoring, Adaptation. MRUI 2007.
Charlotte, North Carolina, USA (2007)

9. Geiger, C., et al.: HYUI: a visual framework for prototyping hybrid user interfaces. In:
TEI 2008: Proceedings of the 2nd international conference on Tangible and embedded
interaction (2008)

10. Havok: Havok Physics (2009), http://www.havok.com
11. MathWorks, T.: MATLAB/Simulink (2009), http://www.mathworks.com

	A Design Method for Next Generation User Interfaces Inspired by the Mixed Reality Continuum
	Introduction
	Related Work
	Design of Next Generation User Interfaces
	The MVCE Model

	Example
	Prototype 1: Simple Virtual Reality
	Prototype 2: Game Physics
	Prototype 3: MATLAB/Simulink Simulation
	Prototype 4: AV Scenario
	Prototype 4: AR Scenario

	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

